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ABSTRACT
We present a system to support generalized SQL workload
analysis and management for multi-tenant and multi-database
platforms. Workload analysis applications are becoming
more sophisticated to support database administration, model
user behavior, audit security, and route queries, but the
methods rely on specialized feature engineering, and there-
fore must be carefully implemented and reimplemented for
each SQL dialect, database system, and application. Mean-
while, the size and complexity of workloads are increasing
as systems centralize in the cloud. We model workload
analysis and management tasks as variations on query la-
beling, and propose a system design that can support gen-
eral query labeling routines across multiple applications and
database backends. The design relies on the use of learned
vector embeddings for SQL queries as a replacement for
application-specific syntactic features, reducing custom code
and allowing the use of off-the-shelf machine learning algo-
rithms for labeling. The key hypothesis, for which we pro-
vide evidence in this paper, is that these learned features
can outperform conventional feature engineering on repre-
sentative machine learning tasks. We present the design
of a database-agnostic workload management and analytics
service, describe potential applications, and show that sep-
arating workload representation from labeling tasks affords
new capabilities and can outperform existing solutions for
representative tasks, including workload sampling for index
recommendation, user labeling for security audits and error
prediction.

1. INTRODUCTION
Extracting patterns from a SQL query workload has en-

abled a number of important features in database systems,
including workload compression [3], index recommendation [2],
modeling user and application behavior [31, 9, 35], query
recommendation [1], predicting cache performance [29, 5],
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and designing benchmarks [35]. These techniques can be
used as part of a more comprehensive approach to automate
database administration [26].

However, the diversity of applications have led to a diver-
sity of solutions, each relying on specialized feature engineer-
ing. For example, workload summarization for index recom-
mendation uses the structure of join and group by operators
as features [3], query recommendation may pre-process a
query into fragments before making recommendations [13],
and security audits may require user-defined functions to
enforce particular policies [32].

In fact, the features and the algorithms to extract them
tend to be the significant contributions in the papers in this
space. But the state of the art in a variety of applications is
to learn features automatically. For instance, Natural Lan-
guage Processing applications previously relied on parsing
and labeling sentences as a pre-processing step, but now
use learned vector representations almost exclusively [6, 28].
This approach not only obviates the need for manual feature
engineering and pre-processing, but also has the potential to
significantly outperform more specialized methods.

We see three trends motivating an analogous role for gen-
eralized workload representations. First, workload hetero-
geneity is increasing, making it difficult to maintain SQL
parsers and feature extraction routines. The number of
SQL-like languages is increasing, with inconsistent support
and syntax for even relatively common features such as outer
joins. Second, workload scale is increasing. Cloud-hosted,
multi-tenant database services including Redshift [8], Snowflake
[4], BigQuery [23] and more receive millions of queries daily
from thousands of customers using hundreds of schemas;
relying on brittle parsers (or worse, manual inspection) to
identify query patterns that influence administration deci-
sions is no longer tenable. Third, new use cases for cen-
tralized workload management are emerging. For example,
SQL debugging [7], database forensics [27], and data use
management [32] motivate a more automated analysis of
user behavior patterns, and cloud-hosted multi-tenant sys-
tems motivate a more automated approach to query routing
and resource allocation.

In this work, we propose Querc, a database-agnostic sys-
tem for mining and managing large-scale and heterogeneous
workloads. We model workload management and analysis
as a set of query labeling tasks. For instance, workload
sampling can be reduced to labeling each query as present
or absent in the sample, error prediction involves labeling



each query with an error type, query routing involves label-
ing each query with a cluster resource to which the query
should be routed, and so on. Because our framework de-
pends only on the query text (along with typical metadata
such as arrival timestamp and userid issuing the query), it
can be used with any DBMS and any SQL dialect. In fact,
as we will show, features learned with a workload against
a particular schema and SQL dialect can be effective even
when used with a different schema and SQL dialect.

The weakness of this approach is that it requires enormous
amounts of data to be effective. But as database products
migrate to the cloud, service providers have access to work-
loads from a large number of customers, potentially even
across different database products. Since the input is just
the query text, these diverse workloads can be processed as
one very large dataset. But the resulting vectors can still be
used to train models to support specific applications, as we
will show on two representative tasks: workload summariza-
tion for index selection, user prediction for security audits
and routing, and query error prediction.

