
Data Partitioning for Parallel Entity Matching
Toralf Kirsten, Lars Kolb, Michael Hartung, Anika Groß, Hanna Köpcke, Erhard Rahm

Department of Computer Science, University of Leipzig
04109 Leipzig, Germany

{tkirsten,kolb,hartung,gross,koepcke,rahm}@informatik.uni-leipzig.de

ABSTRACT
Entity matching is an important and difficult step for integrating
web data. To reduce the typically high execution time for match-
ing we investigate how we can perform entity matching in parallel
on a distributed infrastructure. We propose different strategies to
partition the input data and generate multiple match tasks that can
be independently executed. One of our strategies supports both,
blocking to reduce the search space for matching and parallel
matching to improve efficiency. Special attention is given to the
number and size of data partitions as they impact the overall
communication overhead and memory requirements of individual
match tasks. We have developed a service-based distributed infra-
structure for the parallel execution of match workflows. We eva-
luate our approach in detail for different match strategies for
matching real-world product data of different web shops. We also
consider caching of input entities and affinity-based scheduling of
match tasks.

1. INTRODUCTION
Entity matching or entity resolution is the process of identifying
entities (i.e., data instances, records) referring to the same real
world object. This task is of critical importance for data integra-
tion and especially challenging for web data. Hence, numerous
approaches, frameworks and tools for entity matching have been
proposed and developed in the recent past [1, 6, 11, 14]. Typi-
cally, the similarity between entities is determined by applying
several matchers (e.g., comparing attribute values with some
string similarity measure) and combining the individual similarity
values to derive a match decision for a pair of entities. For exam-
ple, two product entities may be assumed to match if both their
product titles and product descriptions are very similar. In some
systems, the combination of matcher similarities is determined by
training-based machine learning approaches such as decision trees
[13].

The execution of such match strategies poses typically high re-
source (CPU, memory) demands. A straight-forward approach
evaluates the different matchers on the Cartesian product of input
entities, i.e., it implies a quadratic complexity of O(n2) for finding

matches in n input entities. Such an approach obviously has se-
vere scalability restrictions for larger sets of entities and is rarely
affordable for online data integration, e.g., within data mashups.
A recent performance evaluation of learning and non-learning
entity resolution approaches [12] revealed substantial efficiency
problems of current techniques. For matching subsets of the bib-
liographic datasets DBLP and Google Scholar (2,600 vs. 64,000
objects) evaluating the Cartesian product took up to 75 h for a
single attribute matcher. The execution times increase even more
if matching on multiple attributes is applied.

Blocking and parallel matching are two options to improve the
efficiency of entity matching. Blocking avoids the evaluation of
the complete Cartesian product of entities but reduces the search
space for entity matching [2]. Typically this is achieved by some
kind of semantic partitioning by grouping similar entities within
clusters (or “blocks”) and by restricting entity matching to entities
from the same block. For example, one could partition products
by manufacturer and compare only products with the same manu-
facturer during entity matching.
Parallel matching aims at improving performance by splitting a
match computation into several match tasks and executing these
tasks in parallel, e.g., on multi-core servers or on a cloud infra-
structure. Surprisingly such a parallel matching has received little
attention so far and will be studied in this paper. A key prerequi-
site for effective parallel matching is the suitable partitioning of
the input entities which influences the processor utilization, com-
munication overhead and load balancing. Furthermore, entity
matching is typically memory-sensitive so that the definition of
match tasks should consider the available memory that is typi-
cally shared among several cores. Furthermore, it is non-trivial to
effectively combine blocking and parallelization since blocking
may result in blocks of largely different size.
Our contributions are as follows:

• We propose two general partitioning strategies for generating
entity match tasks that can be executed in parallel. The first
approach is based on the Cartesian product of entities while
the second, more sophisticated strategy applies a combina-
tion of blocking and parallelization. Both partitioning ap-
proaches aim at avoiding memory bottlenecks and load im-
balances for the resulting match tasks. The partitioning
schemes are applicable to different match strategies, e.g.
combining several matchers.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date ap-
pear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
Conference on Very Large Data Bases, September 13-17, 2010, Singa-
pore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
© 2010 VLDB Endowment 2150-8097/10/09... $10.00

• We present a flexible, service-based infrastructure for paral-
lel entity matching on different hardware configurations.
Caching and affinity-based scheduling of match tasks are
supported to reduce communication requirements.

• We implemented the proposed partitioning strategies and
infrastructure and perform a comprehensive evaluation for

matching real-world product data. The results show the ef-
fectiveness and scalability of the proposed approaches for
different match strategies.

