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ABSTRACT
Database systems heavily rely upon cardinality estimates for
finding efficient execution plans, and estimation errors can
easily affect query execution times by large factors. One
particularly difficult problem is estimating the result size
of a group-by operator, or, in general, the number of dis-
tinct combinations of a set of attributes. In contrast to,
e. g., estimating the selectivity of simple filter predicates,
the resulting number of groups cannot be predicted reliably
without examining the complete input. As a consequence,
most existing systems have poor estimates for the number
of distinct groups.

However, scanning entire relations at optimization time
is not feasible in practice. Also, precise group counts can-
not be precomputed for every possible combination of at-
tributes. For practical purposes, a cheap mechanism is thus
required which can handle arbitrary attribute combinations
efficiently and with high accuracy.

In this work, we present a novel estimation framework that
combines sketched full information over individual columns
with random sampling to correct for correlation bias between
attributes. This combination can estimate group counts for
individual columns nearly perfectly, and for arbitrary col-
umn combinations with high accuracy. Extensive experi-
ments show that these excellent results hold for both syn-
thetic and real-world data sets. We demonstrate how this
mechanism can be integrated into existing systems with low
overhead, and how estimation time can be kept negligible
by means of an efficient algorithm for sample scans.

1. INTRODUCTION
Estimating the number of distinct values for a given set of
attributes is one of the classical problems of query optimiza-
tion. For example, the result cardinality of the following
query fragment, which could be part of a larger query,

select A, B, sum(C)

from R

group by A, B
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Figure 1: Multiplicative estimation error of existing
sampling-based approaches GEE and AE in compar-
ison to a 64 byte HyperLogLog sketch, over all indi-
vidual columns of the IMDb data sets.

is determined by the number of unique pairs (A,B). Besides
group-by clauses, these distinct value counts are also used in
many other places like, e. g., hash table sizing or cardinality
estimation for outer and multi-attribute joins. Getting these
estimates wrong can lead to very poor performance [17].

Accordingly, the problem of estimating the number of
distinct values has been extensively studied before, albeit
largely with negative results [3, 11]. In their seminal pa-
per, Charikar et al. showed that we cannot derive good es-
timates from reasonably sized samples [3]. Fundamentally,
most of the input has to be examined to estimate the do-
main size accurately. Nevertheless, Charikar et al. proposed
two sampling-based estimators, GEE and AE, for pragmatic
reasons. One simply cannot read the complete input for
estimation purposes, and sampling offers attractive perfor-
mance.

A different family of approaches uses small fixed sized data
sketches that allow for estimating the number of distinct
values with little overhead. A prominent example is the Hy-
perLogLog estimator that manages to get very accurate esti-
mates using an astonishingly small state [7]. Figure 1 shows
the estimation accuracy of GEE and AE, using a sampling
fraction of 0.1%, compared to a 64 byte (!) HyperLogLog
sketch using the improved estimator by Ertl [6]. The plot
shows the error distribution over all individual columns of
the Internet Movie Database (IMDb) data sets on a loga-
rithmic scale. We can see that while the sampling based
approaches often have very large estimation errors, the im-
proved HyperLogLog (HLL) estimates are nearly perfect.
The fundamental difference is that the HLL sketch has seen



Algorithm 1: Insert (traditional HLL sketch)

state : m = 2b zero-initialized buckets M ∈ Nm

input: A 64-bit hash value h = 〈h64, . . . , h1〉2
1 i← 〈h64, . . . , h64−b+1〉2 ; // bucket index
2 z ← LeadingZeros(〈h64−b, . . . , h1〉2) ;
3 Mi ← max(Mi, z) ;

every input value once during construction, while GEE and
AE try to extrapolate from few samples to the full relation.

Nevertheless, most existing systems use sampling based
approaches, often with very poor accuracy. PostgreSQL
10.3, for instance, which uses sampling, estimates the num-
ber of distinct l_orderkey values in TPC-H SF1 as 395 518.
This estimate is off by a factor of 3.8, although the simple
TPC-H data set exhibits convenient uniform distributions in
its columns. Estimates on real-world data sets with skewed
data distributions can be expected to be much worse. HLL
based sketches promise dramatically better accuracy with
very little state, but they are hard to use in general. First,
one has to maintain the sketch during inserts, updates and
deletions. Second, estimates must be supported for arbi-
trary combinations of attributes, but we cannot maintain
an exponential number of HLL sketches.

In this work we overcome these difficulties, and introduce
an estimation framework that combines the benefits of HLL
sketches and sampling. Our contributions are 1) an efficient
HLL sketch implementation that supports updates and dele-
tions and that gives very accurate estimates for individual
columns, 2) a sketch-based correction framework that allows
for computing accurate multi-column estimates from a sam-
ple, and 3) a very fast frequency computation implementa-
tion within the sample using an efficient recursive algorithm.
The combined framework allows for very accurate estimates
with low overhead, as we demonstrate in a large-scale eval-
uation on synthetic and real-world data sets.

The rest of this paper is structured as follows: First, Sec-
tion 2 introduces the updateable HLL sketches for individ-
ual columns. Then, Section 3 shows how these estimates
can be combined with random sampling to derive estimates
for multiple columns. An algorithm for efficient frequency
computation is introduced in Section 4. Experimental re-
sults are shown in Section 5, and related work is discussed
in Section 6.

2. SKETCHING INDIVIDUAL COLUMNS
Before addressing the general case of arbitrary attribute
combinations, we first look at using sketches for individ-
ual columns. The goal is to maintain HLL sketches for all
columns stored in the database, which allows us to obtain
very accurate estimates for the number of distinct values
within single columns. The main challenge lies in support-
ing arbitrary updates while keeping the overhead low. We
first briefly review traditional HLL sketches, and then show
how to generalize them to support updates and deletions.

2.1 Traditional HyperLogLog Sketches
HyperLogLog sketches are a greatly improved variation of
the ground-breaking Flajolet-Martin sketches [7,8]. Given a
high-quality hash function that maps values uniformly into

Algorithm 2: Insert (counting HLL sketch)

state : m = 2b buckets of 64− b+ 1 zero-initialized
counters M ∈ Nm×(64−b+1)

input: A 64-bit hash value h = 〈h64, . . . , h1〉2
1 i← 〈h64, . . . , h64−b+1〉2 ; // bucket index
2 z ← LeadingZeros(〈h64−b, . . . , h1〉2) ;

3 if Miz ≤ 128 then
4 increment Miz ;
5 else
6 increment Miz with probability 1/2Miz−128 ;
7 end

the integer domain, the key idea is that the number of dis-
tinct values in a multiset can be deduced by making use of
two properties of their hash values. First, two identical val-
ues will have the same hash value. Second, of the distinct
hash values, roughly 50% will have a zero in the first bit of
the hash value, roughly 25% will have only zeros in the first
two bits, and a fraction of approximately 1/2i will have only
zeros in the first i bits.

Thus, we can compute a very rough estimate for the num-
ber of distinct values as follows: First, we hash all values
in the multiset, and track the maximum number max(i) of
leading zero bits i of all hash values. The number of distinct
values can then be estimated as 2max(i), using just one small
integer as state regardless of the size of the multiset.

In practice, using just one integer for estimation is too
sensitive to outliers. Instead, hash values are assigned to
m = 2b buckets based on their first b bits. The number
of leading zeros is then computed on the remaining bits,
and its maximum is tracked individually for each bucket
(cf. Algorithm 1). The original HyperLogLog algorithm
computes the harmonic mean of the resulting m individ-
ual estimates [7], but this can lead to biased results if the
cardinality is small [14]. In the following, we will use an
improved estimator that uses a Poisson model to handle the
complete range of cardinalities [6]. The resulting algorithm
executes only a handful of bit operations per hash value and
is thus very cheap [6,14].