2. SYSTEM ARCHITECTURE
Figure 1 illustrates the architecture of Querc. There are

three applications, X, Y, Z. Each application has its own
database, DB(X), DB(Y), and DB(Z), though these may be
logical instances in the same physical multi-tenant service.
In this example, DB(X) and DB(Y) are tenants in the same
service. Each application is also associated with a sepa-
rate stream of queries (at left), where query(X,t) indicates
a batch of queries arriving for application X at time instant
t.

Each application is associated with one Qworker, but each
Qworker operates multiple classifiers. Qworkers may not be
entirely stateless, as some labeling tasks process a small win-
dow of queries. However, the state is assumed to be small
such that the Qworkers do not need their own local storage
and can be load balanced and parallelized in typical ways.
Each classifier is a pre-trained (embedder, labeler) pair. The
same trained embedder may be used across multiple applica-
tions. This split design is critical, because we want to learn
features using a very large, combined workload, but an in-
dividual classifier may perform better when trained on an
application-specific workload. In this example, application
X and application Y both share the same embedder, Embed-
derA, trained on the combined X and Y workloads, written
EmbedderA(X,Y). This log sharing between customers may
not always be permitted by customers for security reasons,
and in this example, application Z uses only its own data.
But there is some incentive for customers to pool their data
as the additional signal can potentially improve accuracy,
and some cloud providers support features to allow data
sharing between customers.

The Labeler passes the query on to the database, but
also transmits the query back to a central training mod-
ule (“Training, Evaluation, and Offline Labeling” in Figure
1). The training module manages training sets, including
the (parallel) execution of training and evaluation routines,
then deploys trained models back to Qworkers. There is sig-
nificant ongoing research in the database, systems, and ML
communities on runtime architectures for training and de-
ploying models (e.g., [21]); we do not discuss them further
since our requirements are relatively modest.

Since Querc is specialized for query workload analytics
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Figure 1: System architecture. Queries arrive for three dif-
ferent applications X, Y , and Z and are processed by one
or more (embedder, labeler) pair before being sent on to the
database, centralized for offline labeling tasks, or both.

rather than general machine learning, one data model can be
shared among most applications. The only messages passed
between components are labeled queries. A labeled query
is a tuple (Q, c1, c2, c3, . . . ) where ci is a label. This sim-
ple model captures situations where a query arrives already
equipped with a timestamp, a userid, an IP address, etc.,
but also captures more verbose query logs that are returned
from the database.

The training module also records the queries with their
predicted labels for retraining, evaluation, and to support
offline analysis tasks. Offline tasks are those that do not
require or do not allow processing each query separately,
and can be implemented as typical batch jobs. For exam-
ple, query clustering is important for workload summariza-
tion [16], but does not require real-time labeling of individual
queries.

Training data is collected periodically from the databases
in the form of query logs. These logs are (batched) sequences
of labeled queries, but with additional labels to be used for
training, such as runtime, memory usage, error codes, secu-
rity flags, resource IDs. We do not specify the mechanism
by which these logs are transmitted from the database to
Querc, since most systems have robust means of exporting
logs in appropriate forms.

In some applications, Querc may not be in the critical path
for query execution to avoid any performance overhead or
reduce dependencies. In these cases, queries will be forked
to Querc. No change to the architecture is required in this
case; queries come in, and labeled queries are collected in
the training module. The query is simply not forwarded to
the database.

This architecture is not designed for continuous learning,
as the training is handled separately from real time query
labeling. Not all algorithms can support fully continuous
learning, and an important design goal is to support simple



Figure 2: The LSTM Autoencoder network architecture
learns to generate the input token in the decoding phase.
Once trained, the encoder can be used to output a vector
representation for the text of a query.

machine learning algorithms as labelers. Model training is
therefore assumed to occur infrequently as a batch job.

3. LEARNING VECTOR REPRESENTATIONS
There are multiple choices for embedders; we describe two

initial models we evaluate in this paper:
Context prediction models: Mikolov et al. [25, 24,

17] proposed learning a vector representation for words by
predicting the next word in a context, and then deriving a
vector representation for larger semantic units (sentences,
paragraphs, documents) by adding a vector representing
the paragraph to each context as an additional “word.” The
learned vector for this virtual context word is used as a repre-
sentation for the entire paragraph. This ”Doc2Vec” method
has been shown to capture semantic relationships that work
well for, say, sentiment classification and clustering tasks
[14, 18]. This approach can be applied directly for learning
representations of SQL queries: We can use fixed-size con-
text windows to learn a representation for each token in the
query, and include an identifier to learn a representation of
entire query.

