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ABSTRACT
In recent years, differential privacy (DP) has emerged as the state-
of-the-art for privately analyzing sensitive data. Despite its wide
acceptance in the academic community and much work on differ-
entially private algorithm design, there is surprisingly little work on
building database systems that allow differentially private query an-
swering using high level, declarative languages like SQL. The lack
of such systems has limited the adoption of differential privacy in
real-world applications.

In this paper, we propose PRIVSQL, a system architecture for
supporting SQL query answering under differential privacy and
identify a set of components that can be independently optimized.
While there is a mature class of solutions for some components,
there is little or no work for others. Our preliminary implementa-
tion can support a richer class of SQL queries than a state of the art
competitor, with accuracy that is as much as 7000× better.

1. INTRODUCTION
Several organizations want to open the sensitive user data they

collect for analysis to their employees and external third parties.
For instance, Facebook recently announced a new initiative to al-
low social scientists to analyze their user data for research into the
effect of social media on elections and more generally on democ-
racy [2]. New privacy legislation in the EU and California heavily
regulates the analysis and dissemination of user behavioral data,
which includes all of their online activity. Thus, there is a need
for systems that allow the analysis of sensitive data with strong pri-
vacy guarantees. Differential privacy (DP) [5] has arisen as a gold
standard for private analysis. DP algorithms are seeing adoption
in federal agencies like the US Census Bureau [9] for publishing
statistics, in companies like Uber [7] for enabling a private query
interface over user data for employees, and in Google Chrome and
Apple applications for analyzing user data.

Despite the academic success and growing adoption of differen-
tial privacy, it is still extremely hard to analyze data accurately in
this model. In fact, each of the deployments mentioned above has
required a team of differential privacy experts to design algorithms
and tune their parameters.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

There are several challenges to implementing DP algorithms.
First, it is difficult to design an algorithm that, given a fixed privacy
budget, extracts the most accuracy for a task. A benchmark study
[6] evaluated a variety of DP algorithms (for the task of answer-
ing range queries) and showed that general purpose algorithms like
the Laplace mechanism [5] introduce too much error and that there
was no single dominant algorithm for the task. Second, it is easy
for implementations to violate differential privacy. There are many
examples of mistaken proofs, incorrect implementations, and side-
channel attacks that can unravel the protection of a DP algorithm.
There is a growing line of work on privacy oriented programming
frameworks[11] and a few that focus on accuracy [15] that start
to address these issues. However, none of these frameworks has
the capabilities of a relational database. There is no support for
declarative query answering; an analyst has to write a DP program
themselves. And most systems only support queries on a single
table and none consider updates to the database.

Our vision is to build a differentially private relational database
that (a) supports realistic relational schemas containing multiple ta-
bles, (b) accurately answers declaratively specified aggregate queries
involving standard SQL operators like JOINS, GROUPBY and cor-
related subqueries, (c) ensures differential privacy with a fixed pri-
vacy budget (regardless of how many queries are posed to the sys-
tem), and (d) allows for database updates.

The above vision reflects our desire to provide interfaces to users
(e.g. SQL) that are similar to conventional databases. But the in-
ternals of a system for privately answering general SQL queries
require components that are unheard of in a standard relational sys-
tems. First, above all else, privacy loss must be correctly mea-
sured and accounted for. Architecturally this requires (i) a privacy
firewall separating the private database from the differentially pri-
vate outputs and (ii) system components that can statically analyze
queries, views, and data transformations, so that any execution in
the system can be shown to meet correct privacy loss bounds. Sec-
ond, in a private system there are no correct query answers, only
better or worse approximations of the true query answer. Extract-
ing maximal accuracy for a given bound on privacy loss means (i)
we need more input from the user than in conventional systems
(their desired ‘workload’) so the system can adapt to what accuracy
means for them; (ii) we need to optimize what we use the privacy
budget for (which queries or measurements) and how the privacy
budget is divided; and (iii) previously computed results may need
to be reused to answer new queries (since they have already been
“paid” for). We must shield the user from all this complexity.