Within each bucket the maximum number of leading ze-
roes is stored, which is at most 64 − b for 64 bit hash val-
ues. Each bucket thus fits into a single byte, leading to
a very small state size of m bytes. The expected relative
error is 1.04/

√
m, which means that with just 64 bytes of

state we expect a multiplicative error of 1.13, which is good
enough for estimation purposes. During experiments with
thousands of data sets from a commercial vendor, we found
that, with 64 bytes of state, the improved estimator achieves
a median multiplicative error of only 1.07, and an error of
1.24 in the 99% quantile. Based on these results, we choose
a state size of 64 bytes in the following, which also happens
to coincide with the cache line size on modern CPUs.

2.2 Updateable HyperLogLog Sketches
When using sketches inside a database system, we have to
cope with the fact that values are both inserted and deleted.
HLL sketches support inserts out of the box, but deleting
a value whose leading zero count is equal to the current
bucket value is problematic. We do not know if we have to
decrease the bucket value, since other values could exist in
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Figure 2: Using counting HLL sketches for updates.

that bucket with the same number of leading zeroes, and this
information is not maintained by traditional HLL sketches.

Therefore, counting HyperLogLog sketches have been pro-
posed that remember how many values had a certain num-
ber of leading zeroes [8, 21]. With this information we can
support both insertion and deletion, increasing and decreas-
ing the counters as needed. The estimation process itself
remains unchanged, as we only maintain the sketched in-
formation in a different representation. Since we are using
m = 26 = 64 buckets, there are 59 possible leading zero
counts for 64 bit hash values. If we maintain counters for
each of these values naively [21], using 8 byte integers, we
end up with a sketch that requires nearly 30 kB of space.
This can be prohibitively expensive if we sketch every col-
umn in a database, and we propose a more space-efficient
variant of counting HLL sketches.

As outlined above, the probability that a hash value has
exactly i leading zeros is 1/2i+1. That is, low values of i are
exponentially more likely than high values, and the maxi-
mum observed value used for estimation likely occurs only
a few times. This can be exploited to reduce storage space
considerably, by using a one-byte probabilistic counter [8].
The first 128 occurrences of a value are counted exactly,
and the remaining byte values v > 128 represent ranges
of exponentially growing size [128 + 2v−129, 128 + 2v−128].
When incrementing a counter that is within these exponen-
tial ranges, we perform the increment with the probabil-
ity that the current value is the largest value within the
range (cf. Algorithm 2). This is a variant of the probabilis-
tic counting approach by Flajolet and Martin [8], with the
difference that we count the important small values exactly,
while the less important large values are counted with some
uncertainty, but expected correct behavior. The delete op-
eration is symmetrical to Algorithm 2, decrementing instead
of incrementing counters.

Figure 2 shows the effect of inserting one hash value 2 000
times into the sketch. The first 6 bits of the hash value
indicate that bucket 2 needs to be updated. Within the re-
maining bits of the hash value, there are 3 leading zeroes,
which means that we increase the corresponding counter
2 000 times. This is beyond the exact range of the counter,
and we end up with an (expected) counter value of 139 which
represents the interval [1 152, 2 176].

The proposed approach allows us to handle both deletion
and insertion with a reasonable overhead. The state size is
3.6 kB, which is of course much larger than the original 64
bytes. Nevertheless, in many cases it is still much smaller
than the space required to store a sample of a column, which
requires 8 bytes per value in our implementation (i. e. 3.6 kB
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Figure 3: Example of a sample being drawn from a
table with an unspecified number of columns. For
an overview of the notation used, see Table 1.

for only 450 rows). The update and delete operations require
only few additional instructions compared to the original
algorithm, and remain very cheap (cf. Section 5).

3. MULTI-COLUMN ESTIMATES
Counting HLL sketches offer excellent accuracy and perfor-
mance on individual columns, but it is infeasible to maintain
sketches on all combinations of attributes. For these cases,
we propose a novel estimation approach which leverages the
accurate single-column estimates of counting HLL sketches
to correct multi-column estimates obtained through sam-
pling. We apply our correction approach to the well-known
estimators GEE and AE [3], and to a novel estimator based
on improved estimation bounds.

3.1 Background
In the following, we consider a table with N rows and C ≥
2 attributes, which contains D distinct tuples. Let these
distinct tuples be indexed by k ∈ {1, . . . , D}, and suppose
the k-th distinct tuple occurs Nk times in the table, i. e. N =∑D

k=1Nk. Furthermore, let Q = max(Nk), and define Fi to
be the number of distinct tuples that occur exactly i times
in the table, i. e. N =

∑Q
i=1 i · Fi and D =

∑Q
i=1 Fi. In the

following, we will refer to a tuple which occurs exactly once
as a singleton tuple, or simply singleton.

Our estimation approach examines a random sample con-
taining n ≤ N rows, which are chosen uniformly at random
from the table. For comparability with previous work [3],
we consider sampling with replacement, however, our ap-
proach can be adapted easily to sampling without replace-
ment. Suppose there are d distinct tuples in this sample,
indexed by k ∈ {1, . . . , d}, and the k-th distinct tuple oc-
curs nk times in the sample. Let fi denote the number of
distinct tuples which occur exactly i times in the sample,
and q = max(nk). Then, analogous as above, n =

∑q
i=1 i ·fi

and d =
∑q

i=1 fi.
For a clarification of this notation, consider the example

shown in Figure 3. There is a table containing N = 8 rows,
with D = 4 distinct tuples identified by distinct uppercase
letters. Within the entire table, two tuples occur once (F1 =
2), one tuple occurs twice (F2 = 1), and one tuple occurs
four times (F4 = 1). We draw a sample containing n = 4
rows from this table, of which d = 3 are distinct tuples.
Two tuples occur once in the sample (f1 = 2), and one
tuple occurs twice (f2 = 1). An overview of our notation is
also displayed in Table 1.



Table 1: Selected notation used throughout Sec-
tion 3. Uppercase variables refer to the entire table,
and lowercase variables refer to a sample of the ta-
ble. A tuple refers to an entire row of the table.

notation denotation
table sample

N n Number of rows
D d Number of distinct tuples over all

columns
Dj dj Number of distinct values in the j-th

column
Nk nk Absolute frequency of the k-th distinct

tuple
Nk,j nk,j Absolute frequency of the k-th distinct

value in the j-th column
Fi fi Number of distinct tuples over all

columns which occur exactly i times
Fi,j fi,j Number of distinct values in the j-th

column which occur exactly i times

Following previous work on the subject [3], we evaluate

an estimator D̂ of the number of distinct tuples D in terms
of its multiplicative ratio error which is defined as

error(D̂) =

{
D/D̂ if D ≥ D̂
D̂/D if D < D̂

. (1)

A powerful negative result due to Charikar et al. states
that any estimator which examines at most n rows of a table
with N rows must incur an expected ratio error in O(

√
N/n)

on some input [3]. They develop the Guaranteed Error Es-
timator (GEE) which is optimal with respect to this result,

in the sense that its ratio error is bounded by
√
N/n with

high probability. This estimator is defined as

D̂GEE =

√
N

n
f1 +

q∑
i=2

fi. (2)

The key intuition underlying this approach is that any
tuple which appears frequently in the entire table is also
likely to be present in the sample. Thus, estimating the
number of such tuples as