LSTM AutoEncoders: The paragraph vector ap-
proach in the previous section is viable, but it requires a
hyper-parameter for the context size. There is no obvious
way to determine a context size for queries, for two rea-
sons: First, there may be semantic relationships between
distant tokens in the query. Second, the length of queries
vary widely in ad hoc workloads [12, 10]. To avoid set-
ting a context size, we can use Long Short-Term Memory
(LSTM) networks [36], which are modified Recurrent Neu-
ral Networks (RNN) that can automatically learn how much
context to remember and how much of it to forget, thereby
removing the dependency on a fixed context size. LSTMs
have successfully been used in sentence classification, seman-
tic similarity between sentences and sentiment analysis [30].
We use a standard LSTM encoder decoder network [37, 20]
with architecture as illustrated in Figure 2.

An LSTM autoencoder is trained by sequentially feeding
words from the query to the network one word at a time, and
then attempting to reproduce the input. The LSTM network
not only learns the encoding for the samples, but also the
relevant context window associated with the samples. The
final output of the encoder network gives us an encoding for
the query. Once this network has been trained, an embedded
representation for a query can be computed by passing the
query to the encoder network, completing a forward pass,
and using the hidden state of the final encoder LSTM cell
as the learned vector representation.

There are multiple prior approaches in the NLP literature
that compare the efficacy of these models and their rela-
tive performance [17, 22, 30]. For this paper, we consider
context-based models (i.e., doc2vec) and LSTM AutoEn-
coders.

4. APPLICATIONS
The applications supported by this system reduce to query

labeling, and general workflow consists of two machine learn-
ing models: a representation learner (an embedder) and a
classifier. We split the task into two parts to allow the same
representation to be used for multiple applications.

Workload summarization for index recommenda-
tion: The goal [3, 16] is to find a representative sample of
the workload as input to further database administration,
tuning, and testing tasks [3, 33]. In particular, workload
summarization aids index recommendation, since the rec-
ommendation process is typically quadratic in the size of
the workload [3]. While index recommendation systems are
well-studied and ship with most production databases [3,
2], the quality of the representative sample determines the
overall quality of the final recommendations. In Section 5,
we show that a simple sampling procedure using learned
features delivers a significant runtime improvement over the
built-in sampling procedure in the SQL Server database sys-
tem.

Enforcing query routing policies: Query Routing
in a distributed database involves identifying the cluster re-
sources on which to execute the incoming query. The poli-
cies that govern these routing decisions may involve cus-
tomer SLAs, security considerations (e.g., certain applica-
tions must use a physically distinct cluster from other ap-
plications), auditing requirements (e.g., queries from certain
accounts or those accessing certain tables must be logged for
auditing purposes). Even in modern cloud-hosted database
products such as Snowflake [4] and BigQuery [23], these poli-
cies tend to be manually encoded, and management of these
policies as they evolve, while maintaining multiple hetero-
geneous clusters used by thousands of customers, is increas-
ingly perceived as untenable. Under the hypothesis that
queries that follow a particular policy tend to have similar
features, Querc can help identify policy misconfiguration by
detecting when a predicted routing decision differs from the
assigned routing decision.

Error prediction: Particular syntax patterns in the
workload may be associated with resource errors or bugs
in the database system. In a multi-tenant, multi-database,
and high-volume scenario, identification of the syntactic pat-
terns that tend to trigger errors, either manually or with
scripts, becomes untenable: there may be hundreds of er-
ror codes, each with hundreds of subtle patterns that tend
to trigger them, across hundreds of tenant schemas. Using
learned features, a classifier to predict errors from syntax
is trivial to engineer. This prediction allows the query to
be routed to a different runtime environment that is instru-
mented, equipped with more more memory per node, or
running a more stable version of the database engine.

