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ABSTRACT
In the last years, modern servers are adopting hardware acceler-
ators, such as GPUs, in order to improve their power efficiency
and computational capacity. Modern analytical query processing
engines are highly optimized for multi-core multi-CPU query ex-
ecution, but lack the necessary abstractions to support concurrent
hardware-conscious query execution over multiple heterogeneous
devices and exploit the available accelerators.

This work presents a Heterogeneity-conscious Analytical query
Processing Engine (HAPE), a blueprint for hardware-conscious an-
alytical engines for efficient and concurrent multi-CPU multi-GPU
query execution. HAPE decomposes query execution on hetero-
geneous hardware into, 1) efficient single-device and 2) concur-
rent multi-device query execution. It uses hardware-conscious al-
gorithms designed for single-device execution and combines them
into efficient intra-device hardware-conscious execution modules,
via code generation. HAPE combines these modules to achieve
multi-device execution by handling data and control transfers.

We validate our design by building a prototype and evaluating its
performance using radix-join co-processing and the TPC-H bench-
mark. We show that it achieves up to 10x and 3.5x speed-up on
the radix-join against CPU and GPU alternatives, respectively, and
1.6x-8x against state-of-the-art CPU- and GPU-based commercial
DBMSs on the selected TPC-H queries.

1. INTRODUCTION
Traditionally, analytical query engines rely on the exponential

increase of CPU performance in order to keep up with the, also ex-
ponential, data growth. Initially, CPUs relied on Dennard scaling
improving their performance by increasing their clock frequency.
However, in 2005, Dennard scaling broke down and the clock fre-
quency stopped increasing. As a response, CPU vendors started
increasing the core count, signaling the beginning of the multi-core
era. Now, due to the power wall, the power inefficiency of general-
purpose hardware causes modern servers to change. The increased
performance per watt of specialized hardware, such as GPUs, has
resulted in their adoption by emerging servers, which can be seen
by the almost linear increase over the past decade of accelerator-
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enabled servers in the TOP500 list. In addition, architects explore
designs that go beyond the classical system-wide cache-coherence
in favor of increased core scalability.

In order for analytical query engines to scale over time with hard-
ware improvements, they have to efficiently use the heterogeneous
hardware of emerging servers. On the CPU front, state-of-the-art
engines are using algorithms [28, 29, 6, 26] that match the CPU
micro-architecture. Techniques like vector-at-a-time execution [7]
and just-in-time code generation [20, 19] are used to reduce the
query execution overheads, while the Exchange [12] operator and
HyPer’s Morsels [21] are used to parallelize query execution in
multi-core and multi-CPU configurations. On the GPU front, re-
cent work explores optimized algorithms for GPU execution [17,
27, 14, 18, 30] as well as GPU query execution models [32, 13,
23, 8]. But, the majority of these works do not consider query ex-
ecution over heterogeneous devices, for example multiple GPUs,
and many of them ignore the processing power available in the
server’s CPUs. Works that support concurrent execution on het-
erogeneous devices use a high-level framework and/or hardware-
oblivious algorithms and thus achieve sub-optimal per-device ex-
ecution. Lastly, works that support heterogeneous hardware, only
consider a single device type per query [24] due to the lack of ab-
stractions and algorithms for multi-device execution or rely on full
wasteful materialization [32, 15, 8].

This work describes an analytical engine design for efficient an-
alytical query execution on a heterogeneous multi-CPU multi-GPU
server node that combines hardware-conscious algorithms with ef-
ficient intra- and inter-device execution models.

Contributions. The contributions of this work are the following:

• We make the case for heterogeneity- and hardware-conscious
analytical engines and present HAPE, an engine design for
concurrent execution on heterogeneous hardware.

• We show that decoupling inter- from intra-device operator
design can decrease the design space as well as achieve state-
of-the-art performance in each device and allow scaling ex-
isting algorithms to heterogeneous hardware.

• We evaluate our design by extending Proteus [19, 10] with a
GPU join [30] to show the importance of hardware-conscious
algorithms during hybrid execution. Our engine achieves
10x and 3.5x on equi-joins and 1.6x-8x speed-up on TPC-
H queries, against CPU and GPU state-of-the-art DBMSs.

Our design allows combining hardware-conscious device-specific
algorithms to achieve efficient execution across all the compute
units of a multi-CPU, multi-GPU server. HAPE achieves near op-
timal co-processing performance by combining algorithms opti-
mized for homogeneous hardware, effectively avoiding the devel-
oping cost of algorithms specialized for heterogeneous hardware.
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2. BACKGROUND
This section discusses hardware-conscious operator algorithms

and parallel execution of query plans, while the rest of the paper
uses these components as building blocks for the heterogeneous
hardware-conscious analytical engines.

2.1 Hardware-conscious Operators
While hardware-oblivious algorithms simplify the optimization

process and the execution over heterogeneous hardware, tuning al-
gorithms for the underlying hardware can produce significant per-
formance benefits. For modern CPUs, most previous studies take
three architectural characteristics into account: cache hierarchy,
TLBs and SIMD instructions. These dimensions are analyzed in
conjunction with the available memory bandwidth and latency.