∑q
i=2 fi can be expected to be

fairly accurate [3]. The total number of singleton tuples, on
the other hand, can be much larger in the entire table than
in the sample. Specifically, the f1 singletons present in the
sample could constitute up to a fraction N/n of the entire set
of singletons, for a total of Nf1/n ≤ N singletons. At the
same time, however, there could be as few as f1 singletons
in the entire table. In order to minimize the expected ratio
error, GEE estimates the true number of singletons as the
geometric mean

√
N/nf1 between the lower bound f1 and

upper bound Nf1/n.
Despite its provable optimality, GEE provides only loose

bounds on the ratio error for reasonable sampling fractions
n/N . For example, for a sampling fraction of 1 % the ra-
tio error of GEE can still be as large as 10. This renders
its estimates unusable in many real-world scenarios (cf. Sec-
tion 1). In particular, if f1 is large relative to the number
of distinct values in the sample, GEE will severely underes-
timate the actual number of singleton values [3]. Figure 4,
for instance, shows a scatter plot of the true number of sin-
gletons F1 in relation to the observed number of singletons

f1 in a sample of size n/N = 1 % on the well-known Cen-
sus data set. In most cases where f1 is close to n, the true
number of singletons F1 is close to N = 100n. However, for
f1 = n, GEE would estimate the true number of singletons
as
√
N/nf1 = 10n, which differs from N by a factor of 10.

For this reason, Charikar et al. propose an adaptive es-
timator (AE), which attempts to derive some information
about the data distribution from the sample in order to ob-
tain more accurate estimates of the number of singleton val-
ues [3]. Nevertheless, our experimental results show that
AE can still not produce satisfactory results in many cases
(cf. Figure 1 and Section 5).

3.2 Improved Estimation Bounds
As outlined above, GEE incurs a high estimation error main-
ly when there is a large number of singleton tuples F1 in the
entire table. In these cases, GEE computes an overly conser-
vative lower bound on F1 from a given sample, which causes
it to severely underestimate the true number of singletons.
Figure 4 illustrates this problem on the well-known Census
data set. There is a clear nonlinear relationship between
the number of singletons observed in a sample f1, and the
number of singleton tuples F1 in the entire table. However,
as shown in Figure 4, GEE fails to exploit this relation-
ship since it estimates the true number of singletons to be√
N/nf1 which scales linearly in f1.
In the following, we thus derive improved bounds on the

true number of singleton tuples based on quantities that can
be observed in a sample of the relation. This allows us to
subsequently derive a novel estimator with improved estima-
tion accuracy in comparison to GEE and AE. In particular,
we present an upper bound on the expected value E(f1) of
singleton tuples, and a lower bound on the expected value
of distinct tuples E(d) in the sample. These inequalities link
the number of distinct tuples D in the entire relation to
these expected values, which can be estimated easily on a
sample of the relation.

As shown in previous work [3], the expected number of
singletons is given by

E(f1) =

D∑
k=1

nPk(1− Pk)n−1, (3)

where Pk = Nk/N denotes the relative frequency of the k-th
distinct tuple in the entire table.

Intuitively, for a large number of distinct tuples, the ex-
pected value of f1 is maximized when they are approxi-
mately uniformly distributed in the entire table. If some
tuple occurred more frequently than others in the entire ta-
ble, these would be more likely to be present frequently in
the sample as well, reducing the expected number of single-
tons. This intuition is formalized as follows.

Theorem 1. Consider a table with N rows containing D
distinct tuples. Suppose we draw a sample of n rows uni-
formly at random with replacement, and let f1 denote the
observed number of singleton tuples in this sample. Then,
the following inequality holds

E(f1) ≤
{
n · (1− 1/D)n−1 if D ≥ n,
D · (1− 1/n)n−1 otherwise.
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A proof of this theorem is presented in Appendix A. On
the other hand, as shown previously [3], the expected num-
ber of distinct tuples is given by

E(d) = D −
D∑

k=1

(1− Pk)n. (4)

Each distinct tuple must occur at least once in the table,
i. e. Nk ≥ 1 and consequently Pk ≤ 1/N for all k. Hence, a
simple lower bound on E(d) can be derived as follows.

Theorem 2. Consider a table with N rows containing D
distinct tuples. Suppose we draw a sample of n rows uni-
formly at random with replacement, and let d denote the
observed number of distinct tuples in this sample. Then, the
following inequality holds

E(d) ≥ D −D · (1− 1/N)n.

A formal proof of this theorem is presented in Appendix B.
By rearranging the inequalities in Theorem 1 and Theo-
rem 2 suitably, we obtain bounds L,U on the true number
of distinct tuples D that depend on E(d) and E(f1), where
L ≤ D ≤ U . The observed quantities d and f1 clearly consti-
tute unbiased estimators for these expected values, allowing
us to estimate the bounds on D as follows

L̂ =

{
1/(1− n−1

√
f1/n) if f1 ≥ n (1− 1/n)n−1 ,

f1/(1− 1/n)n−1 otherwise,
(5)

as well as

Û = d/ (1− (1− 1/N)n) . (6)

Naturally, we apply sanity bounds to ensure that d ≤ L̂, Û ≤
N . These estimated bounds can now be leveraged to define
a novel estimator for the number of distinct tuples D. We

adopt the assumption made by GEE that
∑q

i=2 fi accurately
estimates the true number of tuples which occur more than
once. Under this assumption, L̂−

∑q
i=2 fi and Û −

∑q
i=2 fi

provide approximate bounds on the true number of single-
tons F1, allowing us to tighten the bounds originally used
by GEE, i. e.

L̂BC = max

(
f1, L̂−

q∑
i=2

fi

)
, (7)

ÛBC = min

(
Nf1
n

, Û −
q∑

i=2

fi

)
. (8)

Analogous to GEE, the true number of singletons is then es-
timated as the geometric mean between the adjusted lower
and upper bounds, resulting in the bound-corrected estima-
tor BC, specifically

D̂BC =

√
L̂BCÛBC +

q∑
i=2

fi. (9)

As shown in Figure 4, the adjusted lower bound L̂BC

matches the data distribution much more accurately, espe-
cially for large cardinalities. In general, we observed that
the adjusted upper bound ÛBC frequently coincides with the
original upper bound used by GEE, which is also evident in
Figure 4. In practice,

∑q
i=2 fi will clearly underestimate the

true number of tuples which occur more than once. Hence,
Û −

∑q
i=2 fi will generally overestimate the upper bound on

F1, resulting in the observed behavior.
In case of sampling without replacement, one can follow a

similar line of reasoning and develop an approximate lower
bound based on the work of Goodman [10]. For space con-
siderations, we only show the final result after applying stan-
dard numerical approximations, which yields

L̂ =

{
N/(log(f1/n)/ log(1− r) + 1) if f1 ≥ n(1− r)1/r−1,

f1/(1− r)1/r−1 otherwise,

where r = n/N is the sampling fraction.

3.3 Sketch-Corrected Estimators
As we will demonstrate in our experimental evaluation in
Section 5, the BC estimator already exhibits a considerably
improved ratio error in comparison to GEE and AE. Nev-
ertheless, since it is based purely on a sample of the table,
there are cases in which BC will incur a high ratio error
in O(

√
N/n) as well [3]. For example, Figure 4 shows that

both the proposed lower bounds and upper bounds are quite
loose in many cases, which may lead to inaccurate estimates.

We overcome these problems by correcting the multi-col-
umn estimates using information about the value distribu-
tion of the individual attributes. Thus, let Dj denote the
number of distinct values, and Fi,j the number of distinct
values which occur exactly i times in the j-th column of the
table. Furthermore, suppose that the k-th distinct value
in the j-th column occurs Nk,j times, and define Qj =

max(Nk,j), i. e.
∑Qj

i=1 Fi,j = Dj and
∑Qj

i=1 i · Fi,j = N . Fi-
nally, define dj , fi,j and qj analogously on a sample of the
table (cf. Table 1).
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Figure 5: Sample value distributions in a table with
two columns, from which a sample is drawn. For an
overview of the notation used, see Table 1.