Our primary goal in this paper is to articulate a forward-looking
system architecture, called PRIVSQL, that is general enough to ac-
commodate new solutions to the challenging sub-problems under-
lying our architectural components. We present a set of detailed de-



sign principles that any solution to our problem must satisfy (Sec-
tion 2). We describe our architecture and highlight how different
implementations for the components of PRIVSQL trade off accu-
racy, privacy, and efficiency (Section 3). In Section 4, we describe
our ongoing implementation of PRIVSQL and, as evidence of the
potential of our architecture, we show that instantiating our compo-
nents with preliminary component implementations results in dra-
matic improvements in accuracy over competing approaches, by a
factor of as much as 7000×.

1.1 Preliminaries
We consider a multi-table relational schema R, containing a set

of sensitive tables Rs to which privacy protection is guaranteed.
We consider differential privacy (DP) [5] as our privacy notion.
Informally, the output of a DP algorithm masks the presence or
absence of a single tuple in any one of the sensitive tables. More
formally, let D be an instance of R. Then N(D) denotes the set of
all instances D′ that differ in the presence or absence of one tuple
in one of the tables in Rs.

Definition 1.1 (Differential Privacy). A mechanismM : R → Ω
is ε-differentially private if for any relational database instance D
and D′ ∈ N(D), and any set of possible outputs ∀S ⊆ Ω:

Pr[(M)(D) ∈ S] ≤ exp(ε)Pr[(M)(D′) ∈ S]

The privacy guarantee gracefully degrades as multiple DP algo-
rithms execute on the data [5]. The sequential execution of mecha-
nism M1, . . . ,Mk, where Mi satisfies εi-DP on database instance
D is also differentially private with parameter ε =

∑
i εi.

We consider aggregate SQL queries of the form SELECT COUNT(*)
FROM S WHERE Φ, where S is a set of tables and subqueries, and
Φ can be an arbitrary predicate possibly containing correlated sub-
queries. A special subset of aggregate queries are linear counting
queries, for which S is a single base table, and Φ contains only
terminal predicates on the columns of S.
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Figure 1: State of the art

We are aware of very few practical solutions from the literature
that have some of the capabilities mentioned in our vision. One
class of solutions takes a set of logically specified linear counting
queries on a single table, and answers all of them under a fixed pri-
vacy budget. The most accurate algorithm in this class is HDMM
[10] which represents queries and data as vectors and uses sophisti-
cated optimization and inference techniques to answer them. It can
not handle queries with JOINs on single or multiple tables. On the

other end of the spectrum is FLEX [7] that can answer a single ag-
gregate SQL query (allowing JOINs but not correlated subqueries)
under a given privacy budget. However, unlike HDMM (and simi-
lar solutions), (a) the privacy loss incurred by FLEX increases with
the number of queries, and (b) FLEX incurs a high utility loss as it
answers one query at a time. Finally, another solution is to generate
a synthetic database for each base table using PrivBayes [16] under
a fixed privacy budget and then use these for query answering. This
approach cannot preserve join keys. As shown in Fig. 1, FLEX has
the most query expressivity, but limited accuracy; HDMM has the
most accuracy, but limited query support; and the solution based on
using synthetic data generated by PrivBayes would have medium
query expressivity, and as per our experiments (not shown) medium
accuracy. Our goal is to build a system that can achieve high accu-
racy, support high query expressivity, and ensure strong guarantees
of differential privacy. Our preliminary implementation supports
a richer class of SQL queries than FLEX and offers as much as
7000× better accuracy.

2. PRINCIPLES & JUSTIFICATION
Principle 1. Differentially private queries should not be answered
on the live database. Rather, queries should be answered on a
privately-constructed synopsis of the database.

Prior work (e.g. FLEX) has proposed privately answering SQL
queries by (a) querying the live database and (b) adding noise cal-
ibrated to the sensitivity of the query. In contrast, we argue that
a differentially private query answering system must be divorced
from a live database which may undergo continuous updates. Such
a decoupling allows for a constant privacy loss, secures from side
channel attacks, and lastly, offers consistency across queries for
free. We explain each of these below:

Constant Privacy Loss All interactions between the database and
the analyst must be differentially private – i.e., no matter how many
queries an analyst poses, her view of the database, and the process
that constructs it, must satisfy εB-differential privacy, where εB is a
pre-specified privacy budget. If the system answered queries on the
live database, then each query would use up a part of the privacy
budget and the system would have to shut down after relatively few
queries. For instance, in FLEX, if each query is answered under
0.1-DP, then a total budget of 1.0 only allows up to 10 queries.

