
Selectivity Computation for In-Memory Query Optimization

Jun Hyung Shin
University of California Merced
jshin33@ucmerced.edu

Florin Rusu
University of California Merced

frusu@ucmerced.edu

Alex Şuhan
MapD Technologies, Inc.

alex@mapd.com

Selectivity estimation for complex predicates. Con-
sider the following SQL query:

SELECT R.A, S.B, R.C, R.D

FROM R, S, T

WHERE R.A = S.A AND S.B = T.B AND

R.B = x AND R.C BETWEEN (y1, y2) AND

(R.D = z1 OR R.D > z2) AND udf(R.B,R.C,R.D) > w

The tuples from table R that participate in the join are
selected by a complex predicate σB,C,D(R), over three at-
tributes with exact, range, and OR conditions, and a user-
defined function udf. When computing the optimal execu-
tion plan, i.e., join ordering, the query optimizer has to es-
timate the selectivity of σB,C,D(R). When available, this is
done with precomputed synopses, e.g., histograms, samples,
sketches, stored in the metadata catalog. Otherwise, an ar-
bitrary guess is used, e.g., for udf. Synopses are typically
built for a single attribute and assume uniformity and/or
independence when they are combined across multiple at-
tributes. These are likely to miss correlations between at-
tributes and result in inaccurate estimates which produce
highly sub-optimal query execution plans.

In-memory databases. Database systems for modern
computing architectures rely on extensive in-memory pro-
cessing supported by massive multithread parallelism and
vectorized instructions. GPUs represent the pinnacle of
such architectures, harboring thousands of SMT threads
which execute tens of vectorized SIMD instructions simulta-
neously. MapD (https://www.mapd.com/), Ocelot (https:
//bitbucket.org/msaecker/monetdb-opencl), and CoGaDB
(http://cogadb.dfki.de/) are a few examples of modern in-
memory databases with GPU support. They provide rela-
tional algebra operators and pipelines for GPU architectures
that optimize memory access and bandwidth. However, they
maintain the same synopses approach to query optimization
as traditional disk-based databases.

Query optimization with exact selectivities. We in-
troduce a novel query optimization paradigm for in-memory
and GPU-accelerated databases—instead of estimating pred-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

Query
Optimizer

Query
Engine

Selectivity
Estimator

Optimal plan

Selectivity
plan

Materialized
partial result1 2

Exact selectivity3

4

Figure 1: Exact selectivity computation.

icate selectivities, they are computed exactly through queries
during the optimization. For the given query example, the
optimizer instructs the execution engine to first perform the
selectivity sub-query:

SELECT R.A, R.C, R.D

FROM R

WHERE R.B = x AND R.C BETWEEN (y1, y2) AND

(R.D = z1 OR R.D > z2) AND udf(R.B,R.C,R.D) > w

in order to compute the cardinality of σB,C,D(R) exactly.
This value is used together with the cardinalities of S and
T to compute the best join order in the optimal query plan.
Moreover, the result of the selectivity sub-query is temporar-
ily materialized and reused instead of R in the optimal exe-
cution plan. The complete process is depicted in Figure 1.

While it is clear that the plan computed using exact selec-
tivities is better – or at least as good – the impact on query
execution time depends on the ratio between the execution
time for the selectivity sub-query and the original plan. The
assumption we make is that the sub-query execution is rel-
atively negligible—valid for in-memory databases. We have
to consider two cases. First, if the new query plan is im-
proved by a larger margin than the sub-query time, the total
execution time is reduced. We argue that exact selectivities
are likely to achieve this for queries over many tables and
with complex predicates. In the second case, the optimal
query plan, i.e., join order, does not change even when se-
lectivities are exact. Materialization minimizes the overhead
incurred by the sub-query through subsequent reuse further
up in the plan. In-memory databases prefer materialization
over pipelining due to better cache access.

Our initial prototype implementation on top of the open-
source MapD database proves the benefits of computing ex-
act selectivities. We achieve up to 32X faster execution time
for TPC-H scale 50 queries, while incurring at most 30 mil-
liseconds overhead.