Assuming that Dj and F1,j are known for all individual
attributes j, we can derive bounds on the true number of
distinct tuples D and singleton tuples F1, namely

max(F1,j)j=1,...,C ≤ F1 ≤ ΠC
j=1Dj , (10)

max(Dj)j=1,...,C ≤ D ≤ ΠC
j=1Dj . (11)

The lower bound in Inequality 10 holds since any row which
contains a singleton value in one column must be part of a
singleton row when more columns are considered. Similarly,
the lower bound in Inequality 11 applies because each dis-
tinct value in an individual column is part of at least one
distinct tuple over multiple columns. For instance, the indi-
vidual columns in Figure 5 contain up to max(F1,1, F1,2) =
25 000 singletons and max(D1, D2) = 50 000 distinct values.
This implies that there are at least 25 000 singletons and
50 000 distinct values in the full table. In both cases, an
upper bound is trivially given by the cardinality of the cross
product of the distinct values in the individual columns. The
latter bound is useful if the number of rows N is large, and
there are few distinct values in the individual columns.

In practice, sketches can be employed to estimate Dj ac-

curately and cheaply. Let these estimates be denoted by D̂j ,
and recall that GEE assumes

∑qj
i=2 fi,j to fairly accurately

estimate the number of non-singleton values in the j-th col-
umn. Hence, we can estimate the true number of singleton
values in column j as

F̂1,j = D̂j −
qj∑
i=2

fi,j . (12)

Substituting the exact values by these estimates in In-
equalities 10 and 11 yields bounds on F1 and D which can
be used to correct the multi-column estimates of BC. For
comparison purposes, we also correct the multi-column es-
timates of GEE and AE. In the following, we will refer to
the corrected estimators as sketch-corrected estimators. In
all cases, Inequality 11 is leveraged to provide sanity bounds
on the estimates.

3.3.1 Sketch-Corrected GEE (SCGEE)
In case of GEE, we can tighten the original bounds on the
true number of singleton tuples using Inequality 11, i. e.

L̂SCGEE = max
(
f1,max(F̂1,j)j=1,...,C

)
, (13)

ÛSCGEE = min

(
Nf1
n

,ΠC
j=1D̂j

)
. (14)

Analogous to GEE, the expected ratio error can be mini-
mized by estimating F1 as the geometric mean of the upper
and lower bounds, and the corresponding sketch-corrected
estimator is defined as

D̂SCGEE =

√
L̂SCGEEÛSCGEE +

q∑
i=2

fi. (15)

In Figure 5, for example, GEE would estimate the number of
singletons to be

√
N/nf1 = 7 500, far below the true value

F1 = 50 000. Due to corrected bounds, on the other hand,
SCGEE estimates the number of singletons much more ac-

curately as
√
L̂SCGEEÛSCGEE ≈ 43 000. Conveniently, the

estimator inherits the worst-case error bound guarantee of
GEE, since it only tightens the original bounds on F1.

3.3.2 Sketch-Corrected AE (SCAE)
The adaptive estimator AE involves a complex numerical
approximation of the estimated number of low-frequency el-
ements in the table. It is beyond the scope of this paper
to identify ways in which these approximations can be cor-
rected directly. Hence, we only apply the sanity bounds
provided by Inequality 11 to AE, resulting in the sketch-
corrected adaptive estimator D̂SCAE .

3.3.3 Sketch-Corrected BC (SCBC)
Although the bound-corrected estimator BC already em-
ploys tightened estimation bounds, we conjecture that it can
be improved further through sketch-correction. We correct
BC in the same way as GEE, by adjusting the bounds on the
true number of singleton tuples using Inequality 10. There-
fore, we obtain

L̂SCBC = max
(
L̂BC ,max(F̂1,j)j=1,...,C

)
, (16)

ÛSCBC = min
(
ÛBC ,Π

C
j=1D̂j

)
, (17)

and the sketch-corrected estimator

D̂SCBC =

√
L̂SCBCÛSCBC +

q∑
i=2

fi. (18)

Returning to the example displayed in Figure 5, BC would

estimate the true number of singletons to be
√
L̂BCÛBC ≈

16 000, which already improves over the estimate by GEE.
After sketch-correction, SCBC employs the same bounds as
SCGEE in this case and estimates F1 to be approximately√
L̂SCBCÛSCBC ≈ 43 000. In general SCBC produces more

accurate estimates than SCGEE, as our experimental eval-
uation will demonstrate (cf. Section 5).

4. COMPUTING FREQUENCIES
The estimators presented in the previous section need to de-
termine the number fi of attribute combinations that occur
exactly i times in a sample. This frequency vector f can be



Algorithm 3: ComputeFrequenciesR(ecursive)

input : A sample S ∈ Nn×C , a partially built
frequency vector f ∈ Nn, a set of row
indices P , and a column index j

output: f updated by the multiplicities of rows in P

1 if j > C ∨ |P | = 1 then
// base case

2 f|P | ← f|P | + 1;

3 else
// partition j-th column and recurse

4 (P ′k)k=1,...,m ← RefinePartition(S∗,j, P);

5 for partition index k = 1 to m do
6 f ← ComputeFrequenciesR(S, f , P ′k, j + 1);

7 end

8 end

9 return f ;

computed in a straightforward way by using a hash table,
but hashing or comparing entire rows can be expensive since
each individual attribute has to be accessed. Moreover, the
constants hidden in the O(1) time complexity of the inser-
tion and retrieval operations of a hash table can notably
impact computation time even if the number of columns is
small (cf. Section 5). Finally, as the number of distinct at-
tribute combinations is not known beforehand, memory for
the hash table has to be allocated pessimistically in order to
avoid expensive rehashing during computation. Thus, the
hash table will be unnecessarily large in many cases.

Instead, we propose a recursive approach for computing
the frequency vector f based on an algorithm for string
multiset discrimination first proposed by Cai and Paige [1].
Their algorithm scans strings in a multiset from left to right,
and progressively splits the multiset into smaller partitions
by examining the characters at the current position. A simi-
lar approach can be used to compute f if rows in the sample
are interpreted as strings over a suitable alphabet, as the
size of partitions then indicates how often a row occurs in
the sample. For convenience, we will assume in the follow-
ing that all values in the sample are integers. A high-level
illustration of the proposed algorithm is displayed in Algo-
rithm 3. It takes as input the sample S ∈ Nn×C , a partially
built frequency vector f ∈ Nn, a set of row indices P , and a
column index j ∈ {1, . . . , C + 1}. The algorithm recursively
computes the multiplicities of rows in P , and updates the
corresponding entries of the frequency vector f .

The recursion terminates either if P contains only one
row, or if there are no more columns to check, i. e. j = C+1.
In these cases, we have found a row with multiplicity |P |,
and the frequency vector is updated accordingly (lines 1–
3). Otherwise, the given partitioning is refined based on the
values in the j-th column, using the RefinePartition subrou-
tine (line 4). It takes as input a column of the sample and
a set of row indices, and splits the row indices into several
sets so that the column values are equal for all rows within
one set. Finally, the given frequency table is updated re-
cursively on each of these refined partitions (lines 5–7). A
frequency table for the entire sample can be computed by
passing f = 0, P = {1, . . . , n}, and j = 1 as parameters to
Algorithm 3. The algorithm maintains the invariant that for
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Figure 6: Recursively partitioning several columns
at a time. Column values are encoded in 2 bits,
and a machine word size of 4 bits is assumed. The
computed frequencies are f1 = f2 = 2.

a given j, all columns j′ < j have the same value within a
partition, which implies correctness. It terminates since j is
incremented in each recursive step and cannot exceed C+1.