On the other hand, if a private synopsis of the database was con-
structed with all the privacy budget εB , then the system could an-
swer any number of queries without further privacy loss as long as
they can be answered from the private synopsis. This does not mean
than an unlimited number of queries can be accurately answered
from a private synopsis; see Principle 2 for further discussion.

Side Channel Attacks. Answering queries on a live database has
safety issues – the observed execution time to answer a query on
the live database could break the differential privacy guarantee and
reveal sensitive properties about the records in the database. For
instance, consider a table storing properties of nodes (in a node ta-
ble) and edges (in an edge table) in a social network. Suppose the
analyst queries for the number of edges connected to users over the
age of 90. Suppose Bob is the only person in the database with
age > 90 and has a thousand friends. With Bob in the database,
the query answer would be 1000. If Bob’s record were not in the
database, the answer to the query is 0. Any differential privacy
mechanism for answering this query would add enough noise to
obfuscate this difference. However, a typical DP mechanism (like
FLEX) would not hide the time taken to compute the answer. With-
out Bob, the live database would identify this query as joining an



empty intermediate table with the edge table, and hence would re-
turn quickly. On the other hand, with Bob in the database, the join
may take perceptibly more time, thus revealing the presence of Bob.

Such timing attacks are avoided if analysts are only exposed to
a private synopsis over the data that is constructed offline. Con-
tinuing the above example, the private synopsis generation may
take more or less time depending on whether Bob’s record is in
the database, but this is hidden from the analyst who only interacts
with the private synopsis.

Consistency. Typical differentially private mechanisms work by
adding random noise to query answers. Therefore, if queries were
answered on the live database, an analyst would see different query
answers to the same queries – unless the system cached previous
queries and answers; which is indeed akin to maintaining a syn-
thetic database. Moreover, relationships between queries may also
be distorted. For instance, due to noise, the total number of males
in a dataset could be smaller than the number of males of age 20-50
(while in the true data the reverse must clearly be true). If one were
answering queries on the live database (like in FLEX), the burden
of making noisy answers consistent would be shifted to the analyst.

Since we propose to generate a private synopsis, which is already
differentially private, (a) no further noise needs to be added and (b)
we can ensure that the private synopsis is consistent. A downside
of answering queries on a private synopsis is that updates to the
database are not reflected in the query answers. We discuss this in
more detail in Principle 4.

Principle 2. The private synopsis must be tuned to answer queries
for an input query workload.

The celebrated result by Dinur-Nissim [4], the Fundamental Law
of Information Reconstruction, shows that a database containing n
bits can be accurately reconstructed by an adversary that submits
n log2 n counting queries, even if each of the queries has o(

√
n)

additive noise. This implies that we cannot hope to accurately
answer too large a set of queries from any single synopsis under
strong privacy guarantees. It therefore means that we must specify
as input a representative workload of queries to be answered. This
workload can be either a list of explicitly defined queries, or a set
of parameterized queries – where constants are replaced by wild-
cards. The private synopsis will be designed to provide answers to
the representative workload with high accuracy. Of course, if the
workload contains too many queries then we can not answer all of
them with high accuracy without violating the Fundamental Law
of Reconstruction. Thus our accuracy guarantees on the queries in
the representative workload are best-effort. Our system also tries
to answer queries that are not in the input workload and if it can’t,
then it informs the user.

Principle 3. Private synopses may need to be generated over views
defined on the base tables and not just on the base tables.

Prior work has shown that queries involving the join of two ta-
bles cannot be answered accurately just using private synopses that
have been generated independently from each of the tables. For
instance, Mironov et al. [12] show a Ω(

√
n) lower bound on the

error of computing the intersection between two tables given differ-
entially private access to the individual tables (and not their join).
The intuition behind this result follows from the definition of differ-
ential privacy. Since join keys are typically unique, no differentially
private algorithm can preserve the key. Thus, joins have to be done
on coarser quasi-identifiers which are associated with a sufficiently
large number of tuples.

In contrast, given access to a view that encodes the join over the
two base tables, computing the size of the join is a counting query

that can be answered with constant error. Thus, if one expects to
receive many queries involving the join between two tables, the
system must generate private synopses from an appropriate view
over the base tables and not just from the base tables themselves.