In figure 3, we show a clustering of error-generating SQL
queries from a large-scale cloud-hosted multi-tenant database
system [4]. Color represents the type of error; there are over
twenty different types of errors ranging from out-of-memory
errors to hardware failures to query execution bugs (the fig-
ure highlights three specific error types). The syntax pat-
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Figure 3: A clustering of error-generating SQL queries from a large-scale cloud-hosted multi-tenant database system. Each
point in the plot represents a query. The color represents the type of error (the figure annotates three specific error types). The
syntax patterns in the workload are complex as one would expect, but there are obvious clusters some of which are strongly
associated with specific error types. The text in the annotated boxes represents the error type query clusters correspond
to. For example, the rectangle on the top right corresponds to queries that resulted in an error while parsing an incorrectly
formated DateTime field and the cluster with queries annotated in green corresponds to queries that generated divide-by-zero
error.

terns in the workload are complex (as one would expect),
but there are obvious clusters, some of which are strongly
associated with specific error types. For example, the clus-
ter at the upper right corresponds to errors raised when the
compiler failed to parse a wrongly formatted DateTime field.

Using an interactive visualization based on these cluster-
ings, the analyst can inspect syntactic clusters of queries
to investigate problems rather than inspecting individual
queries, for two benefits: First, the analyst can prioritize
large clusters that indicate a common problem. Second, the
analyst can quickly identify a number of related examples
in order to confirm a diagnosis. For example, when we first
showed this visualization to our colleagues at Snowflake [4],
they were able to diagnose the problem associated with one
of the clusters immediately.

Resource allocation: The structure of the query is not
sufficient to accurately predict its runtime or memory foot-
print, but it can provide a hint that can be used for load bal-
ancing, scheduling, and as an input for optimization. If we
can coarsely categorize queries as memory-intensive, long-
running, etc. with some degree of accuracy, these labels can

be used as a simple, database-agnostic way to speculatively
allocate resources. Training data is readily available from
the query logs themselves. We consider this application in a
tech report companion to this paper [11] and leave a detailed
analysis for future work.

Query recommendation: The query recommendation
problem can be modeled as a prediction of the next query
the user will submit to the database based on the recent
history of queries [1]. This prediction is then shown to the
user though an appropriate client application to assist in
query authoring. Our framework can generate features that
can be used to train query recommendation models. We
consider this application in a tech report companion to this
paper [11].

Security auditing: To the extent that users’ individual
workloads tend to follow predictable patterns, an anomalous
query may be a sign that a user’s account has been compro-
mised. By formulating a prediction problem that tries to
guess the user that submitted the query from the syntax
alone, we can identify anomalous queries for security audits.
In our framework, the labeler is a simple classifier V → user.



Figure 4: Workload runtime using indices recommended un-
der various time budgets. For most time budgets, the work-
load summaries improve runtimes, even when the embedders
were trained on an unrelated workload (lstmSnowflake and
doc2vecSnowflake).

5. EXPERIMENTS
We consider two applications: Workload summarization

for index selection, and labeling tasks for security audits
and query routing.

5.1 Workload Summaries for Index Selection
The workload summarization task (with respect to index

recommendation) is to find a subset Qsub of a given query
workload Q, such that the set of indices recommended based
on Qsub is similar to the the set of indices recommended
for the overall workload Q. Previous solutions are primar-
ily variants of the approach of Chaudhuri et al. [3], which
uses K-medioids to cluster the queries and selects a witness
query from each cluster. However, the authors emphasize
that a custom distance function should be developed for spe-
cific workloads; our hypothesis is that generic representation
learning approaches obviate the need for these custom dis-
tance functions.

In the Querc framework, this task is offline and does not
require real-time labeling of queries. Instead, we perform
the task as an offline unsupervised learning task. In our
approach, we assign each query to a vector (using a suit-
ably trained embedder), then simply use K-means to find K
query clusters and pick the nearest query to the centroid in
each cluster as the representative subset. To determine K,
we use an intentionally simple method (the “elbow method”
[15]) which runs the K-means algorithm in a loop with in-
creasing K till the rate of change of the sum of squared dis-
tances from centroids plateaus. Although better methods
exist, we highlight the effect of the learned vectors rather
than the choice of K. We present this workload summariza-
tion algorithm in Figure 5.

Setup: Following the evaluation strategy of Chaudhuri et
al.[3], we first run the index selection tool on the entire work-
load Q, create the recommended indices, and measure the
runtime torig for the original workload. We then run use the
workload summarization algorithm to produce a reduced set
of queries Qsub, re-run the index selection tool, create the
recommended indices, and again measure the runtime tsub
of the entire original workload. We use SQL Server 2016

Figure 5: Workload summarization using learned query em-
beddings.