In the next section, we introduce some preliminaries on entity
matching and the assumed computing environment. Section 3
describes the two strategies for partitioning the input data. Section
4 outlines the match infrastructure of our approach. Section 5
describes the performed experiments and evaluation. We discuss
related work in Section 6 and conclude with a summary and out-
look.

2. PRELIMINARIES
The input of entity matching consists of a set of entities. Entities
are described by attributes, such as product name, description,
manufacturer or product type. In this paper we focus on the com-
mon case where all entities to be matched reside already in a sin-
gle dataset. The approaches can be extended to match entities
from different sources as we will briefly discuss in Section 3.3.
Entity matching determines a set of correspondences (e1, e2, sim)
indicating the equivalence similarity (from the interval [0,1]) for
pairs of entities e1 and e2. All entity pairs with a similarity exceed-
ing a specific threshold are assumed to match.
We assume that match results are determined according to some
entity matching workflow as supported by our framework FEVER
[12]. Entity matching workflows either evaluate the Cartesian
product of input entities or first apply a blocking operator to re-
duce the search space for matching. Blocking results in a set of
blocks / clusters of related entities and, ideally, matching can be
restricted to comparing entities of the same block (for an excep-
tion see Section 3.2).
Entity matching itself is specified by a matching strategy entail-
ing the execution of one or several matchers, e.g., the similarity
computation for a specific attribute and similarity measure. There
are many possibilities to combine the results of several matchers.
We assume one of the approaches of FEVER, i.e., the combina-
tion is either specified manually (e.g., intersection of matches) or
determined by a training-based model derived by a machine learn-
ing method such as SVM, decision tree or logistic regression. In
this paper we largely treat the match strategies as black boxes.
Our approach for parallel matching focuses on the partitioning the
input data and defining multiple match tasks on input partitions
that can be executed in parallel. This kind of data parallelism is
very generic and can be utilized for different match strategies. In

our evaluation, we will consider two match strategies with several
matchers.
The parallel match execution uses a given computing environment
CE = (#nodes, #cores, max_mem) consisting of #nodes loosely
coupled computing nodes each providing #cores cores (proces-
sors) and a maximum main memory max_mem to be shared by the
cores of a node. For simplicity we assume homogeneous nodes
with the same number of cores and memory size. However, the
model can easily be extended for heterogeneous configurations.
Furthermore, we assume that each node can equally access the
input data, e.g., from a shared server (shared disk) or by replicat-
ing the input data among the nodes. This data placement enables a
high flexibility for scheduling match tasks and thus for dynamic
load balancing. As we will discuss in Section 4, input data may
also be cached in main memory to improve performance.

3. PARTITIONING STRATEGIES
To enable parallel entity matching on multiple nodes and cores,
we first apply a partitioning strategy to partition the input data
source and to generate multiple match tasks that can be independ-
ently executed. As shown in Figure 1, we distinguish two differ-
ent partitioning strategies: (1) size-based partitioning to evaluate
the Cartesian product for entity matching and (2) blocking-based
partitioning to combine blocking with parallel matching. Strategy
(2) consists of a separate phase called partition tuning to deal with
large block size differences. Both partitioning approaches end in a
step to generate match tasks that compare entities of the input
partitions. In our infrastructure (Section 4) the match tasks are
maintained in a central task list and are executed in parallel on the
computing nodes. The union of the individually determined match
results finally gives the complete result.
In the following we describe the two partitioning approaches in
more detail for the case of a single input dataset. Finally, we
briefly discuss how we can deal with several input datasets to be
matched.

3.1 Size-based Partitioning
Size-based partitioning is the simplest approach and is applied for
evaluating the complete Cartesian product of input entities. The
goal is to split the input entities into equally-sized partitions so
that each match task has to match two such partitions with each
other. This approach is thus very simple and the equally sized
partitions promise a good load balancing and scalability to many
nodes.

Input
Source

Match Task
Generation

M1

M2

Mt

...

Size-based
Partitioning

Blocking Partition
Tuning

Parallel
Matching

Match
Result

source-specific
blocking key

c

max. partition size

min./max.
partition size

Result
Aggregation

MT2

MT1

…

Integrated
Source Match Task

Generation

Partitioning Strategies

Task
Queue

Input
Source

...