Principle 4. Update the private synopsis only if (a) the database
has changed significantly (due to updates), or (b) queries posed by
the analyst are very different from the stated workload.

The private synopses generated on a snapshot of the database
and an input workload may become out of date either because of
database updates, or because the input workload does not capture
the current set of queries of interest to an analyst. In this case, the
system must be able to update its private synopses. This process
will necessarily access the database and in some cases it might re-
quire additional consumption of the privacy budget.

We note that no ε-DP algorithm can distinguish between answers
to a single count query that differ by< 1

ε
log(1/δ) with probability

1 − δ. That is, for ε = 0.1, one can’t tell apart counts x and
x + 13 with 95% probability. This range increases as the number
of queries increases. Thus, updating the private synopsis for every
update to the database is unnecessary and a waste of privacy budget.

3. SYSTEM ARCHITECTURE
Motivated by the above principles, we now describe the architec-

ture of our system for differentially private query answering, called
PRIVSQL. The architecture is illustrated in Fig. 2.

3.1 Overview
PRIVSQL stores a relational data instance D, conforming to

schema R, in a relational database engine. This engine is placed
inside a logical privacy firewall. The analyst who poses queries on
the database is outside the privacy firewall. While system compo-
nents inside the firewall are trusted to compute on the database, any
process that transfers data across the firewall must provably ensure
differential privacy. PRIVSQL has three operational phases: pri-
vate synopsis generation, query answering, and synopsis update.

The synopsis generation phase is an offline phase that takes as
input a 4-tuple (R,D,Q, ε) and outputs a set of private synopses
S̃. R andD are the relational schema and instance, respectively. Q
is a representative workload of queries that may be expressed ex-
plicitly or using wildcards. ε is the differential privacy budget. The
synopsis generation phase makes S̃ available outside the firewall.
Hence, a single execution of the private synopsis generator with a
privacy budget ε must necessarily satisfy ε-differential privacy.

The synopsis generation phase is executed by 4 functionally dis-
tinct components. Given the input (R,D,Q, ε), PRIVSQL first
uses the view selector (VSELECTOR) to select a set of views V
over the base tables. Next, the stability calculator (STABCALC)
computes the stability of each view (defined below in Section 3.2),
which is in turn used by the budget allocator (BUDGETALLOC) to
allocate privacy budget εV to each individual view V ∈ V . Fi-
nally, the synopsis generator (PRIVSYNGEN) takes as input the set
of views, the set of privacy budgets, and the workloadQ and returns
a set of private synopses S̃, one synopsis S̃V per view V ∈ V .

The query answering phase answers analyst queries using only
the set of private synopses S̃ and other public information. The
query answering phase does not access the private database and
hence is completely outside the privacy firewall. Thus, query an-
swering does not need to ensure differentially private.

The synopsis update phase generates a new set of private syn-
opses based on the current version of the database instance. This
phase can optionally take as a input a new representative workload
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Figure 2: System Architecture

of queries Qnew, and an additional privacy budget εnew, and re-
runs the synopsis generation phase. The cumulative privacy loss
incurred by the database is at most the sum of the ε values associ-
ated with each run of the synopsis update phase.

3.2 System Components
System State: All the data maintained by PRIVSQL is stored in
the system state, which is denoted by the tuple (γ,Γ). γ denotes
the private state and is within the privacy firewall. γ contains the
private database instance D and any data derived from it (like view
instances) using algorithms that are not differentially private. The
system state allows cross-component communication and isolates
the private data from the publicly releasable data.

Γ denotes the public state and is outside the privacy firewall.
Γ contains public information about the database, like the schema
R, any instances in the schema with no privacy concerns (e.g. a
dimension hierarchy on a public attribute like geography), outputs
of differentially private algorithms (e.g., the private synopses), and
other meta-data. Intermediate results of the synopsis generation
phase that can be publicly released (like the set of view definitions
selected and other examples seen later) are also be stored in Γ.

View Selector: The goal of VSELECTOR is to select a set of view
definitions V over the base relational schemaR. These view defini-
tions are made available in the public state Γ for query answering.
On the other hand, view instances (i.e., the materialized views), are
maintained as part of the private state γ. VSELECTOR may be data
independent, in which case it only takes as input the schema R and
Q. A data dependent VSELECTOR expends a part of the privacy
budget and can select views based on the private instance D.