Prior work introduces hardware-conscious variants of several op-
erators, including scan-like operators, sort-based operations and in-
dex scans [33, 25, 16]. As a heavyweight operator, the join is ex-
tensively studied and tuned for modern CPUs, resulting in multiple
variants of the radix hash-join [29, 6, 3, 2, 28]. Specifically, Shatdal
et al. [29] propose a cache-conscious variant that introduces a par-
titioning step. The two input tables are co-partitioned such that for
each partition pair the hash table fits in cache. Then, all hash-table
accesses during the probing phase are in cache and cache misses are
averted. Boncz et al. [6] observe that for high number of output par-
titions the performance is impacted by TLB misses. As a solution,
they advocate for the use of multiple partitioning passes, each pro-
ducing a smaller number of partitions, reducing TLB misses at the
expense of extra passes over the input. Schuh et al. [28] argue that
all these works try to minimize the effects of random memory ac-
cesses by minimizing cache and TLB misses. Still, Blanas et al. [5]
argue in favor of a hardware-oblivious hash-joins as they require
less parameter tuning and can outperform hardware-conscious im-
plementations in some scenarios.

Compared to CPUs, modern GPUs have a significantly differ-
ent micro-architecture, including for all three of aforementioned
characteristics. First of all, GPUs depart from the linear mem-
ory hierarchy of CPUs and adopt a fatter cache hierarchy, with a
hardware-managed L1-like cache, called shared memory, which is
a software-managed scratchpad, and other more specialized caches,
like a constant cache. In addition, GPUs target different workloads
and thus size their caches and TLBs differently to CPUs. Kar-
nagel et al. [18] experimentally show that GPU TLBs have 2MB
pages to support the high number of threads and pack more address-
able space per TLB entry. Finally, in the GPU SIMT model, each
GPU thread has an independent register file but, in contrast to the
SIMD model, thread divergence is handled in hardware. Similarly
to CPUs, considering the GPU hardware and developing hardware-
conscious algorithms improves performance. Karnagel et al. [18]
design a TLB-conscious hash-based group-by operator, while par-
titioned hash-join [27, 17] implementations use shared memory to
store histograms and per-partition hash-tables.

A limiting factor for GPU algorithms is GPU memory size. Prior
works make simplifying assumptions about the types of workloads
handled; Rui and Tu [27] only address the case that at least one of
the join inputs fit in GPU memory. Kaldewey et al. [17] use Unified
Virtual Addressing (UVA), to join arbitrarily large data by access-
ing data over the interconnect. Still, interconnect bandwidth is an
order of magnitude slower than GPU memory bandwidth, which
greatly impacts multi-pass algorithms such as radix joins.

Inter-device co-processing can reduce unnecessary interconnect
traffic. Stehle and Jacobsen [31] present an efficient sorting algo-
rithm that consists of two steps: generating sorted runs in GPU and
merging them in CPU. Merging in CPU allows for a single pass
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Figure 1: CPU and GPU hierarchy of data caches.

per direction, over the scarcest resource, the interconnect. Sec-
tion 4.1 uses the in-GPU join of Sioulas et al. [30] as a repre-
sentative example to discuss a hash-join optimized for GPU hard-
ware with respect to the memory hierarchy and compare it with
a hardware-oblivious GPU implementation as well as CPU algo-
rithms, while Section 5 generalizes their out-of-GPU join execution
strategy, which exploits the CPU memory-bandwidth: the inputs of
the partition-based hash-join are partitioned before they are sent
to the GPU. The initial partitioning breaks down big relations into
partitions that fit in the GPU memory, while its small fan-out al-
lows for a high throughput on the CPU side. On the GPU side, the
inputs are further partitioned so that the final partitions fit in the
scratchpad, which allows the minimization of the effect of random
accesses during the probing.

2.2 Query execution models
In-memory analytical query execution engines traditionally use

either a tuple-at-a-time or an operator-at-a-time execution model
and thus suffer from high interpretation overheads or materializa-
tion costs, respectively. To amortize these costs, engines employ
vector-at-a-time [7] execution and just-in-time (JIT) code gener-
ation [20]. In the vector-at-a-time model, operators exchange a
block of data at a time, trading between interpretation and mate-
rialization costs. In addition, vector-at-a-time execution is usually
coupled with using vectorized code (SIMD instructions) and tuned
for cache locality. JIT-based engines generate specialized code for
each query. Intermediate results are passed across operators in pro-
cessor registers until an operator forces a materialization point. JIT
overheads are less dependent on the size of intermediate results.

GPU analytical query execution has similar challenges and tech-
niques. Several GPU systems use the operator-at-time execution
model [32, 15, 8], which is restricted by the GPU memory size
and thus it is often combined with transferring intermediate results
to CPU memory [15, 8]. However, such transfers cause excessive
interconnect traffic, as all the results have to pass over the inter-
connect. In order to reduce the materialization overhead, Paul et
al. [23] pipeline data between operators running as separate kernels
through OpenCL’s communication channels. HorseQC [11] uses
a block-at-a-time approach and materializes intermediate results in
GPU memory to significantly reduce the execution time. In addi-
tion, HorseQC and MapD [22] use just-in-time code generation to
fuse multiple operators in a single kernel to reduce result material-
ization and the number of required passes.