instance data
integration

Figure 1: Match Workflows with Partitioning Strategies and Parallel Matching

The main consideration is to choose a suitable partition size m
which also determines the number of partitions p (p=⌈n/m⌉ for n
input entities) and the number of match tasks (see below). The
number of partitions and match tasks should clearly be higher
than the number of available cores in the system. On the other
hand, the partition size should not be too small since otherwise
the overhead for communication and starting/terminating match
tasks would be comparatively high compared to the actual match
work.
The partition size also influences the memory requirements of a
match task and is thus restricted by the available memory. This is
because entity matching typically takes place in main memory so
that evaluating the Cartesian product of two partitions of size m
leads to memory requirements of O(m2). The exact memory re-
quirements of a match task depend on the chosen match strategy
and implementation, e.g., which matchers are executed, whether
or not a machine learning model is applied, and the number of
intermediate correspondences. Assuming an average memory
requirement of cms per entity pair for match strategy ms (for the
correspondences/similarity values etc.), the memory requirement
per match task is about cms·m2. These memory requirements have
to be compared with the available memory per core (or per paral-
lel thread) which can be approximated by max_mem / #cores for
our model of the computing environment. The memory-restricted
partition size m can be estimated by)mscores·cmax_mem/(#≤m .
A memory-efficient match strategy may only consume about 20 B
per entity pair. For max_mem=2 GB and #cores=4 we could use
500 MB per match task and could thus match partitions of maxi-
mal size 5,000500MB/20B ==m entities. By contrast, a memory-
consuming match strategy, such as typical for learner-based ap-
proaches, might require cms =1kB. In this case the maximum parti-
tion size would decrease to only 700500MB/1kB ≈=m entities. In
our evaluation, we will experimentally determine the impact of
different partition sizes.
The generation of match tasks is straight-forward for size-based

partitioning. To evaluate the Cartesian product the entities of each
partition need to be compared with all entities of the same parti-
tion as well as with the entities of all other partitions. Figure 2
illustrates the resulting match tasks for p partitions (P1, …, Pp);
the cross signs indicate the two input partitions per match task.
For p partitions, size-based partitioning generates p+(p(p-1)/2)
match tasks, i.e., we match two partitions Pi and Pj if i≤j.

X

X

…

X

P2

X

X

…

X

X

P1

X…Pp-1

……

Input Set

Input
Set

XX…Pp

P2

P1

PpPp-1…

X

X

…

X

P2

X

X

…

X

X

P1

X…Pp-1

……

Input Set

Input
Set

XX…Pp

P2

P1

PpPp-1…

3.2 Blocking-based Partitioning
Figure 2: Match task generation for size-based partitioning Evaluating the Cartesian product does not scale and is thus only

feasible for small-sized match problems. For larger match prob-
lems the use of blocking becomes necessary to reduce the scope
for matching. Our second partitioning strategy deals with the re-
sults of a blocking step and uses a partition tuning step before the
generation of match tasks.
Blocking entails a logical partitioning of the input entities such
that all matching entities should be assigned to the same output
partition, also called cluster or block. By restricting the match
comparisons to the entities of the same block the match overhead
can often drastically be reduced. Our partitioning strategy is
largely independent of the particular blocking approach chosen,
e.g., Canopy Clustering [15] or Sorted Neighborhood [9]. The
partitioning criterion is application-dependent and should enable
matching entities assigned to the same block. In the simplest case,
one may use a range partitioning on specific attributes for block-
ing, e.g., to partition products by product type or manufacturer, or
to partition publications by publication year or publication venue.
Unfortunately, due to missing data values or other data quality
issues in real-world data (e.g., products without product type in-
formation) it may not always be possible to assign entities to a
unique block. We therefore assign such entities to a dedicated
Miscellaneous (misc) block. Entities of this block have to be
matched against the entities of all blocks.
The output blocks may largely differ in their size depending on
the entity values and the applied blocking approach. Hence, sim-
ply using one match task per block would mostly not result in an
effective parallel matching but poor load balancing (skew effects)
or/and high communication overhead. On one hand, large blocks
could dominate the execution time for matching and require more
memory than available. On the other hand, very small blocks
would result in tiny match tasks with a relatively high communi-
cation and scheduling overhead.
To deal with these problems we therefore perform a partition
tuning to split or combine blocks:

• First, we determine all large blocks for which the mem-

X

X

Blu-
ray

X

X

2½

X

X

3½ 2

X

misc

X

X

DVD-
RW

CD-
RW

HD-
DVD

X

X

X

3½ 1

3½

Drives & Storage

DVD-RW

CD-RW

misc

HD-DVD

Blu-ray

3½ 2

3½ 1
3½

Drives &
Storage

2½

X

X

Blu-
ray

X

X

2½

X

X

3½ 2

X

misc

X

X

DVD-
RW

CD-
RW

HD-
DVD

X

X

X

3½ 1

3½

Drives & Storage

DVD-RW

CD-RW

misc

HD-DVD

Blu-ray

3½ 2

3½ 1
3½

Drives &
Storage

2½

Drives & Storage (3,600)

type = ‚3½‘ (1,300)

type = ‚2½‘ (600)

type = ‚Blu-ray‘ (200)

type = ‚HD-DVD‘ (200)

type = ‚misc‘ (600)

type = ‚Blu-ray‘ ∨
type = ,HD-DVD‘∨
type = ,CD-RW‘ (600)

type = ‚3½‘ 1 (700)

type = ‚3½‘ 2 (600)

type = ‚CD-RW ‘ (200)

type = ‚DVD-RW‘ (600)

Figure 3: Blocking and partition tuning example (left) and corresponding match task generation (right)

ory requirements exceed the maximal size according to
the estimation described in Section 3.1. These blocks
are then split into several equally sized partitions obey-
ing the size restriction. Match task generation has to
consider that all these sub partitions have to be matched
with each other.