A query q is said to be answerable by view definition V if there
exists a rewriting qV such that for every instance D of the schema
we have q(D) = qV (V (D)). As per Principle 3, every query

q ∈ Q should ideally be answerable by one of the views output
by VSELECTOR. The output V of VSELECTOR is Q-lossless if
every query q ∈ Q is answerable in at least one of the views.

Private Synopsis Generator: PRIVSYNGEN takes as input a view
instance V (D), a set of queriesQV ⊆ Q, and εV , a privacy budget
specific to the view and returns a private synopsis S̃V that is made
available to the public state Γ. A synopsis can be a set of synthetic
tuples, query answers, vectors, histograms, or hierarchical counts.
To generate a synopsis, PRIVSYNGEN runs on V (D) an appropri-
ate εV -differentially private algorithm that is designed to minimize
the error on the query workloadQV .

Stability Analyzer: Executing an εV -DP algorithm on a view in-
stance V (D) hides the effect of adding or removing a tuple to the
view instance on the output synopsis S̃V , but may not offer similar
protection to base tables contributing to the view. That is, it does
not necessarily ensure εV -DP with respect to the base tables. For
instance, consider a V that joins two base tables. Adding a record t
to one of the base tables might result in σ tuples added to V (D) if
the join key corresponding to t has multiplicity σ in the other table.

To address this, we must consider the stability of a view, which is
defined to be the maximum number of tuples σV that are added or
removed to the view instance due to adding or removing one row in
a base table, over all possible database instances D. Executing an
εV -DP algorithm on V (D) can be shown to satisfy σV εV DP over
the base tables [11]. The STABCALC component takes as input a
view V and outputs its stability σV , which is then added to Γ.

Privacy Budget Allocator: The BUDGETALLOC divides the to-
tal privacy budget ε into a set of privacy budgets E = {εview} ∪
{εV }∀V ∈V such that the synopsis generation phase satisfies ε-DP.
εview is allocated to VSELECTOR, and is 0 if VSELECTOR is data



independent. εV is the privacy budget used by PRIVSYNGEN to
generate S̃V on view V . An allocation that satisfies:

εview +
∑
V ∈V

σV εV ≤ ε (1)

always guarantees that the synopsis generation phase satisfies ε-DP.
To ensure that the synopsis generation phase provably guaran-

tees differential privacy, the privacy sensitive components can be
implemented in a system like εktelo [15], so that the proof of pri-
vacy comes automatically with the implementation .

Query Answering Engine: This is the interface that the analyst
has access to outside of the privacy firewall. Given the synopses S̃
as well as the rest of the public state Γ, the QUERYENGINE returns
answers to input queries. For input query q, the QUERYENGINE
first identifies which view V ∈ V contains it and then rewrites q
in terms of V – rather than in terms of the base tables. If no view
supports q then the QUERYENGINE outputs ⊥ meaning that this
query can not be currently answered. Next, if it finds a view V ,
the QUERYENGINE uses the appropriate synopsis S̃V to answer
the query. If there are public tables, QUERYENGINE can directly
answer queries answerable by the public tables, and these will have
no noise. Note that query answering is outside the privacy firewall
and does not require the use of differentially private algorithms.

Synopsis Updater: SYNUPDATER is a novel component that is
typically not considered in differentially private query answering.
It takes as input the current state of the system (γ,Γ), and option-
ally a new query workload Qnew, and a new privacy budget εnew,
and decides whether to rerun the synopsis generation phase or not.

3.3 Implementation Considerations
PRIVSQL’s goal is to ensure private, accurate and efficient query

answering. When the queries are all linear counting queries , there
exist differentially private methods that can efficiently answer queries
with near-optimal accuracy [10]. However, such a mechanism is
not known to exist for sets of complex SQL queries. Jointly opti-
mizing the implementations of all of the components in PRIVSQL
is hard, and we conjecture the problem is intractable. In this section
we highlight a few alternate implementations of each component,
and discuss how they tradeoff privacy, accuracy and efficiency of
query answering.