The emergence of systems with multiple processors motivates
parallel query execution. On the one hand, the Exchange opera-
tor [12] is used to encapsulate parallelism and allow parallel exe-
cution using the existing single-threaded operators. On the other
hand, Hyper [21] exposes the operators to parallelism, propagat-
ing the responsibility of maintaining shared data structures to the
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operators, for example, its hash-join has to guarantee that the hash-
table is correctly built using multiple threads. In the heterogeneous
context, Voodoo [24] allows MonetDB to execute queries on CPUs
and GPUs, but without support for concurrent CPU-GPU execu-
tion, load balancing or data structures. Similarly, TVM [9] focuses
on deep learning workloads and targets multiple types of devices
but only supports execution on a single device at a time.

The architecture of modern servers introduces new challenges
for targeting multiple types of devices at the same time. Both
the Exchange and Hyper’s approach rely on low-latency system-
wide cache coherent memory for synchronization and atomic prim-
itives as well as shared data structures, which are generally lack-
ing in heterogeneous servers. In addition, different devices may
have different access rights for different regions of the aggregate
memory of the system, based on the system topology as well as
the type of devices. To avoid complicating the relational opera-
tors and increase the applicability of our design to future archi-
tectures, the HAPE decouples the development of relational oper-
ators from the complexities of heterogeneous servers. Our paral-
lelization strategy builds upon the ideas of HetExchange [10], a
framework that allows multi-CPU, multi-GPU query execution by
encapsulating the heterogeneous parallelism of the server. While
HetExchange provides a framework for hardware-oblivious opera-
tors, HAPE provides server-wide hardware-conscious execution by
composing per-device hardware-conscious algorithms.

TVM automates the optimization of low-level programs to dif-
ferent hardware via an iterative process: a scheduler proposes opti-
mized versions of the input program and the measured performance
is used to refine a machine learning model that predicts the perfor-
mance of the device. TVM can be incorporated in our system to
tune the query optimizer as well as the compiler optimizations used
by the different device back-ends.

In addition, different devices are fit for different workloads and
can be leveraged synergistically. Appuswamy et al. [1] propose the
archipelago abstraction which encapsulates a set of devices and a
target workload as a means to partition resources per functionality.
Our work focuses on the design of a hardware-conscious analytical
multi-CPU, multi-GPU archipelago.

3. THE CASE FOR HAPE
Heterogeneity-conscious Analytical query Processing Engines

(HAPE) allow DBMSs to take advantage of heterogeneous hard-
ware present in modern servers by 1) encapsulating heterogene-
ity and multi-device parallelism, 2) providing a unified execution
model and 3) embracing single-device hardware-conscious opera-
tors. The single-device operators are composed together to pro-
vide server-wide hardware-conscious execution, while the encap-
sulation handles their communication and synchronization.

Decoupling heterogeneity from execution. HAPE exploits the
observation that by encapsulating inter-device functionality, the re-
maining system is composed of a single device, and thus homoge-
neous, subsystems. HAPE minimizes the effect of heterogeneity
and allows the rest of the system to be built by combining exist-
ing work on homogeneous systems. Operators specialized to each
micro-architecture may be used for each type of device, but our
just-in-time code generation provides a unified interface that al-
lows operators to also be used on multiple device types. In addi-
tion, JIT allows the execution model to be adapted to each device
providing enough flexibility for efficient inter-operator execution.
HAPE encapsulates the heterogeneity by handling execution and
data transfers between devices using the HetExchange operators.
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Figure 2: HAPE architecture.

Traits in heterogeneous systems. In a heterogeneous server
there are four simple traits [10] that characterize execution: target
devices, parallelism, data locality and data packing. The first two
traits concern the flow of execution, or control flow, inside the het-
erogeneous system. More specifically, for each operation, the first
one defines the execution device type, while the second one defines
the number of concurrently used devices. The last two traits con-
cern the data flow in the system. Data locality is concerned with the
distance of the data from their consumer. Transition between dif-
ferent values of any of the control-flow traits requires inter-thread
or inter-device task assignment, while increasing data-locality re-
quires data-transfers. Such trait conversions are usually costly, thus
it is common practice to amortize their overhead by performing the
transitions in the granularity of packets [12]. Unfortunately, deci-
sions often depend on the actual values of each tuple. In such cases,
operating on the granularity of the packets requires that the same
decision is taken for all the tuples of each packet, thus it requires
that all the tuples of a packet have the same properties, with respect
to the decision. Therefore, the data packing trait specifies whether
the operators operate on tuples or packets and in the case of the lat-
ter, the properties that are common between all the tuples of each
packet. For example, hash-based packet routing implies that, for
every packet, all its tuples have the same hash. This allows the
system to route packets without actually accessing packet contents.