• Second, we aggregate all smaller blocks (e.g., with a
size below some fraction of the maximal partition size)
into larger ones. The reduction in the number of parti-
tions results in fewer match tasks and thus a reduced
communication and scheduling overhead. On the other
hand, by comparing all entities of the aggregated blocks
with each other we may introduce some unnecessary
comparisons compared to the original blocking. In our
evaluation we will study this performance tradeoff.

For match task generation we need to distinguish three different
cases:

• All normal (non-misc) blocks that have not been split
and aggregated result in one match task that matches the
entities of the block with each other.

• Blocks that have been split into k sub-partitions result
into k+(k·(k-1)/2) match tasks to match these sub-
partitions with each other.

• The misc block (or its sub-partitions in case it had to be
split) has to be matched with all (sub-) partitions.

The example in Figure 3 (left) illustrates blocking and partition
tuning for a small set of 3,600 Drives & Storage products. We
first block the products by their product type. The resulting blocks
vary in their size from 200 to 1,300. The misc block is assumed to
hold 600 products with unknown product type. For a maximal
(minimal) partition size of 700 (210) entities, partition tuning
would split the largest partition (‘3½’ drives) into two partitions
and aggregate the smallest blocks ‘Blu-ray’, ‘HD-DVD’ and ‘CD-
RW’ into one partition of size 600. The resulting match tasks are
shown in Figure 3 (right). For well-sized “non-misc” blocks we
only compare the entities within this partition within one match
task (e.g., product types ‘2½’ and ‘DVD-RW’). Similarly, we
match the aggregated partition within one match task. The two
sub-partitions of the split block of ‘3½’ entities result in three
match tasks. Finally, the misc partition is matched against all
other partitions resulting in six match tasks. Hence, we generate a
total of 12 match tasks for the example. A size-based partitioning
would have created six partitions and 6+6·5/2=21 match tasks.

3.3 Matching Multiple Input Sources
The proposed approach for partitioning and entity matching can
also be applied when data from two or more input sources should
be matched. A straight-forward approach to deal with this situa-
tion is to first take the union of the input sources and apply the
proposed approaches for partitioning and parallel matching on the
combined result (as indicated in Fig. 1). In the case of heteroge-
neous input schemas we first have to align (match) differently
named but equivalent attributes, either manually or with the help
of a schema matching tool. In more complex cases we may also
have to apply some data transformations (e.g., to split complex
address attribute into several simpler attributes) to ensure the
comparability of match attributes in the combined data source.
In the special case when the input sources are duplicate-free we
can utilize this for a reduced match effort by not matching entities

of the same source with each other. For example, for evaluation
the Cartesian product we would partition both sources into equal-
ly sized partitions and match each of the n partitions of the first
with each of the m partitions of the second source (m*n match
tasks compared to (m+n)*(m+n-1)/2 tasks for a single, combined
source). We can also apply blocking-based partitioning for two
inputs by applying the same blocking approach to both sources
and only match corresponding blocks with each other; entities in
misc blocks need to be matched with all other blocks of the other
source. For tuning the block sizes we can employ the same ap-
proaches as discussed in the previous subsection.

4. MATCH INFRASTRUCTURE
We implemented a distributed service-based infrastructure to
execute entity matching workflows in parallel according to the
proposed strategies. Figure 4 shows the architecture of the system.
It consists of different kinds of services, namely a workflow ser-
vice, a data service, and multiple match services, running on sev-
eral loosely coupled nodes (servers or workstations). The work-
flow service is the central access point of the infrastructure man-
aging the execution of match workflows. Since we currently re-
strict parallel processing on matching, we use the workflow ser-
vice to perform the pre- and post-processing including blocking
and partitioning of the input data as well as merging the final
match result. The workflow service initially generates all match
tasks and maintains them in a common task list for scheduling
them among the match services. The input data, blocking output
and match results are stored and managed by a data service. We
currently use a central DBMS server for this purpose. All services
are implemented in Java and use the Remote Method Invocation
(RMI) protocol for communication.
Match services run on dedicated nodes and can concurrently exe-
cute several match tasks within threads (one match task per
thread). The number of threads may be set to the number of cores
but can also be chosen differently. Each match service can utilize
a partition cache to temporarily store entity partitions. Cached
partitions can be used by all threads of a match service to reduce
the amount of communication for repeatedly fetching the same
data from the data service. The cache size per match service is
configured by the maximal number of cached partitions c; c=0
means that caching is disabled. The caches are managed accord-
ing to a LRU replacement strategy. That is when a newly fetched