The proposed approach can be optimized further as fol-
lows. First, any row which contains a singleton value in at
least one column must be a singleton attribute combination,
and can be pruned in a preprocessing step, e. g. by main-
taining suitable singleton bitmaps. Second, we encode the
remaining column values as indices into a dictionary, which
require at most dlog2(n)e bits for a sample of size n. This al-
lows the algorithm to process multiple columns at once, by
packing several column values into a single machine word
(cf. Figure 6). Furthermore, all values in the sample can be
converted to integers this way, justifying the corresponding
assumption made above. Finally, we consider columns with
many distinct values early, so that partition sizes decrease
more quickly and the algorithm terminates faster.

The RefinePartition subroutine can be implemented in
linear time using either hash tables or radix sort, at the cost
of using some auxiliary memory. However, we have found
that, in practice, simply sorting the rows in-place followed
by a linear scan to determine the partition boundaries can
perform better on realistic sample sizes. Since partitions
never overlap, the recursive algorithm can be implemented
using a single auxiliary array of row indices, which is pro-
gressively updated as partitions are refined (cf. Figure 6).
When partitioning several columns at a time, another aux-
iliary array of the same size is required in order to compute
the packed row values. These values cannot be precomputed
because the algorithm must be able to compute frequency
vectors for arbitrary subsets of attributes.

5. EXPERIMENTS
In the following, we evaluate the proposed approach with
respect to its computational performance and estimation ac-
curacy. First, we demonstrate that the proposed counting
HLL sketch incurs a negligible performance overhead com-
pared to traditional HLL sketches, while retaining similarly
high estimation accuracy in the presence of deletions. Sec-
ond, we show that the proposed sketch-corrected estimators
exhibit superior estimation accuracy in comparison to pre-
vious estimators. Finally, our experiments yield that the
proposed frequency computation algorithm offers excellent
performance, providing low estimation latency even on large
real-world data sets.
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subsequently reverted by deleting the corresponding
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Table 2: CPU time required to sketch all values of
a table with 10 million rows and 10 columns for the
traditional HLL sketch and the proposed approach.

HLL variant column-wise row-wise

traditional 132 ms 111 ms
counting 340 ms 370 ms

5.1 Counting HyperLogLog Sketches
As discussed above, we propose to maintain a counting HLL
sketch for each individual column in a database. Whenever
values in a table are inserted, updated, or deleted, these
sketches have to be updated. Therefore, it is critical that
the counting HLL sketch incurs a low runtime overhead.
At the same time, high estimation accuracy is required for
the sketch-correction framework, even if values are deleted
frequently.

5.1.1 Computational Performance
We only evaluate the runtime cost of inserting values into
a counting HLL sketch, since the delete operation is sym-
metrical to the insert operation (cf. Section 2). The well-
known MurmurHash64A1 hash function is used throughout
our experiments, and the traditional HLL sketch serves as
a baseline for comparison. Table 2 shows the CPU time
required to compute sketches for all 10 columns of a table
with 10 million rows on an Intel i7 7820X CPU. All values
in the table are 8 byte integers, and we differentiate between
column-wise processing, i. e., sketching one column after the
other, and row-wise processing, where values are inserted
into their corresponding sketches row-by-row.

Unsurprisingly, counting sketches are more expensive, but
only by a factor of 2.5. In absolute terms, both approaches
are very fast, requiring at most 1.3 ns per value for the tra-
ditional approach, and 3.7 ns per value for the proposed ap-
proach. Correspondingly, the bulk-load time of TPC-H in
a fast in-memory system increased only by about 5% when
computing sketches of all columns on the fly.

1available at https://github.com/aappleby/smhasher
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Figure 8: Mean ratio error (y-axis) of counting and
traditional HLL sketches when inserting a given
number of distinct values (x-axis). For counting
HLL sketches, the ratio error is aggregated over all
workload configurations. The dotted gray line indi-
cates the theoretically expected ratio error of 1.13.

Table 3: Ratio error incurred by counting HLL
sketches, aggregated across all experiments. For
comparison, the same values have been inserted into
a traditional HLL sketch without any deletions.

HLL variant mean 1 % 25 % 50 % 75 % 99 %

traditional 1.13 1.00 1.05 1.13 1.20 1.34
counting 1.13 1.00 1.05 1.12 1.20 1.34

The counting sketch profits from column-wise processing
due to better cache utilization. As the sketches are larger,
row-wise sketching risks trashing the L1 cache. For the sim-
ple sketches we would expect the same behavior, but, sur-
prisingly, row-wise processing is actually faster. We suspect
the reason for this to be the good out-of-order execution en-
gine of the CPU, which can execute multiple updates concur-
rently due to the low number of instructions. On an older
Haswell CPU, column-wise processing is faster for simple
sketches, too, as one would expect.

5.1.2 Estimation Accuracy
As long as there are no deletions, the improved estimator due
to Ertl [6] will produce exactly the same estimates on count-
ing and traditional HLL sketches, because it requires only
the maximum leading zero count in each bucket. The prob-
abilistic counters used in the proposed sketch count the first
128 values exactly, i. e., without deletions, the probabilistic
counter for a certain leading zero count has a value greater
than zero if and only if we have observed at least one value
with that leading zero count. Thus, the maximum num-
ber of leading zeros in each bucket is tracked exactly, and
matches the value maintained by a traditional HLL sketch.

For this reason, we present an evaluation of the estimation
accuracy on a workload that involves frequent deletions. We
generate 228 ≈ 268 000 000 random 64-bit values which are
successively inserted into the counting HLL sketch. After
each i inserts, some fraction r of these inserts is reverted by
deleting the corresponding values from the sketch (cf. Fig-
ure 7). In our experiments, we choose 28 ≤ i ≤ 224 and
0.125 ≤ r ≤ 0.875. As a baseline, we successively insert
the same 228 values into a traditional HLL sketch without
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Figure 9: Distribution of the ratio error incurred by the estimators on synthetic data, for varying sampling
fractions n/N . The dashed red line marks the theoretical error guarantee of GEE and SCGEE at

√
N/n.

Table 4: Mean and 99th percentile of the ratio error incurred by the estimators on synthetic data, for varying
sampling fractions n/N . The best results for each sampling fraction are printed bold.

GEE AE BC SCGEE SCAE SCBC
n/N mean 99 % mean 99 % mean 99 % mean 99 % mean 99 % mean 99 %

0.01 % 16.3 100.4 54.8 400.2 6.2 46.1 3.2 17.0 9.5 84.9 3.1 17.5
0.05 % 8.1 44.7 17.5 80.6 3.3 15.2 2.8 13.8 6.3 42.9 2.3 10.2
0.10 % 6.2 31.6 11.4 44.8 2.7 10.3 2.6 13.5 5.2 29.0 2.0 8.1
0.50 % 3.4 14.2 4.8 12.7 1.8 5.3 2.0 8.8 3.4 10.2 1.6 5.0
1.00 % 2.8 10.1 3.4 7.7 1.6 3.7 1.8 8.9 2.8 7.0 1.5 3.7
5.00 % 1.9 4.7 1.8 2.7 1.3 2.1 1.5 4.6 1.7 2.7 1.3 2.1

10.00 % 1.6 3.4 1.4 1.8 1.2 1.7 1.4 3.4 1.4 1.8 1.2 1.7

any deletions. The ratio error as defined in Section 3 is
sampled in fixed intervals during the workload to obtain 216

measurements per experiment.
As shown in Table 3, counting HLL sketches exhibit virtu-

ally identical estimation accuracy in comparison to the base-
line. The displayed results are obtained by aggregating the
ratio error measurements across all experiments. The mean
ratio error of 1.13 matches the theoretically expected error
of 1.04/

√
m = 13 % perfectly, and in the 99th percentile

the ratio error is still only 1.34. The probabilistic counters
employed by counting HLL sketches have expected correct
behavior if the number of increment and decrement opera-
tions is sufficiently large. Therefore, we can indeed rely on
counting and traditional HLL sketches to behave identically
in terms of accuracy for a large number of operations.