HAPE architecture. HAPE is composed of three main parts,
as shown in Figure 2. The first part is the query optimizer, which
is responsible for translating the query into a heterogeneity-aware
physical plan, a physical plan augmented with information regard-
ing which devices will be used for each part of the tree. By en-
capsulating conversions of the aforementioned traits in the four
HetExchange operators, all relational operators are heterogeneity-
oblivious. The heterogeneity-aware plan can explicitly specify the
degree of parallelism and target devices of each operator by placing
these four operators. Combining the operators with a representation
of the plan as a directed acyclic graph instead of a tree permits the
plan to use different paths for each device. As a consequence, i)
each node of the plan is mapped into a specific device, with the
exception of nodes representing a target device conversion, and ii)
plans are expressive enough to represent the selection of different
algorithms optimized for each target device.

The heterogeneity-aware plan is then broken down into pipelines
each targeting a single device. For each pipeline, the code genera-
tor produces code optimized for the pipeline’s target device through
device-specific back-ends, named device providers. The generated
code is executed on the available devices and is responsible for
transferring control and data between the devices. In addition, by
coordinating with the scheduler and resource managers, the gener-
ated code load balances based on the runtime load.
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HAPE benefits. HAPE architecture provides several benefits.
First, by encapsulating inter-device operations, HAPE allows re-
lational operators to be heterogeneity-oblivious but also hardware-
aware. Relational operators ignore the complexities of remote data,
multi-device execution and coordination between devices and focus
on using the microarchitecture of their specific target devices as ef-
ficiently as possible. At the same time, HAPE provides the methods
through four meta-operators to enable co-processing across a mix
of CPUs and GPUs. Second, by providing a unified code genera-
tion interface, HAPE allows operators to be used for a variety of
device types, depending on the needs and the degree of specializa-
tion. Third, by embracing control-flow and data-flow operations, it
allows load-balancing and data-transfers between the different de-
vices. As a result, HAPE supports query execution both over CPU-
and GPU-resident data as well as data scattered over the server’s
memories. Last but not least, extracting and handling heterogene-
ity traits through explicit converters makes HAPE compatible with
existing query optimizers [4].

HAPE challenges. HAPE has to overcome three challenges to
effectively use the underlying hardware. First, it needs efficient
operators for single-device execution. As HAPE builds on top of
single-device operators, its overall effectiveness relies on the effi-
ciency of the underlying single-device operators. For CPU query
execution the ongoing debate [28, 3, 2, 5] regarding hardware-
oblivious versus hardware-aware algorithms generally concludes
that the more appropriate option depends on the workload. To sup-
port multiple devices, the first challenge is to identify how algo-
rithm specialization and selection differ from CPUs to GPUs.

Second, even if optimal algorithms are used, the inter-operator
efficiency can significantly impact performance and in the case of
HAPE, the engine should have a common, albeit efficient, execu-
tion model to allow hybrid execution. Prior work [7, 20] on CPU
query execution shows the impact of inefficient execution models
and tries to minimize them. Recent work [24] shows that portability
can be achieved by expressing the operators in high-level frame-
works like OpenCL and/or using vector primitives, but Funke et
al. [11] show that such strategies can incur a high number of passes
and thus waste memory (and cache) bandwidth, even when opti-
mized for the GPU-only case. Thus, the second challenge is to
identify an execution model efficient both on CPUs and GPUs.

Last but not least, in heterogeneous servers there are multiple
devices, cache-coherence is limited, globally shared memory may
either not exist or incur high access latencies and inter-device band-
width is one of the scarcest resources. In order to take advantage
of the efficient per-device execution, the engine should be capable
of efficiently handling multiple devices. Thus, the engine needs, 1)
the mechanisms to efficiently handle transfers and packet routing,
2) the policies and algorithms to decide on the required transfers
and routing. So, the third challenge is achieving concurrent multi-
device execution and mapping parallel algorithms in such a system.

HAPE extensibility. While we focus on the multi-CPU multi-
GPU case, HAPE is extensible to other accelerators as well. To
support a new device type, the engine needs a pair of new device-
crossing operators and a device provider. In our prototype the de-
vice provider translates the code generation directives to LLVM IR
and the generated code contains control flow statements, such as
branches and loops. Thus, HAPE is generalizable to such devices.

For devices without control-flow support, but with gather and
scatter capabilities, HAPE can be applied by restricting the device
providers to such a subset of instructions and allow only the CPU
operators to generate more complex code, to allow HAPE to load
balance and apply multi-device algorithms.
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Figure 3: Block diagram for a GPU join over partitioned data.

4. EFFICIENT PARALLEL PROCESSING

4.1 Efficiently parallelizing operators
The abstractions of HAPE allow the execution engine to be com-

posed of homogeneous subsystems and the optimizer to opt for
hardware-conscious operators tuned for the specific target device
alongside the range of supported hardware-oblivious operators.

Tuning operators for devices. Specializing to the target devices
has the potential to boost performance. Prior work optimizes data
movement and access patterns with respect to the device’s caches,
including TLBs, and their characteristics. Other works consider
properties and functionalities of processing units such as the in-
struction level parallelism (ILP), branch predictors, SIMD instruc-
tions for CPUs, as well as warp-wide execution and shuffles in
GPUs. Operator implementations need to exploit properties of the
underlying hardware and explore the available opportunities within
the design space to achieve high performance.