Figure 4: Service-based infrastructure for

parallel entity matching

partition is to be stored in a full cache, it replaces the partition
with the oldest access time.
The workflow service is responsible for assigning unprocessed
match tasks in its task list to the match threads for execution.
When partition caching is enabled, we use a simple strategy to
perform an affinity-based scheduling aiming at assigning match
tasks to match services where needed partitions are already
cached. To maintain an approximate cache status at the workflow
service, match services report which partitions they cache when-
ever a match task is completed. By sending the cache information
together with the match results of a match task the cache status at
the workflow service is maintained without additional messages.
After the completion of a match task is reported, the workflow
service assigns a new match task to the respective (preferably a
task for which needed partitions are cached at the thread’s match
service). This task selection and assignment is repeated as long as
there are still open tasks to execute. This simple scheme supports
a distributed match processing with dynamic load balancing on
the one hand and locality of match processing to exploit caching
on the other hand. Furthermore, the scheduling approach can eas-
ily cope with heterogeneous nodes (different speeds, different
number of cores/threads).
New match services can be added on demand by starting the new
service on a dedicated physical machine and informing the work-
flow service about the new match service. Similarly, match ser-
vices can be taken out from match processing. This makes the
infrastructure dynamic and adaptable, i.e., depending on the com-
plexity of the match problem we can adjust the number of used
match services. The architecture is also robust against failures of
match services. If a match service does not respond anymore, the
workflow service can assign the match tasks of the respective
service among the remaining services.

5. EXPERIMENTS
We conducted a series of experiments to evaluate the effective-
ness of the proposed partitioning strategies for parallel entity
matching for different hardware configurations, match problems
and match workflows. After a description of the experimental
setup we first focus on parallel matching using several cores of a
single server. We then analyze the scalability of parallel matching
for multiple nodes. Finally, we evaluate the impact of caching on
execution times.

5.1 Experimental setup
We ran our experiments on up to six nodes with four cores. Each
node has an Intel(R) Xeon(R) W3520 4x2.66GHz CPU, 4GB
memory, and runs a 64-bit Debian GNU/Linux OS with a 64-bit
JVM. Both the workflow service and the data service run on a
dedicated server so that up to four nodes (16 cores) are used for
parallel match processing. We use 3 GB main memory (heap size)
per node for matching. Following the notation of Section 2.1, the
setup can be described with CE = (4, 4, 3GB). In one experiment,
we vary the number of threads from 1 to 8. We initially disable
partition caching (c=0) but study the effect of caching in Section
5.4.
The main input dataset for entity matching contains about
114,000 electronic product offers from a price comparison portal.
Each product is described by 23 attributes. In addition to this
large scale match problem we also use a representative subset of
20,000 products to define a smaller-scale match task.

The first match strategy (WAM) executes two matchers (edit
distance on product title, TriGram similarity on product descrip-
tion) and calculates a weighted average of the two matcher re-
sults. The second match strategy (LRM) executes three matchers
(Jaccard, TriGram, and Cosine attribute similarity) and uses the
machine learning approach Logistic Regression to combine their
results. The WAM strategy applies an internal optimization to
reduce memory requirements by eliminating all correspondences
of a matcher with a similarity too low for reaching the combined
similarity threshold. For example, if matching entity pairs need to
have an average similarity of at least 0.75 for two matchers, all
correspondences with a single-matcher similarity below 0.5 can
be discarded since the average similarity threshold cannot be
reached anymore.
In this study we do not evaluate matching effectiveness but focus
on efficiency, in particular execution times for matching. In
[12,13] we have evaluated the effectiveness of different match
strategies for a similar match problem on product entities and
found learner-based approaches to be generally more effective
than simple matcher combinations such as WAM when several
matchers on different attributes need to be combined .