View Selector: As per Principle 3, every query in Q must be an-
swerable by one of the views output by the view selector. This can
be achieved by generating a single denormalized universal view
that encodes all joins. However, this is unlikely to be optimal in
terms of accuracy or efficiency. The single view will have a high
stability if it involves multiple many-to-many joins. Recall that
given a fixed privacy budget, high stabilities result in high error.
Maintaining a set of views, each encoding a subset of the joins that
appear in Q would result in views with lower stability. Moreover,
a single view would be large both in terms of rows and columns
slowing down the synopsis generator that operates on this view.

Another design choice is to select one specialized view for every
query in Q. This is also undesirable as the number of views may
be too large: if Q contained the set of all range queries on the Age
attribute,Q would have about 100×100 queries, and thus as many
views. Having a single view that supports all range queries on an
attribute would also be better since this is a task for which there
are well-known, accuracy-optimal differentially private algorithms
that PRIVSYNGEN can employ.

Private Synopsis Generator: This component is probably the most
well understood as it is an instance of a common problem studied

in DP literature – answering a set of queries on a single table. Effi-
cient and accurate methods are known both for releasing a synthetic
dataset in the original schema of the table [16], as well as releasing
vectors of counts [6, 10] that minimize the error for linear counting
queries. One consideration is whether to release synthetic tuples or
vectors of counts. The former is efficient in terms of representation
– the vector form encodes one count for every possible tuple in the
cross product of the domains of the attributes in the table, and is
thus exponential in the number of attributes. However, the latter
allows maintaining fractional counts, which leads to lower error. In
addition, vector form allows the use of linear algebra based infer-
ence methods to reason across multiple independent noisy releases,
which can help answer queries not present inQ.

Stability Calculator: We conjecture that the query complexity of
computing the stability of a view is NP-hard, as it is closely re-
lated to the problem of query evaluation (which is also hard for
queries that include self or cyclic joins). Thus, efficient implemen-
tations of STABCALC necessarily need to compute an upper bound
on stability. A standard approach [7, 11] computes the stability of
a view definition by considering a specific query plan (rather than
the actual query), treating it as a sequence of transformations on
the data, using rules to estimate the stability of each transforma-
tion, and multiplying the individual stabilities to get the stability
of the view. However, as we show in Section 4, this approach can
overestimate the stability by over three orders of magnitude.

Budget Allocator: Any allocation of the total budget that satisfies
Eq. (1) ensures that the private synopsis generation satisfies ε-DP.
This allocation impacts which workload queries end up answered
with greater relative accuracy over others. A naive method is to
divide ε equally and assign ε′ = ε/σV to each view V . Under
this naive allocation, views involving joins (with typically larger
stabilities) have lower privacy budgets and thus will support query
answering with higher errors. A view-fair allocation strategy would
ensure that for two views V, V ′, εV = εV ′ = ε/

∑
V ∈V σV . How-

ever, one view may support many more queries than another view,
so the budget allocation may also take that into account. One could
go further and take into account the number of queries supported
by a view during allocation. The design of a truly query fair budget
allocator requires knowledge of the downstream differentially pri-
vate mechanism used and the query answering engine in addition
to the set of queries supported by each view.

Synopsis Updater: A key decision to be made in the implemen-
tation of the SYNUPDATER is whether or not to expend additional
privacy budget. One can refresh the synopses without incurring ad-
ditional privacy loss if the new synopses are only generated on rows
that were inserted into the base tables after the previous synopsis
was generated. In that case, the privacy guarantee of the old and
new synopsis generation would compose under parallel composi-
tion. However, this might not be accurate for queries that involve
old and new tuples. First, each private synopsis will have noise and
adding up query answers across synopses will result in the noise
adding up. Second, if some of the views involve joins, then tuples
in the view that join old tuples with new tuples will not be present
either in the old or the new synopsis.

Another decision is the frequency at which SYNUPDATER is run.
Frequent synopses updates allow the query answering engine to use
a recent version of the database. As a consequence, the system
either spends larger amounts of privacy budget, or ends up creating
many synopses on smaller subsets of the data (when each run of
SYNUPDATER uses εnew = 0). Both cases lead to high error in
query answers. On the other hand, running the SYNUPDATER less



frequently means the queries are answered on a more out-of-date
version of the database, but with higher accuracy.

One way to implement the SYNUPDATER is to adapt recent tech-
niques [3] that allow rerunning DP algorithms on unboundedly grow-
ing databases with small additional privacy loss.