Common design, different specialization. Despite the micro-
architectural differences, the exploration of hardware-conscious op-
erator designs is not uncorrelated across different devices. When
optimizing operators for each device, the challenges are similar
(eg. avoiding random access overheads) and thus similar algo-
rithmic solutions can be applied to a range of device types. The
hardware-conscious join is an indicative case: independently of
CPU or GPU execution, random accesses are the main bottleneck
of a non-partitioned hash-join, as they waste memory bandwidth
due to over-fetching. In both CPUs and GPUs, similar algorithmic
approaches can mitigate the problem by, for example, partitioning
the input to fit the per-partition hash-tables in a memory (cache)
with a higher bandwidth. On the CPU side, the partitioning fanout
is restricted by the TLB size and, on the GPU side, the size of the
cache that contains write offsets and consolidates stores. In both
cases, the end result is a multi-pass partitioned hash-join.

In GPUs, it is possible to do some further optimizations. Ran-
dom accesses to L1 waste bandwidth as a whole cache line has to
be fetched per access. To make the probing step GPU-friendly, we
load the smaller partition to the scratchpad, build the hash-table us-
ing atomic operations and probe with the tuples of the correspond-
ing partition. The scratchpad is organized into banks and is capable
of serving a different word from each bank per (warp-)request, in-
dependently of its location in the bank. Thus, the scratchpad only
penalizes accesses to the same bank, but does not waste bandwidth
by over-fetching. We show a block diagram of the build and probe
sequence within the memory hierarchy in Figure 3.

The scratchpad is of limited size, in the order of L1 size, and the
produced partitions of the two inputs should be small enough to fit
in it. Therefore, the number of produced partitions should be suffi-
ciently high. In the CPU case, the partitioning is optimized with the
goal to reduce the TLB misses and improve the cache locality of the
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output. Similarly, in the GPU case, we aim to reduce the sparsity of
the stores but the fanout is restricted by the memory available for
consolidating the stores. To consolidate the stores, we read a chunk
of the input (at a time) in the scratchpad and reorganize it in such
a way that elements belonging to the same output partition are lo-
cated in consecutive scratchpad entries. Then, we scan the scratch-
pad and write each tuple to its corresponding output partition, be-
fore moving to the next chunk. By controlling the number of out-
put partitions, we control the average number of elements mapped
to each partition for each step. The reordering gathers elements
of the same partition together and thus increases the coalescing of
the stores, which allows for better utilization of the GPU memory
bandwidth and improves the effective throughput. The fewer the
output partitions the higher the average run length of elements in
the same partition, and thus the bandwidth utilization, but the more
passes over the data are required to achieve scratchpad-resident co-
partitions. Contrary to the GPU hash-join of Rui and Tu [27], in
each partitioning step, our implementation scans the data once and
writes them to a linked list of buffers managed with atomic opera-
tions. This technique avoids performing an extra scan to determine
the output offsets. We illustrate the block diagram for the steps of
a partitioning pass within the memory hierarchy in Figure 4.

The GPU hardware-conscious join is tuned for the specific mem-
ory hierarchy of the GPUs. However, the skeleton of the algorithm
remains the same for both CPUs and GPUs. The main observa-
tion is that the design of hardware-conscious operators has two
components: the algorithmic skeleton and the hardware-specific
finer-grained building blocks, such as caching the hash table in
the scratchpad, that change between different device types. This
allows us to re-use the algorithms across devices and argue for sep-
arating hardware-consciousness from device-consciousness: algo-
rithms may be capable of solving different hardware-specific device-
invariant problems (eg. random accesses through multiple parti-
tioning steps) but the exact mappings to the hardware may differ
per device (eg. fanout based on TLB versus scratchpad capacity).

4.2 Efficiently parallelizing query plans
To achieve efficient inter-operator CPU and GPU query execu-

tion, we use code generation to produce code optimized for each
target device and we parallelize the execution to multiple homo-
geneous devices by scheduling execution of the generated code as
well as any necessary data transfer. While Section 5 discusses tech-
niques to extend concurrent execution to heterogeneous devices.

Code generation. We use code generation to achieve two goals,
i) a unified interface for operators to target multiple devices and ii)
enough flexibility to provide hardware optimized implementations.

We provide the implementation of the code generation interface
with a different back-end per device. Each back-end is responsi-
ble for producing code tailored to the underlying device. Starting
from the lower level, back-ends are responsible for translating code

generation directives received by the operator to the instruction set
of their target device. At a higher level, they specialize common
functions, like worker-scoped atomics, reductions and synchroniza-
tions to the underlying device. For example, a back-end for single-
threaded CPU execution would optimize-out worker-scoped atom-
ics to simple load-apply-store operations.

Homogeneous inter-device parallelism. In order to achieve
inter-device parallelism over a set of homogeneous devices, we ex-
tend the traditional Exchange [12]. Similar to the Exchange, we
instantiate both the producer and the consumer code on multiple
devices to achieve the desired input and output degree of paral-
lelism. In contrast with the traditional Exchange, we separate con-
trol flow, control transfers between producers and consumers, from
data flow, data transfers over the interconnects. Separating them
allows for taking data-dependent decisions to transfer control with-
out access to the data at the point of the decision.