Account
Labeling

User
Labeling

Doc2Vec 78.8% 39%

LSTMAutoencodder 99.1% 55.4%

Table 1: Query Labeling results

and the Database Engine Tuning Advisor, which performs
its own summarization on the input according to the docu-
mentation. We use an m4.large AWS EC2 instance as the
server. We use TPC-H with scale factor 1 as the workload
for comparison with previous results and to interpret the
recommended indices, but we also show how the method
performs when trained on a more complex Snowflake work-
load.

We pass the summarized workload to the tuning advisor,
along with a time budget (a parameter supported by the
tuning advisor). Each experiment involves clearing caches,
generating indices, applying the indices, and running the
full workload. We report the time running the workload;
the time budget specifies the time limit under which the
advisor must return a set of recommendations.

Results: Figure 4 shows the results. The x-axis is the
time budget, and the y-axis is the runtime for the entire
workload after building the recommended indices. For time
budgets less than 3 minutes, the advisor does not produce
any index recommendations for any method, and the run-
time is constant at 1200 seconds. As we relax the time bud-
get, different sets of indices are recommended, each associ-
ated with a separate runtime. The full workload (blue line)
varies dramatically with the time budget, and surprisingly it
gets worse before it gets better. For the summarized work-
loads, the workload is small enough that the runtimes are
constant: Once three minutes have elapsed, the advisor has
found the “optimal” set of indices, and allowing more time
does not change the result.

We evaluate four trained embedders: two methods on
two workloads. The two methods are Doc2Vec and the
LSTMAutoencoder, and the two workloads are TPC-H it-
self, and a separate workload of 500,000 queries from the
Snowflake service. When training the embedder on TPC-H
(doc2VecTPCH and lstmTPCH), the advisor finds close-to-
optimal indices in about three minutes as opposed to the six
minutes the advisor requires on the full workload.

Surprisingly, under tight time budgets, the index recom-
mendations made by the native system can actually hurt
performance relative to having no indices at all! The opti-
mizer chooses a bad plan based on the suboptimal indices.



(a) Runtime for each query under no indices and under in-
dices recommended with a three-minute time budget. For
a few specific queries (all instances of TPC-H Query 18), the
presence of a recommended index results in significantly worse
performance.

0 200 400 600 800
Query ID

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ex
ec

ut
io

n 
tim

e 
(s

ec
s)

Individual query runtimes: Compressed workload outperforms best case
Indices from LSTM-compressed workload
Indices from full workload with unlimited time budget

(b) Runtime for each query under our LSTM-based pre-
compression scheme and the “optimal” indices recommended
by SQL Server. The pre-compressed workload achieves es-
sentially identical performance but with significantly smaller
time budgets.

Figure 6: Comparing runtimes for all queries in the workload under different index recommendations.

In Figure 6a and Figure 6b, we show the sequence of queries
in the workload on the x-axis, and the runtime for each query
on the y-axis. The indices suggested under a 3 minute time
budget result in all instance of TPC-H query 18 (queries
640-680 in Figure 6a) taking much longer than they would
take when run without these indices. The key conclusion is
that pre-compression can help achieve the best possible rec-
ommendations in significantly less time, even though com-
pression is already being applied by the engine itself.

Transfer Learning: Figure 4 also illustrates the ca-
pacity for transfer learning using Querc: When training the
embedder on the snowflake dataset — a completely unre-
lated workload to TPC-H workload in the SQL Server dialect
— the summarized workload still outperforms native SQL
Server for most time budgets. This transfer learning effect
allows us to bootstrap new applications without waiting for
a representative workload to accumulate, and to avoid hav-
ing to repeatedly re-implement brittle parsers and feature
extractors for each new dialect of SQL we encounter.

5.2 Labeling for Security Audits
We consider the conditions under which the learned fea-

tures from query syntax are sufficient to predict username
and customer account, where each customer has many users.
When the predicted username differs from the actual user-
name, we can potentially flag the query for an audit. Pre-
dicting username can help flag queries for security audits,
account and cluster labels can identify misrouted queries.
labels from query syntax using the two embedding methods
described in Section 3 over the Snowflake dataset.

Setup: We use embedders pre-trained on 500000 Snowflake
queries. The experiment itself is run on another dataset of
200000 Snowflake queries labeled with username, account id
and cluster name for the cluster that ran the query. Next
we train classifiers (randomized decision trees) for username
and customer account.