Query Engine: The implementation of QUERYENGINE and the
queries it can support are closely tied to the form of the private
synopses S̃. If the synopsis for a view is a relation in tabular form,
then the QUERYENGINE can process and answer any query that is
answerable by that view. However, only those queries that were in
the inputQV would have low error. On the other hand, if the synop-
sis is a vector of counts, then the QUERYENGINE would have to not
only rewrite the input query q as a query qV on the view, but also
represent it as a linear counting query over the synopsis. In this
case, the QUERYENGINE could only support SELECT COUNT(*)
queries with low error. QUERYENGINE could rewrite non-count
queries (e.g. median, top-k, GROUP BY ... HAVING) as postpro-
cessings over another set of linear queries. For instance, the median
can be computed from a histogram or a CDF, both of which are sets
of counting queries. However, as discussed before (and as we will
see in Section 4), existing algorithms that generate synopses in tab-
ular form typically introduce high error during query answering.

4. IMPLEMENTATION & RESULTS
We now briefly describe our ongoing implementation of PRIVSQL

components, and present preliminary results.

View Selector: We use a data-independent VSELECTOR that groups
together queries with the same join structure under the same view
and makes each view as small as possible while still enjoying the
Q-lossless property.

VSELECTOR iteratively transforms each query of Q to a query-
view pair (q̄, V ) such that q̄ is a linear counting query on V and the
transformation is equivalent, i.e., for all databases D: q̄(V (D)) =
q(D). First, q is decorrelated [13], i.e., the correlated subqueries
in q are transformed into joins. Now q is of the form SELECT
COUNT(*) FROM T1, . . . , Tk WHERE Φjoin AND Φ. Here Ti are
base tables or subqueries, Φjoin are join conditions and Φ contains
no subqueries. V is set to SELECT * FROM T1, . . . , Tk WHERE
Φjoin, and q̄ is set to SELECT COUNT(*) FROM V WHERE Φ.
Transformed queries corresponding to the same view V form QV ,
the workload for view V . We project out columns from V that are
not mentioned in any q̄ ∈ QV
Synopsis Generator: Let dom(V ) be the domain of a view V ,
i.e., the cross product of the domains of all attributes in V . Then,
for a materialized view V (D), PRIVSYNGEN either releases syn-
thetic tuples, or a vector of counts for that view. This decision is
made based on |dom(V )|. When dom(V ) < 106, PRIVSYSGEN
represents V (D) as a vector xV , and the workload QV as a ma-
trix WV . xV is a histogram of counts over the cross product of
all the attributes in V , and WV is such that query answers are pre-
served (i.e.,QV (V (D)) = WV · xV ). This representation permits
the use of standard vector based techniques (e.g., from εktelo [15])
like IDENTITY (which adds noise to each entry in xV ), WORK-
LOAD (which adds appropriately scaled noise to WV · xV ), and
DAWA [8]. For larger domain sizes dom(V ) ≥ 106, vector based
approaches are too slow, and PRIVSYSGEN uses PRIVBAYES [16]
to produces synthetic tuples.

Stability Calculator: Our STABCALC implementation builds on
elastic sensitivity (ES) (which is used in FLEX [7]), the state of the
art method for estimating stability of views. It works as explained
in Section 3.3 by analyzing a specific query plan for the view and

Table 1: L2 error of PRIVSQL and FLEX for 3 datasets.
Datasets

Block Puma NC State

System

FLEX 453,892 453,892 453,892
PRIVSQLI 307.25 307.25 307.25
PRIVSQLD 129.37 171.00 362.57
PRIVSQLW 62.86 62.86 62.86

recursively computes the stability starting from the leaves of the
query tree to the root. We extend ES’s rules for computing stability
in a number of ways, but due to space limits we only outline one of
the ideas that has the most impact on final error.

In addition to the view definition, ES requires as input the maxi-
mum multiplicity of any value in each attribute in the base tables to
determine the effect of adding a tuple on the output of a join.1 ES
derives the maximum multiplicity of a value in a derived intermedi-
ate table based on worst case assumptions about how tuples might
join. We recognize that often the maximum multiplicity of values
of certain attributes in derived tables can be accurately ascertained
based on the query. For instance, the maximum frequency of any
value in the ‘A’ column in the output of a SELECT A, ... FROM T
GROUP BY A is 1, since A is now a primary key. We observe this
subquery appears in a number of real world queries (including the
ones we use in our experiments).