As control flow operations are inherently more CPU- than GPU-
friendly, we propagate task assignment and load balancing to the
CPU and perform them through a CPU operator, HetExchange’s
router, which is a parallelism trait converter. It receives tasks from
producers and based on policies routes them to consumers. We
push down to the producers the responsibility of packing data such
that the router can take routing decisions in the granularity of pack-
ets, without accessing their contents but only packet metadata.

Depending on the routing policy, a packet may be routed to a
consumer that does not have access to its content. To handle such
cases, we represent data transfers as an operator and place them
on the plan. In addition, a variant of the same operator takes into
consideration the memory topology in order to perform broadcasts
with minimal number of copies. By taking into consideration the
memory topology, this operator performs packet multi-casts and
sharing, in order to minimize the data transfers during broadcasts.
In addition, decoupling the data transfers from the relational op-
erators allows our design to operate over both CPU-resident and
GPU-resident datasets as well as datasets that are distributed over
all the CPU and GPU memory nodes.

5. EFFICIENT CO-PROCESSING
Supporting multiple types of devices, but only one device-type

at a time (homogeneous parallel execution) allows executing the
query on the most appropriate device type, but leaves the rest of the
devices underutilized. The rest of this section expands our design
to concurrently use all the available heterogeneous devices.

Similarly to the homogeneous case [12], there are three ways to
parallelize a query over heterogeneous devices. First, the engine
can vertically partition the query plan and execute each part on the
most appropriate type of devices, pipelining execution between het-
erogeneous devices. Second, the engine can horizontally partition
the plan and execute operators using multiple heterogeneous de-
vices. Third, by combining the two previous cases, different sub-
trees of the query plan can be distributed to different devices and
their results pipelined to their common parents.

Vertical co-processing. We achieve pipelined execution across
devices by exploiting that the two vertical partitions of the plan are
independent which allows us to independently select the most ap-
propriate algorithms for each part as well as generate efficient code
for the target device of each part. We encode the transition between
device targets using HetExchange’s device crossing, which is an
operator responsible for changing the code generation back-ends
and handling the transition of execution between different devices,
effectively hiding from the other operators that their input is gener-
ated on another device, both for code generation and execution.
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Horizontal co-processing. The design supports horizontal par-
allelism across multiple heterogeneous devices by allowing routers
to have multiple distinct parents, which permits each parent to tar-
get a different type of device. For example, in order to split an
aggregation across 48 CPU cores and 2 GPUs, the plan has a router
operator that runs on the CPU with two parents. The first par-
ent is an aggregation while the second one is a CPU-to-GPU de-
vice crossing operator followed by an aggregation. The first parent
would be instantiated 48 times, resulting in the parallel execution
of the aggregation to the CPU cores. The device crossing operator
and its aggregation would be instantiated 2 times by the router and
each instance will transfer the execution to its GPU and compute
the aggregation. The router does not differentiate between parents
based on their execution target, the device crossing operators han-
dle that. Data partitioning for horizontal heterogeneous parallelism
is done by building packets that contain tuples with the same prop-
erties and collectively scheduling tuples on a packet granularity.

Intra-operator co-processing. In order to provide efficient al-
gorithms for co-processing, it is possible to combine, without mod-
ification, algorithms tailored to each device via data partitioning
and scheduling policies, reducing the design effort in this manner.
Continuing on the radix-join algorithm of Section 4.1, Sioulas et
al. [30] propose using the CPU in order to perform a first parti-
tioning step locally to the input, which enables us to perform the
join with a single pass over the slow interconnect. The two join
inputs are co-partitioned in their initial location in such a way that
each co-partition can fit in GPU memory. Then, each co-partition
is transferred to the GPU and the more fine grained partitioning
steps and the probing are executed. By controlling the number of
partitions, we fit each co-partition in the GPU memory and thus, as
long as there is no single key for which the corresponding tuples
do not fit in GPU memory, only a single pass over the interconnect
is required. As the only requirement for the partitions generated in
the CPU side is to fit in the GPU-memory, the CPU-side partition-
ing requires a small number of output partitions, compared to the
final number of partitions required by the radix join. Thus, it can
be optimized to achieve very high throughput even for datasets in
the order of tens or hundreds of gigabytes.

The task of selecting the above server-wide algorithm is propa-
gated to the query optimizer. The query optimizer places an initial
CPU-side partitioning operator on each of the two inputs. These
operators are followed by a zip operator that matches the corre-
sponding partitions from each side into co-partitions and pushes
them to the next operator. The zip is followed by a split operator
which drives each of the two partitions to a (different) sequence of a
mem-move, a CPU-to-GPU and another partitioning operator. The
co-partitions produced by the latter are then unzipped, unpacked
and propagated to the actual in-GPU join operator.

Based on the above plan, the query optimizer can produce other
more complex plans using its optimization rules. For example, in-
stead of sending all the co-partitions to a single GPU, it can add a
router to send some co-partitions into a second GPU, or even keep
some of them for joining on the CPU-side.

6. EVALUATION
In this section, we present an evaluation of the performance for

the system described above.