Results: Table 1 shows the results for the labeling ex-
periments. The numbers denote the 10-fold cross validation
score on the respective task. We find that LSTM based
embedder beats Doc2Vec on all tasks. The LSTM method

#queries #users accuracy
73881 28 49.3%
55333 10 37.4%
18487 46 31.8%
5471 21 96.2%
4213 6 58.5%
3894 12 99.7%
3373 9 99.8%
2867 6 99.8%
1953 15 89.1%
1924 4 98.1%
1776 9 95.2%
1699 5 99.8%
1108 12 98.2%

Table 2: Top accounts with user prediction accuracy.

achieves near perfect accuracy when predicting the customer
account, which is because it automatically incorporates sig-
nal from the schema, and different customers use primarily
different schemas (there are instances of shared schemas, but
that is the less common case). The method was completely
generic and knows nothing about schemas or queries. For
user prediction, the task is more difficult, and the overall ac-
curacy is lower at 55%. Upon further analysis we found that
the user labeling task has > 95% accuracies for a majority
of accounts (Table 2). The accounts that had poor accura-
cies for user labeling had one distinctive property: multiple
users running the exact same query, making the users nearly
indistinguishable. In the sample of workload that we were
working with, there were two accounts that had a number of
repetitive queries by different users (for instance, 69% per-
cent of the 74000 queries in an account had more than one
user label), and these two accounts also covered around 65%
of the total queries, bringing down the overall accuracy of
classifiers.

5.3 Error Prediction
In figure 3 we showed how the syntactic patterns in query



workload correlate with errors. In this section, we perform
a more quantitative experiment wherein we train a classifier
to predict whether a query will raise an error or not. Such
classifiers can be used in production to help quarantine error
prone queries and run them on an instrumented debugging
platforms.

Classifying multiple errors.
Setup: In this experiment we train a classifier which can

predict an error type (or no error) given an input Snowflake
query. We use LSTMAutoencoder based embedder pre-
trained on 500000 Snowflake queries. The classifier itself
is trained using a dataset of 100000 queries from Snowflake.
Next, we randomly split the learned query vectors (and cor-
responding error codes) into training (85%) and test (15%)
sets. We use the training set to train a classifier. We present
the performance of this classifier on the test set.

Error Code Precision Recall f1-score # queries
-1 0.986 0.992 0.989 7464
604 0.878 0.927 0.902 1106
606 0.929 0.578 0.712 45
608 0.996 0.993 0.995 3119
630 0.894 0.864 0.879 88
2031 0.765 0.667 0.712 39
90030 1.000 0.998 0.999 1529
100035 1.000 0.710 0.830 31
100037 1.000 0.417 0.588 12
100038 0.981 0.968 0.975 1191
100040 0.952 0.833 0.889 48
100046 1.000 0.923 0.960 13
100051 0.941 0.913 0.927 104
100069 0.857 0.500 0.632 12
100071 0.857 0.500 0.632 12
100078 1.000 0.974 0.987 77
100094 0.833 0.921 0.875 38
100097 0.923 0.667 0.774 18

Table 3: Performance of classifier trained using query em-
beddings for different error types (-1 signifies no error).

Results: We summarize the performance of the classifier
on all error classes with more than 10 queries each in Ta-
ble 3. The classifier performs well for the errors that occur
sufficiently frequently, suggesting that the syntax alone can
indicate queries that will generate errors. This mechanism
can be used in an online fashion to route queries to specific
resources with monitoring and debugging enabled to diag-
nose the problem. Offline, query error classification can be
used for forensics; it is this use case that was our original
motivation.

Although individual bugs are not difficult to diagnose,
there is a long tail of relatively rare errors; manual inspec-
tion and diagnosis of these cases is prohibitively expensive.
With automated classification, the patterns can be presented
in bulk.

Classifying out-of-memory errors.
Setup: In this experiment, we compare the classification

performance of our method for one type of error consid-
ered a high priority for our colleagues — queries running
out of memory (OOM). We compare to a baseline heuristic
method developed in collaboration with Snowflake based on

their knowledge of problematic queries. We use a workload
of 4491 Snowflake queries with a mix of queries with and
without OOM errors to train a classifier to predict OOM
errors. Following the methodology in the previous classi-
fication task, we use the pre-trained embedder to generate
query representations for the workload, randomly split the
learned query vectors into training (85%) and test (15%)
sets, and present the performance on the test set.