Accordingly, we also investigate the mean ratio error for
smaller cardinalities, by aggregating measurements with a
true cardinality below a given value (cf. Figure 8). Our re-
sults show that the mean ratio error can be slightly greater
for counting HLL sketches than for traditional HLL sketches.
However, the difference is generally very small, and decreases
as the maximum cardinality increases. Moreover, in most
cases the mean ratio error actually lies below the theoreti-
cally expected value of 1.13 for both sketches.

We also experimented with repeating each insert or delete
operation several times, in order to put additional strain
on the probabilistic counters. However, we found that this
has no visible impact on the overall estimation accuracy as
the large number of inserts in our experiments causes many
counters to take on values well beyond the range which is
counted exactly anyway.

In summary, the proposed counting HLL sketches exhibit
high estimation accuracy comparable to traditional HLL
sketches. At the cost of negligible runtime overhead and
moderately increased space consumption, the counting HLL
sketch can retain high accuracy even in the presence of fre-
quent deletions. Therefore we conclude that it is feasible to
maintain a counting HLL sketch for each individual column
in a database.

5.2 Multi-Column Estimators
A large-scale empirical evaluation of the proposed multi-
column estimation framework is conducted on both real-
world and synthetic data.

5.2.1 Data Sets
We chose four real-world data sets from the UCI Machine
Learning repository2, namely the census and forest cover
type data sets used in the original evaluation of GEE and
AE [3], as well as the poker hand and El Nino data sets.
Moreover, we conduct experiments on the well-known IMDb
data sets3. The forest cover type data set originally con-
tains 55 attributes, of which 44 are binary. Since this re-
sults in an impractically high number of attribute combi-
nations, we removed these binary attributes for our exper-
iments. In addition, we generate 4 455 synthetic data sets
with N = 220 rows and two columns that have varying cor-
relation (0 ≤ ρ ≤ 1). The values in each individual column

2available at https://archive.ics.uci.edu/ml/
3available at https://www.imdb.com/interfaces/
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Figure 10: Distribution of the ratio error incurred by the estimators on real-world data, for varying sampling
fractions n/N . The dashed red line marks the theoretical error guarantee of GEE and SCGEE at

√
N/n.

Table 5: Mean and 99th percentile of the ratio error incurred by the estimators on real-world data, for
varying sampling fractions n/N . The best results for each sampling fraction are printed bold.

GEE AE BC SCGEE SCAE SCBC
n/N mean 99 % mean 99 % mean 99 % mean 99 % mean 99 % mean 99 %

0.01 % 72.9 110.3 11.5 218.2 5.9 63.5 5.6 54.6 3.1 25.3 2.9 23.6
0.05 % 30.5 45.1 5.6 78.1 2.2 11.3 4.9 29.4 3.6 43.8 1.8 7.1
0.10 % 21.6 31.9 4.8 43.7 1.8 8.4 4.7 21.9 4.0 37.9 1.6 4.8
0.50 % 9.9 14.4 3.1 13.1 1.5 4.5 3.8 13.1 3.1 13.1 1.4 2.8
1.00 % 7.2 10.2 2.5 8.1 1.4 2.9 3.1 10.1 2.5 8.1 1.3 2.4
5.00 % 3.6 4.7 1.5 2.7 1.2 1.8 2.1 4.7 1.5 2.7 1.2 1.7

10.00 % 2.8 3.5 1.3 1.9 1.2 1.6 1.8 3.4 1.3 1.9 1.2 1.5

follow a generalized Zipfian distribution with varying popu-
lation size (24 ≤ p ≤ 220) and skew coefficient (0 ≤ s ≤ 4).

The sample size n is selected per data set, so that a fixed
sampling rate n/N is maintained (0.01 % ≤ n/N ≤ 10.00 %).
For a given data set and sampling rate, ten different samples
are drawn according to a uniform distribution on the rows,
and the ratio error of the estimators is computed on all pos-
sible combinations of two or more attributes. By drawing
ten different samples per data set, the impact of random
fluctuations on our results is reduced. At the same time, it
allows us to verify that the estimation approach is robust
against small changes in the random sample.

5.2.2 Results
Evaluation results are shown in Figure 9 and Table 4 for
trials on the synthetic data sets, and in Figure 10 and Table 5
for trials on the real-world data sets. Note that the box plots
use a logarithmic y-axis scale. Overall, the sketch-corrected
variant SCBC of the proposed bound-corrected estimator
BC consistently outperforms the other estimators, achieving
the lowest mean ratio error in all cases. Furthermore, SCBC
exhibits the lowest 99th percentile of the ratio error in all
cases but one. Even with extremely small sampling rates,
the estimates of SCBC remain sufficiently accurate in most
cases to be useful in practice. In the following, we outline
further key results in more detail.

First, we observe that GEE and AE generally provide
rather poor estimates. In particular, AE struggles on the
synthetic data sets, which is evident from the extremely high
mean (up to 54.8) and 99th percentile (up to 400.2) of the ra-
tio error (cf. Table 4). Upon closer inspection, we found that

AE tends to widely underestimate the true cardinality when
there is moderate skew in at least one column (1 ≤ s ≤ 2). In
these cases, we can expect values to occur with a wide range
of frequencies in the sample, which can cause the approxi-
mations employed by AE to become inaccurate [3]. At the
same time, this leads to true cardinalities close to the value
estimated by GEE, for which reason GEE performs better
than AE on the synthetic data sets. The real-world data
sets, on the other hand, seldom contain moderately skewed
data, and AE consequently outperforms GEE in terms of
the mean ratio error. However, the 99th percentile of its
ratio error remains too large for practical purposes even for
large sampling fractions (cf. Tables 4 and 5).

The proposed bound-corrected estimator BC can improve
over GEE and AE substantially, even without sketch-cor-
rection. Especially for smaller sampling fractions, BC can
provide much more accurate estimates, which underlines the
robustness of the proposed approach. As shown in Figures 9
and 10, both the mean and the quantiles of its ratio error
decrease sharply as the sampling fraction is increased. A
mean ratio error below 2.0 can be achieved with a sampling
fraction of only 0.05 % on the synthetic data sets, and only
0.01 % on the real-world data. Since the corrected bounds
derived in Section 3 depend on possibly inaccurate estimates
of expected values, there can be cases in which the maximum
ratio error of BC exceeds that of GEE. However, this occurs
only rarely in our experiments, indicating that the corrected
bounds are usually sound.

Applying sketch-correction further improves the estima-
tion accuracy of all estimators, and the best overall results
are achieved by the sketch-corrected variant SCBC of the BC
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Figure 11: CPU time (y-axis) required to compute frequency vectors in relation to the number of columns
(a) and size (b) of samples (x-axis). The value of N/n has no impact on the performance of the baseline hash
table implementation, and only a single graph is visible.

Table 6: Mean and percentiles of the absolute
frequency vector computation time in milliseconds
across all tested configurations (a). Additionally,
the mean and percentiles of the speedup over the
baseline approach are shown (b).