6.1 Experimental Setup
The following experiments run on a machine provisioned with

two 12-core Intel Xeon E5–2650L v3 running at 1.8 GHz, with
64KB of L1 and 256KB of L2 cache memory per core, 30MB of
shared L3 cache and 256 GB of main memory. Also, the machine is
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Figure 5: Scratchpad (SM) vs L1 during GPU radix’s probing phase

equipped with two NVidia GeForce GTX 1080 GPUs each with 8
GB of local memory and connected on one of the two CPU sockets,
through a dedicated PCIe 3 x16 interconnect. We compare our im-
plementation with two state-of-the-art commercial systems, DBMS
C and DBMS G. DBMS C is a CPU-based columnar DBMS that is
based on MonetDB/X100 [7], uses SIMD vector-at-a-time execu-
tion and supports multi-CPU execution. DBMS G is a GPU-based
DBMS that supports multi-GPU execution and uses just-in-time
code generation for the in-GPU kernels.

6.2 Hardware-conscious Join
This section evaluates the GPU partitioned hash-join. The first

two experiments use two equally-sized tables, each with two 4-byte
columns: a key and a payload. We measure the performance of an
equi-join over the key columns that is followed by a sum/count
aggregation over each payload column. Both tables have the same
keys and thus the join output has as many tuples as the inputs.

Figure 5 assesses the importance of using the GPU scratchpad
for the build and probe phase of the join, rather than following the
CPU conversion of using the L1. We use 32 million tuples for each
table, load them in GPU memory and measure the execution time
of the in-GPU partitioned join for varying number of partitions.
Thus, the input size is constant, while the number of elements per
partition varies. To filter-out the effect of handling over-sized par-
titions and focus on the impact of selecting the correct memory, we
generate the keys such that all produced partitions have exactly the
same size. Each co-partition is assigned to a GPU block of threads,
defining the memory requirements for the intermediate structures
per block. We use three variants: L1, which optimistically stores
all the corresponding data in L1, SM that stores all the hash-table
in the scratchpad and SM+L1 that stores the offsets of the heads of
the hash table chains in the scratchpad and the rest in L1.

The more we rely on the scratchpad to store intermediate join
structures, the better the performance, as the scratchpad, in con-
trast with L1, is not over-fetching. In addition, L1 is affected by
the scanning of the co-partitions, which causes cache pollution and
decreases the hit rate proportionally to the input size, as multiple
GPU blocks running on the same streaming multiprocessor share
their L1 cache. On the contrary, the scratchpad is software man-
aged and thus it is not affected by the same problem. As a result,
the performance of the scratchpad is almost constant while the per-
formance of L1-based solutions decreases as the number of parti-
tions increases. SM+L1 has the advantage that the first probe is in
the SM, but it is also affected by the drawbacks of the L1-based
solution. It is also worth mentioning that SM+L1 has an increased
capacity, compared to the other two solutions. The small perfor-
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Figure 6: Comparison of parallel CPU and (single) GPU joins

mance degradation from 1024 to 512 elements per partition is due
to hardware underutilization: the small partition size reduces the
opportunities for useful overlapping.

Figure 6 focuses on the in-CPU/-GPU performance of partitioned
and non-partitioned CPU and GPU joins implemented in our sys-
tem, as well as with the join implementations of DBMS C and
DBMS G. In this experiment we plot the execution time for vary-
ing table sizes from 1 million to 128 million tuples, at which point
the datasets stop fitting in the GPU memory. In each case, the data
are pre-loaded to the local memory of the corresponding compute
unit. Due to its improved hardware utilization, the GPU hardware-
conscious algorithm outperforms the alternatives, with an over 3x
speed-up against the non-partitioned variant for the highest sup-
ported in-GPU size and over an order of magnitude for the 128
million tuple datasets against the other implementations.

6.3 Operator-level co-processing
The next experiment evaluates the join co-processing technique

designed for scaling up the join to cases when the GPU-memory is
insufficient for storing the input tables and intermediate join struc-
tures. To that purpose, we scale to datasets bigger than the ones
in Figure 6, from 256 million tuples to 2 billion tuples and operate
over CPU-resident data. Figure 7 shows the execution time of the
co-processing technique for the case of 1 and 2-GPUs compared
against the joins of the two commercial systems. DMBS G is not
designed for out-of-GPU datasets, and thus performs poorly even
after 512 million tuples. DBMS G scales linearly with the num-
ber of keys but despite the fact that it has access to the data with
the DRAM bandwidth, the random accesses force CPU implemen-
tations to suffer either from high latencies, or reduce the latencies
at the expense of multiple passes, which causes the DMBS C to
achieve a throughput significantly lower than the PCIe throughput.
In contrast, the co-processing approach achieves the best from both
worlds. It partitions the data in the CPU side where it can access the
inputs using the DRAM bandwidth. On top of that, as it requires
a relatively low-fanout, the partition materialization also takes ad-
vantage of the high DRAM bandwidth. The partitioning allows for
a single-pass over the slow PCIe and on the GPU-side the 280GBps
memory bandwidth of each GPU in combination with the optimiza-
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Figure 7: Comparison of join co-processing using 1 and 2 GPUs

tions to use the scratchpad allow for a partition-and-join through-
put also higher than the PCIe. As a result, in the single-GPU co-
processing the join is bottlenecked by the PCIe transfers, which are
faster than the CPU-only join throughput. In addition, adding an
extra GPU, on a dedicated PCIe bus, almost doubles (1.7x) the total
throughput as the GPU-side join throughput is also doubled, while
the near-DRAM low-fanout CPU-side partitioning can sustain pro-
viding for the two PCIes. Overall, the co-processing achieves 12.5x
and 4.4x speedup over DBMS G and DBMS C, respectively, for the
largest dataset size each supports.