Heuristic Baselines: We interviewed our collaborators
at Snowflake and learned that the presence of window func-
tions or joins between large tables in the queries tend to
be associated with OOM errors. We implement four näıve
baselines that looks for the presence of window functions or
a join between at least 3 of the top 1000 largest tables in
Snowflake. The first baseline looks for the presence of heavy
joins, the second baseline looks for window functions, and
the third baseline looks for the presence of either one of the
indicators: heavy joins or window functions, and the fourth
baseline looks for the presence of both heavy joins and win-
dow functions. The baselines predicts that the query will
run out of memory if the corresponding indicator is present
in the query text.

Results: Table 4 shows the results. We find that our
method significantly outperforms the baseline heuristics, with-
out requiring any domain knowledge or custom feature ex-
tractors. We do find that the presence of heavy joins and
window functions in the queries are good indicators of OOM
errors (specially if they occur together) given the precision
of these baselines, however, the low recall suggests that
such hard-coded heuristics would miss a other causes of
OOM errors. Querc obviates the need for such hard-coded
heuristics. As with any errors, this mechanism can be used
to route potentially problematic queries to clusters instru-
mented with debugging or monitoring harnesses, or poten-
tially clusters with larger available main memories. We see
Querc as a component of a comprehensive scheduling and
workload management solution; these experiments show the
potential of the approach.

Method Precision Recall f1-score
Contains heavy joins 0.729 0.115 0.198
Contains window funcs 0.762 0.377 0.504
Contains heavy joins
OR window funcs

0.724 0.403 0.518

Contains heavy joins
AND window funcs

0.931 0.162 0.162

LSTMAutoencoder 0.983 0.977 0.980
Doc2Vec 0.919 0.823 0.869

Table 4: Classifier performance for predicting OOM errors.

6. FUTURE WORK
Other methods: There are a variety of other methods

for learning representations of text that we do not evaluate
in this paper. Our goal is not to identify the best possible
representation learning approach but rather to show that
these methods can compete with and outperform classical
approaches that rely on task-specific heuristics and feature
engineering (extracting JOIN clauses, counting the number
of attributes, etc.), and to organize the methods into a co-
herent system architecture.



Alternative methods can be roughly categorized into non-
neural-network based methods and neural-network -based meth-
ods. The non-neural-network-based methods, including non-
negative matrix factorization (NMF), bag-of-words repre-
sentations, and LDA [22] have been shown to be less effec-
tive than neural-network-based-methods in a variety of con-
texts [25, 19]. Apart from the methods considered in this
paper, there are more recent neural-network-based methods
using Convolutional Neural Networks (CNNs) adapted for
text data. However, Yin et al. [34] showed that RNN based
methods (e.g., LSTMs) perform well and are robust in a
broad range of tasks when compared to CNNs. However,
we plan to extend the current work to include a rigorous
comparison of the techniques not covered in this paper.

Publish pre-trained models: The results in Section 5
demonstrate that the proposed framework in this paper has
potential to use pre-trained models on generic workloads to
aid analytics for previously unseen query. In future work,
we will build this framework as a service which is accessible
by third parties. Given the workloads that we have access
to from Snowflake [4], such a service could be really benefi-
cial for researchers who do not have access to massive query
workloads.

Other applications: We touched upon the potential util-
ity of our framework for a variety applications in Section 4,
future work would explore all of the applications that were
not a part of experimental evaluation in this paper.

7. CONCLUSIONS
We presented the architecture for Querc, a database-agnostic

workload analytics service that captures the structural and
schema patterns present in the query workload automati-
cally, largely eliminating the need for the specialized syn-
tactic feature engineering that has motivated a number of
papers in the literature. The proposed architecture provides
a new way of organizing a variety of database administration
and user productivity tasks, and provides a mechanism by
which to automatically adapt database operations to spe-
cific query workloads. Our evaluation of this architecture
showed that our general framework outperformed or was
competitive with previous approaches that required special-
ized feature engineering, and also admitted simpler classi-
fication algorithms because the inputs are numeric vectors
with well-behaved algebraic properties rather than result of
arbitrary user-defined functions for which few properties can
be assumed. The use of transfer learning in Querc allows
workload analytics to be SQL dialect independent and en-
ables the capability to bootstrap new analytics tasks and
avoid re-implementing brittle codes paths.
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