5.2 Parallel matching on a single node
We first analyze the impact of the number of treads as well as of
the maximal and minimal partition size for the small match prob-
lem on one node.
For a 4-core node we consider between 1 and 8 threads for match-
ing on one node. We evaluate the Cartesian product (size-based
partitioning) for the small match problem using a conservative
partition size of 500 entities. Figure 5 shows the resulting execu-
tion time and speedup for both match strategies WAM and LRM.
We observe that our size-based partitioning enables an effective
parallel matching resulting in improved execution times. For one
and two threads the two match strategies perform similarly but for
more threads the memory-optimized WAM strategy outperforms
LRM because more threads reduce the amount of memory per
match task. WAM also benefits more from parallel matching with
an almost linear speedup for up to 4 threads (factor 3.5) while
LRM achieves a speedup of up to 2.5. WAM can benefit only
marginally from more than 4 threads and LRM not at all. Hence
we will use at most 4 threads (= #cores) per node in our further
experiments.
Next we evaluate the influence of the (maximum) partition size
for evaluating the Cartesian product with size-based partitioning
introduced in Section 3.1. Figure 6 shows the execution time as
well as the consumed memory for partition sizes between 100 and
1000 entities (using 1 node running 4 match threads). We observe
that increasing the partition size from 100 to 200 strongly im-
proves execution times especially for LRM (factor 2). This is
mainly because of the strong reduction of the number of match
tasks and thus for communication and scheduling overhead. Fur-
thermore, larger match tasks better utilize the available processing
capacity. Further increasing the partition size leads to additional
execution time improvement for WAM. For LRM, on the other
hand, the memory consumption (and the amount of paging I/O)
grows with larger partitions and execution times start to deterio-
rate for more than 500 entities per partition. For our further ex-
periments we use the favorable maximal partition sizes of 500 for
LRM and 1,000 for WAM.

Figure 8: Speedup small scale match problem

As pointed out in Section 3.2, we also need to consider a minimal
partition size in the case of blocking-based partitioning. We ana-
lyzed the influence of this parameter for blocking on the manufac-
turer attribute. Again the evaluation was done for the smaller
match problem on a single node executing 4 parallel threads (par-
tition size=1000/500). Figure 7 shows the execution times for the
two match strategies for minimal partition sizes between 1 (i.e.,
no merging of small partitions) and 700, as well as the number of
match tasks. We observe that merging small partitions is espe-
cially effective for combining the smallest blocks as it signifi-
cantly reduces the number of match tasks and the associated
overhead. These improvements are achieved for both match
strategies but are especially pronounced for LRM. LRM suffers
from a much higher number of match tasks than WAM (and thus
a higher execution time) because of the smaller maximal partition
size. For the remaining experiments we choose beneficial mini-
mum partition sizes, namely 200 for WAM and 100 for LRM.

5.3 Parallel matching on multiple nodes
To analyze the scalability of our partitioning strategies and infra-
structure we now evaluate parallel matching for up to 4 nodes and
16 cores (threads). Particularly, we perform experiments for the
small as well as for the large match problem applying the partition
sizes determined in the previous experiments.
Figure 8 shows execution times and speedup results for up to 16
cores for both size-based partitioning (continuous lines) and
blocking-based partitioning (dashed lines) with the two match
strategies on the small-scale problem. The configurations up to 4
threads refer to the use of 1 node, for up to 8 threads to 2 nodes
and so on. We observe that execution times scale linearly for up

to 16 cores for both partitioning strategies and both match strate-
gies. As expected, the use of blocking improves execution time.
Our blocking-based partitioning with its partition tuning proves to
be very effective since we achieve the same high speedup values
(of up to 14 for 16 cores) than for the simpler size-based partition-
ing on the Cartesian product. LRM is consistently less efficient
than WAM due to its increased memory consumption and the
larger number of match tasks.

Figure 5: Speedup per multiproces-
sor node

Figure 6: Influence of the maxi-
mum partition size

Figure 7: Influence of the mini-
mum partition size

Figure 9 shows the performance of blocking-based partitioning
for matching the full dataset of 114,000 entities. The evaluation of
the Cartesian product (ca. 6.5 billion entity pairs) was too time-
consuming and not further regarded. Blocking-based partitioning
resulted in about 1,200 match tasks for WAM compared to 3,900
tasks for LRM due to its more limited partition sizes. More than
half of these tasks involve sub-partitions of the misc block. We
observe that as in the smaller match task blocking-based partition-
ing enables a linear speedup for the whole range of up to 4 nodes
and 16 cores for both match strategies. We could thus reduce the
execution time from approx. 6 hours to merely 24 minutes for the
WAM and from 8 hours to 51 minutes for the LRM.

5.4 Parallel matching with caching
We finally study how caching of entity partitions and affinity-
based scheduling of match tasks, described in Section 4, impact
performance. For this experiment we focus on the large-scale
match task and the use of blocking. In this case we had 306 parti-
tions including 7 misc blocks. We used a small cache size of 16
partitions per match node (c=16), i.e. about 5% of the input data-
set.