6.4 Query Plan-level co-processing
The rest of the experiments focus on evaluating the end-to-end

performance of the presented query engine and more specifically
evaluate its efficiency on achieving state-of-the-art performance on
each device and, in hybrid mode, its efficiency on achieving the
aggregate throughput of the individual devices. We use four TPC-
H queries, at scale factor 100, to evaluate our system: Q1, Q6
which are simple aggregations and thus stress the interconnect and
memory bandwidth utilization of the system, and Q5, Q9 that are
join-heavy. As we currently have no support for LIKE conditions,
we run Q9 without the LIKE condition and the join to the corre-
sponding filtered table. We use a binary columnar format for the
inputs, which for our system is translated to 15-27GB working sets
per query. Taking into consideration data structures and space for
buffer management, none of the queries fits in the aggregated GPU
memory. Thus, for all the experiments and systems the data are
CPU-resident. For each experiment we warm up each system to
allow them to load the data in-memory prior to any measurement.

Figure 8 plots the execution time for the commercial systems and
three Proteus configurations: CPU-only that uses two CPU sockets,
GPU-only that uses both GPUs, and hybrid execution that uses two
CPU sockets and two GPUs. The performance of Proteus CPU is
comparable to the performance of DBMS C, with the exception of
Q1. Q1 has multiple aggregates and thus DBMS C has a higher
overhead due to the multiple in-L1 passes required by its vector-at-
a-time processing. In contrast the code generation of Proteus CPU
avoids that. DBMS G is optimized for star-schema based queries
and in-GPU processing and thus it is unable to run on 3 queries.
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Figure 8: CPU-, GPU-only and Hybrid performance on TPC-H

In the case of homogeneous device execution the relative per-
formance depends on the query category. For scan-bound queries,
CPU-only execution demonstrates better performance compared to
GPU-only execution and is more than 2.65 times faster for both
queries. The CPU-only configurations only access local DRAM
and sustain a throughput higher than the combined bandwidth of
the interconnects, over which, the GPU configurations, have to ac-
cess the data. However, for the join-intensive Q5, GPU-only exe-
cution attains higher performance and achieves a speedup of 1.4x,
despite the data transfers over PCIe. The upfront interconnect over-
head is amortized as the join benefits from the hardware capabilities
and the fine-tuned algorithm on the GPU, while the CPU-side join
suffers from high latencies and/or multiple passes. Q9 is producing
intermediate results that increase the hash-table size requirements
further than the available memory on the GPUs and thus none of
the GPU-only systems is able to execute it.

Even though the choice between CPU-only and GPU-only exe-
cution is case-by-case, in all four experiments the multi-CPU multi-
GPU hybrid configuration outperforms both in all these scenarios.
The hybrid mode is most efficient for Q1 and Q6 queries, as it can
achieve 89% and 82% of the aggregate throughput achieved by the
CPU-only configuration plus the GPU-only configuration. For Q5
the hybrid configuration achieves 64% of the aggregate throughput,
due to the overhead of shuffling data for the joins. Additionally, hy-
brid execution allows for co-processing at the operator level which
is the cornerstone for evaluating Q9. The co-processing join tech-
nique is combined with the in-GPU join to provide a speedup of 2x
over the CPU version, showing the practical value of the technique
as it allows for a query with requirements that exceed the accelera-
tor capabilities to benefit from their power.

Figure 9 depicts the execution time for GPU-only and multi-
CPU multi-GPU variants for query Q5, with a partitioned join as
a representative example of a hardware-conscious join and a non-
partitioned join as the representative for the hardware-oblivious
joins, for the heavy joins on the GPU-side of the plan, in order
to outline the impact of optimized operators within the query plan.
The plans that contain the partitioned joins have a lower execution
time, with 1.44x and 1.23x speedups for GPU and hybrid execution
respectively. The efficient device-optimized operator is able to mit-
igate the join bottleneck, increase performance and showcase the
importance of hardware-conscious processing.
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Figure 9: Partitioned vs Non-Partitioned-based join on TPC-H Q5

7. CONCLUSIONS
In conclusion, HAPE is a design for analytical query engines

that achieves efficient query execution over heterogeneous hard-
ware, by decomposing the design space to efficient intra-device
execution and inter-device execution. Efficient inter-device exe-
cution requires mechanisms for transferring control and data be-
tween devices as well as policies for co-processing algorithms that
define how data and control should flow between the devices. Effi-
cient intra-device execution is further decomposed into optimizing
intra- and inter-operator (intra-device) efficiency. Lastly, while effi-
cient execution requires hardware-conscious operators, decoupling
their algorithms from their actual mappings to the hardware, such
as which memories they will use, increases their portability.
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