(a) Absolute computation time

mean 1 % 25 % 50 % 75 % 99 %

baseline 9.84 0.02 0.17 0.95 5.28 200.68
proposed 0.38 0.00 0.01 0.05 0.35 2.81

(b) Speedup

mean 1 % 25 % 50 % 75 % 99 %

speedup 418.5 1.6 3.4 9.3 58.8 8738.8

estimator. In particular, SCBC outperforms BC in all cases,
allowing us to conclude that the proposed bound-correction
and sketch-correction approaches are orthogonal to some de-
gree. We observed that SCBC mainly improves over BC for
small cardinalities, which is consistent with theoretical con-
siderations. If all individual columns contain only few dis-
tinct values, sketch-correction can derive tight bounds on the
true number of distinct values. In particular, the cardinality
of the cross-product of the distinct values in the individual
columns is small, i. e. the upper bound employed by SCBC
is more accurate than the original upper bound used by BC.
On the other hand, the improved estimation bounds em-
ployed by BC deviate from the bounds employed by GEE
mainly for large cardinalities, where sketch-correction can
not provide a useful upper bound.

The effectiveness of sketch-correction decreases for large
sampling fractions, and there are cases in which no further
improvement can be achieved. This is to be expected, how-
ever, since a larger sampling fraction allows the estimators
to infer more accurate information about the data distribu-
tion themselves, without having to rely on sketch-correction.
Depending on the cardinalities of the individual columns, it
can even occur that all distinct values are present in a large
sample of the relation, in which case sketch-correction can-
not contribute any significant further information.

As outlined above, we generate the synthetic data sets
with varying domain sizes and data skew in the individual
attributes, and varying correlation between the attributes.
We observed that all estimators produce similarly accurate
estimates regardless of the correlation between attributes.
As expected from our theoretical considerations (cf. Sec-
tion 3), GEE and AE struggle if the domain size is large,
while BC performs well across the entire tested range. Mod-
erate data skew in at least one attribute causes accuracy to
decrease for all estimators, although the effect is much less
pronounced for the BC estimator than for GEE and AE.

Finally, we note that the maximum ratio error of GEE ex-
ceeds its theoretical error guarantee for low sampling frac-
tions on the real-world data sets (cf. Figure 10). We de-
termined that this is caused by exceedingly small samples,
which can contain as few as 4 rows on the census data set, for
example. Thus, a simple remedy in practice would be to set
a sufficiently large minimum sample size. Apart from such
edge cases, the ratio errors of GEE and SCGEE are bounded
by
√
N/n as expected from their theoretical analysis.

5.3 Frequency Vector Computation
The proposed approach for computing frequency vectors is
evaluated only on synthetic data, so that its asymptotic be-
havior can be studied under controlled conditions. Samples
are generated with 28 ≤ n ≤ 215 rows and 20 ≤ C ≤ 210

columns according to a uniform distribution on {1, . . . , N},
where 2−8 ≤ N/n ≤ 22 to simulate varying numbers of dis-
tinct values. We measure the CPU time required by the pro-
posed approach to compute frequency vectors on the CPU
introduced above, in comparison to a baseline hash table
implementation as outlined in Section 4. We noticed that,
as expected, the value of N/n has no visible influence on the
performance of the baseline implementation, and we do not
report separate baseline results for different values of N/n.

The proposed approach consistently improves over the
baseline, with a minimum and median speedup of 1.4× and
9.3×, respectively. However, much larger speedups are pos-
sible depending on the data at hand, as illustrated by the
75th and 99th percentiles at approximately 59× and 8700×,
respectively (cf. Table 6b). This large variability is caused
by the different asymptotic behavior of the baseline and pro-
posed approaches, as illustrated in Figure 11 (note again the
logarithmic scale on the y-axis). While the figure displays



only selected results, they are representative for the behavior
across all experiments.

Computation time scales approximately linearly in the
sample size for all approaches, as well as in the column count
for the baseline implementation. However, it remains con-
stant or even decreases with increasing number of columns
for the proposed approach, because more singleton rows can
be pruned. For the same reason, computation time is re-
duced dramatically if there are many singleton values in
each column, i. e. N/n is large. At the same time, Figure 11a
shows that the recursive approach improves over the base-
line even if there are few columns and singletons. Note that
we resized the hash table suitably before taking our mea-
surements, so that no rehashing was necessary during our
experiments. This illustrates that despite the O(1) com-
plexity of inserting and retrieving values into a hash table,
the constant overhead of these operations is large enough to
negatively impact computation time (cf. Section 4).

In absolute terms, the proposed approach offers excellent
performance across all tested configurations (cf. Table 6a),
and requires at most 3.4 ms to compute a frequency vector
even on an extremely large sample with 32 768 rows and
1 024 columns. The estimators themselves are very cheap
to compute, typically taking less than 5µs to produce an
estimate for a given frequency vector.

6. RELATED WORK
Being a key problem of query optimization, cardinality esti-
mation algorithms have been studied extensively in the lit-
erature [4, 12]. Broadly, such algorithms can be categorized
into sampling-based and sketch-based approaches [19].

Algorithms in the first category examine only a small sam-
ple of a relation in order to produce an estimate. While this
offers attractive performance and trivially allows for cardi-
nality estimates over arbitrary attribute combinations, any
purely sampling-based approach has provably poor accu-
racy [3]. Consequently, many approaches focus on improv-
ing the quality of the samples using auxiliary information
obtained, for instance, from a full relation scan [5, 9], ex-
isting index structures [18], or query feedback [16]. Oracle
has recently presented an adaptive scheme which iteratively
builds a sample to provide confidence intervals around the
estimated cardinalities [27]. The main drawback of these ap-
proaches is that they may produce different samples for dif-
ferent attribute combinations. Thus, an exponential number
of samples has to be maintained in order to avoid expensive
sample computations during query optimization.

Sketch-based approaches, on the other hand, hash each
row in the relation once and build a small fixed-size synopsis
from which the cardinality can then be estimated. Arguably
the most prominent representative of this class of algorithms
is HyperLogLog [7, 14], which provides much more accu-
rate estimates than sampling-based approaches [12]. One
can also sketch only a sample of a relation, which improves
computation speed further without severely impacting ac-
curacy [23]. However, sketches on individual attributes can
not easily be combined, since by design there is no clear
relationship between the hash values of multiple individual
attribute values and of the corresponding attribute combi-
nation. Accordingly, an exponential number of sketches has
to be stored in order to provide estimates for arbitrary at-
tribute combinations.

Since it is obviously not feasible to maintain an exponen-
tial number of samples or sketches in practice, current sys-
tems frequently assume the individual attributes to be inde-
pendent [17]. However, this assumption is often unfounded
on real-world data which may lead to large estimation er-
rors [26]. More accurate cardinality estimates could be de-
rived from multi-dimensional histograms or wavelets [4,24],
as well as from information about soft functional dependen-
cies [15]. Unfortunately, these synopses are prohibitively ex-
pensive to construct and maintain in the presence of updates
and deletions [4,22]. A recent approach estimates the inclu-
sion coefficient between columns using only single-column
sketches [21], which could be used to infer the number of dis-
tinct tuples if all attributes have equal domains. As we pro-
pose in this paper, sketches and sampling can be combined
to provide accurate estimates for arbitrary attribute com-
binations with low overhead. A similar approach has been
implemented successfully for selectivity estimation [20, 25],
but to the best of our knowledge there is no previous work on
combining sketches and sampling for cardinality estimation.