Figure 9: Speedup large scale match problem

cores 1 2 4 8 12 16
tnc 376 163 91 45 31 24
tc 278 147 81 39 28 22
∆ = tnc - tc 98 16 10 6 3 2
∆ / tnc 26% 10% 11% 12% 9% 10%
hr 82% 82% 82% 83% 76% 81%

Table 1: Comparison of execution times (in minutes) for
WAM using the blocking strategy (large scale problem)

cores 1 2 4 8 12 16
tnc 473 285 163 96 64 51
tc 386 251 144 79 56 45
∆ = tnc - tc 87 34 18 17 9 6
∆ / tnc 18% 12% 11% 17% 13% 12%
hr 79% 81% 79% 79% 81% 79%
Table 2: Comparison of execution times (in minutes) for
LRM using the blocking strategy (large scale problem)

The match execution times for different number of cores and the
use of caching are shown in Table 1 (WAM) and Table 2 (LRM).
Each Table compares the non-caching execution time (tnc) with
the execution time using caching (tc). A delta (∆) displays the
difference between both; a ratio between ∆ and tnc measures the
benefit (improvement) by using the cache. The cache hit ratio hr
shows the percentage of data partition accesses that are served
from the cache (cache hits), i.e. without fetching the data from the
data service.
We observe that caching and affinity-based task scheduling lead
to very high hit ratios (76-83%) and significant execution time
improvements for both match strategies. The hit ratios are very
high despite the small cache size since many match tasks involve
the small set of misc blocks and since affinity-based routing
helped to schedule match tasks to the nodes with needed parti-
tions in the cache. The execution times improved for both WAM
and LRM by about 15% on average. The improvements are espe-
cially pronounced for non-parallel matching on 1 core where,
without caching, the delays to fetch partitions from the data ser-
vice directly increase the execution times. For more than 1 core
we obtain similar execution time improvements with caching and
therefore comparable speedup behavior than without caching.

6. RELATED WORK
Entity matching is a very active research area and many ap-
proaches have been proposed and evaluated as described in recent
surveys [1, 6, 11, 14]. However, only a few approaches consider
parallelized entity matching [3, 4, 10, 19]. In [4] the authors de-
scribe first ideas for parallelizing entity matching in the Febrl
system. The initial implementation uses the Message Passing
Interface (MPI) standard and was evaluated on a single compute
node. D-Swoosh [3] does not independently match pairs of enti-
ties but iteratively merges together matching entities and uses the
merged entities for further matching. This execution model is
more difficult to distribute on several processors because it re-
quires communication between match tasks to interchange
merged entities. They propose different strategies for this exten-
sion for both evaluating the Cartesian product and the use of
blocking. [10] proposes parallel linkage algorithms using
match/merge for three input cases (clean-clean, clean-dirty, dirty-
dirty) without considering blocking. Their partition strategy only
splits the larger input source into multiple pieces which are dis-
tributed together with the smaller input source to available proc-
essors. The implementation is based on distributed MATLAB.

Our model of match processing is easier to distribute and usable
in combination with different partitioning strategies. We consider

memory requirements of different match strategies and the avail-
able computing environment for an optimal data partitioning.
Unique features of our blocking-based partitioning include the
proposed partition tuning and the consideration of non-
partitionable entities (misc block). The D-Swoosh performance
was determined only for emulated distributed environments while
we use a real implementation. Furthermore, D-Swoosh and [10]
evaluated smaller match tasks (5,000 – 50,000 entities) in contrast
to our large match task of 114,000 entities.

Recently a first approach for parallel entity matching on a cloud
infrastructure has been proposed in [19]. In particular, the authors
explain how token-based similarity functions (e.g. N-Gram,
PPJoin++) on a single attribute can be calculated on the popular
MapReduce implementation Hadoop [8]. The approach is based
on a complex workflow consisting of a preprocessing of all tokens
and utilizing a token-based dynamic data redistribution for paral-
lel matching. While the authors show the applicability of the
Map-Reduce model for parallel entity resolution, the overall ap-
proach has to be specified at a low programming level making
the resulting code hard to maintain and reuse, as already observed
in [17, 18]. The token-based data redistribution can lead to large
differences in partition sizes and therefore load balancing prob-
lems. Furthermore, large partitions for frequent tokens may not fit
into memory causing performance degradations. The relatively
low speedup values (about 4.2 for 10 cores) are further influenced
by an expensive materialization of temporary results between map
and reduce tasks.

By contrast we are not focusing on parallelizing specific matchers
but propose a more general model that allows the parallel process-
ing of complex match strategies that may contain several match-
ers. The parallel processing is based on general partitioning
strategies that take memory and load balancing requirements into
account thereby supporting a good speedup for parallel entity
matching. Further performance benefits are achieved by caching
entities and applying an affinity-based scheduling of match tasks.
In contrast to [19] we consider the use of blocking strategies to
reduce the search space. Transferring the proposed approach to a
cloud environment is left for future work.