Budget Allocator: We use naive allocation (see Section 3.3).

Query Engine: For an input query q, QUERYENGINE first uses the
VSELECTOR’s query transformation to construct V and the linear
query q̄. If V is not one of the materialized views, QUERYENGINE
returns ⊥. Else, if the synopsis S̃V is a table, it simply returns
q̄(S̃V ). If S̃V is a vector, it transforms q̄ also into a 0/1 vector
returns its dot product with the data vector.

SynUpdater: If ε′ > 0, we rerun the synopsis generation phase
with input (R,D′,Q′, ε′) and create additional synopses.

4.1 Preliminary Results
Setup: We consider an analyst submitting queries to a private database
of people in the US (we use a publicly available Census dataset
[14]). The database schema has 2 tables: PERSONS(ID, SEX, GEN-
DER, AGE, RACE, HID), HOUSING(HID, LOCATION). We con-
struct 3 versions of the datasets by considering only rows corre-
sponding to people living in a specific census block, a specific
PUMA (a Census region) and the state of NC. The three cases result
in a PERSON table with 1K, 50K, or > 5.4M tuples.

We constructed a workloadQ′ of 192 queries by parsing the de-
scriptions of tables released by the US Census Bureau as part of the
Summary File 1 (SF-1) [1]. Since the US Census Bureau releases
these tables, we assume these are queries that users of census data
consider important. We chose a subset of 65 queries Q ⊂ Q′ as
the representative queries input to the synopsis generator. We used
QUERYENGINE to answer all queries inQ′.

We use a total privacy budget ε = 1. We compare against FLEX
[7], and use it to answer each query inQ′ with a budget of ε/192.

Results: Based on Q, VSELECTOR chose 17 views to material-
ize including the base table and various joins between the PERSON
and HOUSING table. Each of these views had dom(V ) < 106, so
PRIVSYSGEN did not use PrivBayes to generate the synopsis.

1To strictly satisfy ε-DP, one should not use properties of D. We have
methods to estimate the maximum multiplicities using a portion of the pri-
vacy budget. To simplify presentation, we assume maximum multiplicities
of attributes are publicly known for our implementation and for ES/FLEX.



In Table 1 we see our results for 3 instantiations of our private en-
gine depending on the PRIVSYSGEN module – PRIVSQLW uses
WORKLOAD to construct the private synopsis while PRIVSQLI
uses IDENTITY and PRIVSQLD uses DAWA. We execute each sys-
tem 10 times and report the average L2 per query error:√∑

q∈Q′(q(D)− q̃(D))2/|Q′|, where q̃(D) is the noisy answer.
We see that all instantiations of PRIVSQL outperform FLEX by

at least 3 orders of magnitude. Moreover, we can see that for this
problem PRIVSQLW is the most suitable and overall it offers an
7, 220× improvement. If STABCALC had used ES (as in FLEX),
the improvement would have been 13×. Our improvements to sta-
bility calculation contribute to a 550× improvement.

5. CONCLUSIONS
We presented an architecture, called PRIVSQL, for building a

first of a kind differentially private relational database engine that
can (a) handle relational schemas with multiple tables, (b) answer
declaratively specified aggregate queries involving standard SQL
operators like JOINS, GROUPBY and correlated subqueries with
high accuracy on a prespecified workload of queries, (c) ensure
differential privacy with a constant privacy budget (no matter how
many queries are posed to the system), and (d) allow for updates
to the underlying database. Our preliminary implementation can
support a richer class of SQL queries than competing approaches
while offering dramatic improvements in accuracy.

Our system architecture is modular and each component can be
improved independently to improve the accuracy, privacy and effi-
ciency of the system. In fact, innovations in some of these compo-
nents do not require a deep knowledge of differential privacy, and
many problems are in fact very relevant to the database community.
For instance, view selection is a classic problem in databases, and
the hardness of computing stability of a view is closely related to
the hardness of query evaluation. Query answering using inference
techniques over approximate, incomplete and noisy views is a topic
of interest both in the privacy community as well as in online query
exploration and approximate query processing. We hope our archi-
tecture has clarified the challenges in designing DP systems to the
database community.
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