Traditional HyperLogLog sketches, however, are not suit-
able for this purpose since they do not support updates and
deletions. Flajolet and Martin themselves point out that a
possible solution is to maintain a counter for each possible
bucket value [8], which has been adopted in recent work [21].
However, this results in an overly large memory footprint if
sketches should be maintained for each individual column
(cf. Section 2). Deletions are also inherently encountered
in the sliding window model, where old observations have
to be removed from the sketch when new observations ar-
rive [2]. In these cases, it is known exactly at which time
an element is going to be deleted, allowing for more special-
ized solutions which cannot be adopted in a general-purpose
database scenario.

Finally, the proposed recursive algorithm for computing
frequency vectors is based on a string partition refinement
algorithm proposed by Cai and Paige [1]. Their algorithm
is formulated without any recursion, and maintains auxil-
iary data structure instead. Henglein developed a generic
discrimination framework which encompasses recursive par-
tition refinement similar to the proposed approach [13].

7. CONCLUSION
Query optimizers require accurate cardinality estimates in
order to find efficient execution plans. We showed that ex-
isting sketch-based approaches are highly accurate, but they
require exponential space to produce estimates for arbitrary
combinations of attributes. Furthermore, they do not sup-
port updates and deletions out of the box. Sample-based ap-
proaches, on the other hand, can produce such estimates but
have provably poor accuracy. We presented a novel estima-
tion framework, which employs highly accurate sketched es-
timates over individual columns to correct sample-based es-
timates over arbitrary combinations of attributes. We devel-
oped novel counting HyperLogLog sketches which support
update and delete operations with little additional state,
and an efficient algorithm for computing value frequencies
in a sample, which are required for estimation. Our ap-
proach consistently improves over previous sample-based ap-
proaches, producing highly accurate estimates on synthetic
and real-world data sets, while keeping the estimation over-
head negligible.
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APPENDIX
A. PROOF OF THEOREM 1
In this appendix, we present a proof of

Theorem 1 (revisited). Consider a table with N rows
containing D distinct tuples. Suppose we draw a sample
of n rows uniformly at random with replacement, and let
f1 denote the observed number of singleton tuples in this
sample. Then, the following inequality holds

E(f1) ≤
{
n · (1− 1/D)n−1 if D ≥ n,
D · (1− 1/n)n−1 otherwise.

Proof. As stated in Section 3.2, the expected number of
singleton tuples is given by

E(f1) =

D∑
k=1

nPk(1− Pk)n−1, (3)

where Pk = Nk/N denotes the relative frequency of the k-
th distinct attribute combination in the entire table. It is
useful to interpret this expected value as a function f of the
vector P = (P1, . . . , PD) of relative frequencies, i. e.

f(P) =

D∑
k=1

g(Pk), (19)

with g(Pk) = nPk(1 − Pk)n−1. Note that we require 0 <
Pk ≤ 1 for all k, since 1 ≤ Nk ≤ N by definition. The
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Figure 12: Qualitative behavior of the function g
and its derivative g′ used in the proof of Theorem 1.

behavior of g on this interval is essential in the remainder of
this proof. Its first and second derivatives are given by

g′(Pk) = n(1− nPk)(1− Pk)n−2, and (20)

g′′(Pk) = n(n− 1)(nPk − 2)(1− Pk)n−3. (21)

From this, we can conclude that g′(Pk) has a zero at Pk =
1/n corresponding to a maximum of g. Furthermore, it can
be verified that g′(Pk) > 0 for Pk < 1/n, and g′(Pk) < 0 for
Pk > 1/n. Finally, one can confirm that g′(Pk) is strictly
monotonic decreasing for Pk < 2/n and strictly monotonic
increasing for Pk > 2/n (cf. Figure 12). The remainder of
the proof is now a case-by-case analysis of the proposition.

Case 1: D < n In this case, recall that g(Pk) has a maxi-
mum at Pk = 1/n. Hence, we can deduce

E(f1) ≤
D∑

k=1

g

(
1

n

)
= D

(
1− 1

n

)n−1

. (22)

While this upper bound trivially holds for D ≥ n as well,
we aim to prove a tighter bound in that case.

Case 2: D ≥ n In order to derive this tighter bound, we
maximize f subject to the constraint

∑D
k=1 Pk = 1. Note

that the Pk can only take on discrete values in the original
problem formulation. By relaxing this restriction and solv-
ing the corresponding continuous optimization problem, we
obtain an upper bound on the solution of the discrete opti-
mization problem. Thus, we introduce a Lagrange multiplier
λ and define

L(P, λ) =

D∑
k=1

g(Pk)− λ ·

(
D∑

k=1

Pk − 1

)
. (23)

Since a maximum of f must occur at a critical point of the
Lagrange function L, a necessary condition for optimality is
∇L(P, λ) = 0, i. e.

g′(P1)− λ
...

g′(PD)− λ∑D
k=1 Pk − 1

 = 0. (24)

From this, one can immediately conclude that P is a critical
point of L if and only if it satisfies the constraint

∑D
k=1 Pk =

1, and the derivatives g′(Pk) are equal for all k ∈ {1, . . . , D}.
For D ≥ n, the only such critical point which satisfies 0 <
Pk ≤ 1 occurs at P1 = . . . = PD = 1/D, which we prove
by contradiction. Hence, let us assume that there exist
P1, . . . , PD with Pi 6= 1/D for some index i and g′(P1) =
. . . = g′(Pk). Furthermore, assume without loss of general-
ity that Pi > 1/D.

Then, due to the constraint
∑D

k=1 Pk = 1, there exists an
index j so that Pj < 1/D ≤ 1/n. In Figure 12, Pi and Pj are
thus two distinct points on the x axis, where Pj surely lies
to the left of the zero of g′(Pk) at Pk = 1/n. Intuitively, it is
clear that this implies g′(Pi) 6= g′(Pj). Formally, recall that
g′(Pj) is strictly monotonic decreasing for Pj < 1/n, hence
g′(Pj) > g′(1/D). On the other hand, g′(Pi) ≤ g′(1/D)
surely holds, since g′(Pi) is strictly monotonic decreasing
for 1/D < Pi < 1/n and g′(Pi) ≤ 0 ≤ g′(1/D) for Pi ≥ 1/n.
In summary, we obtain g′(Pi) 6= g′(Pj) in contradiction to
the assumption that P1, . . . , PD is a solution. Therefore, we
conclude that P1 = . . . = PD = 1/D is indeed the only
critical point of L.

It can easily be verified that this critical point does not
correspond to a minimum or saddle point of f . Thus, we
obtain

E(f1) ≤
D∑

k=1

g

(
1

D

)
= n ·

(
1− 1

D

)n−1

. (25)

B. PROOF OF THEOREM 2
In the following, we present a proof of

Theorem 2 (revisited). Consider a table with N rows
containing D distinct tuples. Suppose we draw a sample of n
rows uniformly at random with replacement, and let d denote
the observed number of distinct tuples in this sample. Then,
the following inequality holds

E(d) ≥ D −D · (1− 1/N)n.

Proof. As outlined in Section 3.2, the expected number
of distinct tuples in the sample is given by

E(d) = D −
D∑

k=1

(1− Pk)n. (4)

Hence, E(d) is minimal if
∑D

k=1(1−Pk)n is maximized. Let

h(Pk) = (1− Pk)n, (26)

and consider the derivative

h′(Pk) = −n(1− Pk)n−1. (27)

For 0 ≤ Pk ≤ 1 we have h′(Pk) < 0, thus h(Pk) is strictly
monotonic decreasing in this interval. As we require each
of the distinct tuples to occur at least once in the table, we
know that Pk ≥ 1/N , and therefore

E(d) ≥ D −
D∑

k=1

h

(
1

N

)
= D −D ·

(
1− 1

N

)n

. (28)