7. CONCLUSIONS AND FUTURE WORK
We propose two general partitioning strategies, size-based and
blocking-based partitioning, for parallel entity matching on single
or multiple input sources. These approaches can be used in com-
bination with different mach strategies including the use of learn-
er-based combinations of multiple matchers. Size-based partition-
ing is used to evaluate the Cartesian product in parallel. We
choose the partition size according to the memory requirements of

a match strategy. Blocking-based partitioning is used in combina-
tion with blocking to reduce the search space and applies a parti-
tion tuning for efficient parallel matching. The partitioning strate-
gies are implemented and evaluated on a newly developed ser-
vice-based infrastructure for parallel entity matching. The evalua-
tion on large product collections shows the high effectiveness and
scalability of the proposed partitioning strategies for both parallel
matching within multi-core nodes and on multiple nodes. Hence,
we are able to significantly reduce the execution times for differ-
ent match strategies. The use of partition caches at match nodes
and affinity-based scheduling of match tasks also improved per-
formance.

In future work, we plan to adapt our approaches to cloud architec-
tures for parallel blocking and matching. Moreover, we will in-
vestigate optimizations within match strategies, e.g., to execute
different matchers in parallel.

REFERENCES
[1] Batini, C.; Scannapieco, M.: Data Quality: Concepts, Meth-

odologies and Techniques, Data-Centric Systems and Appli-
cations, Springer, 2006

[2] Baxter, R., Christen, P., Churches, T.: A comparison of fast
blocking methods for record linkage. SIGKDD Workshop on
Data Cleaning, Record Linkage and Object Consolidation,
2003

[3] Benjelloun, O. et al.: D-Swoosh: A Family of Algorithms for
Generic, Distributed Entity Resolution. Proc. ICDCS, 2007

[4] Christen, P.; Churches, T.; Hegland, M.: Febrl - A parallel
open source data linkage system. Proc. PAKDD, 2004

[5] Dean, J.; Ghemawat, S.: MapReduce: Simplified Data Proc-
essing on Large Clusters, OSDI, 2004

[6] Elmagarmid, A.K.; Ipeirotis, P.G.; Verykios, V.S.: Duplicate
Record Detection: A Survey. IEEE Transaction on Knowl-
edge and Data Engineering, 2007

[7] Ghemawat S.; Gobioff H.; Leung S.T.: The Google File
System. SOSP, 2003

[8] Hadoop. http://hadoop.apache.org
[9] Hernández, M.A.; Stolfo, S.J.: The merge/purge problem for

large databases. Proc. SIGMOD, 1995
[10] Kim, H.; Lee, D.: Parallel Linkage. Proc. CIKM, 2007
[11] Köpcke, H.; Rahm, E.: Frameworks for Entity Matching: A

Comparison. Data & Knowledge Engineering, 96(2), 2010
[12] Köpcke, H.; Thor, A.; Rahm, E.: Evaluation of entity resolu-

tion approaches on real-world match problems. Proc. of
VLDB 2010

[13] Köpcke, H.; Thor, A.; Rahm, E.: Comparative evaluation of
entity resolution approaches with FEVER. Proc. VLDB, 2009

[14] Köpcke, H.; Thor, A.; Rahm, E.: Evaluation of learning-
based approaches for matching web data entities. IEEE In-
ternet Computing, July/Aug. 2010

[15] Koudas, N.; Sarawagi, S.; Srivastava, D.: Record linkage:
Similarity measures and algorithms. Proc. SIGMOD, 2006

[16] McCallum, A.; Nigam, K.; Ungar, L.: Efficient Clustering of
high dimensional data sets with relation to reference match-
ing. Proc. KDD, 2000

[17] Olston, C. et al.: Pig Latin: A Not-So-Foreign Language for
Data Processing. Proc. SIGMOD, 2008

[18] Thusoo, A. et al.:Hive - A Warehousing Solution Over a
Map-Reduce Framework. Proc. VLDB, 2009

[19] Vernica, R.; Carey M.J.; Li C.: Efficient Parallel Set-
Similarity Joins Using MapReduce. Proc. SIGMOD, 2010

	INTRODUCTION
	PRELIMINARIES
	PARTITIONING STRATEGIES
	Size-based Partitioning
	Blocking-based Partitioning
	Matching Multiple Input Sources

	MATCH INFRASTRUCTURE
	EXPERIMENTS
	Experimental setup
	Parallel matching on a single node
	Parallel matching on multiple nodes
	Parallel matching with caching

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

