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ABSTRACT 
Entity matching is an important and difficult step for integrating 
web data. To reduce the typically high execution time for match-
ing we investigate how we can perform entity matching in parallel 
on a distributed infrastructure. We propose different strategies to 
partition the input data and generate multiple match tasks that can 
be independently executed. One of our strategies supports both, 
blocking to reduce the search space for matching and parallel 
matching to improve efficiency. Special attention is given to the 
number and size of data partitions as they impact the overall 
communication overhead and memory requirements of individual 
match tasks. We have developed a service-based distributed infra-
structure for the parallel execution of match workflows. We eva-
luate our approach in detail for different match strategies for 
matching real-world product data of different web shops. We also 
consider caching of input entities and affinity-based scheduling of 
match tasks. 

1. INTRODUCTION 
Entity matching or entity resolution is the process of identifying 
entities (i.e., data instances, records) referring to the same real 
world object. This task is of critical importance for data integra-
tion and especially challenging for web data. Hence, numerous 
approaches, frameworks and tools for entity matching have been 
proposed and developed in the recent past [1, 6, 11, 14]. Typi-
cally, the similarity between entities is determined by applying 
several matchers (e.g., comparing attribute values with some 
string similarity measure) and combining the individual similarity 
values to derive a match decision for a pair of entities. For exam-
ple, two product entities may be assumed to match if both their 
product titles and product descriptions are very similar. In some 
systems, the combination of matcher similarities is determined by 
training-based machine learning approaches such as decision trees 
[13]. 

The execution of such match strategies poses typically high re-
source (CPU, memory) demands. A straight-forward approach 
evaluates the different matchers on the Cartesian product of input 
entities, i.e., it implies a quadratic complexity of O(n2) for finding 

matches in n input entities. Such an approach obviously has se-
vere scalability restrictions for larger sets of entities and is rarely 
affordable for online data integration, e.g., within data mashups. 
A recent performance evaluation of learning and non-learning 
entity resolution approaches [12] revealed substantial efficiency 
problems of current techniques. For matching subsets of the bib-
liographic datasets DBLP and Google Scholar (2,600 vs. 64,000 
objects) evaluating the Cartesian product took up to 75 h for a 
single attribute matcher. The execution times increase even more 
if matching on multiple attributes is applied. 

Blocking and parallel matching are two options to improve the 
efficiency of entity matching. Blocking avoids the evaluation of 
the complete Cartesian product of entities but reduces the search 
space for entity matching [2]. Typically this is achieved by some 
kind of semantic partitioning by grouping similar entities within 
clusters (or “blocks”) and by restricting entity matching to entities 
from the same block. For example, one could partition products 
by manufacturer and compare only products with the same manu-
facturer during entity matching. 
Parallel matching aims at improving performance by splitting a 
match computation into several match tasks and executing these 
tasks in parallel, e.g., on multi-core servers or on a cloud infra-
structure. Surprisingly such a parallel matching has received little 
attention so far and will be studied in this paper. A key prerequi-
site for effective parallel matching is the suitable partitioning of 
the input entities which influences the processor utilization, com-
munication overhead and load balancing. Furthermore, entity 
matching is typically memory-sensitive so that the definition of 
match tasks should consider the available memory that is typi-
cally shared among several cores. Furthermore, it is non-trivial to 
effectively combine blocking and parallelization since blocking 
may result in blocks of largely different size. 
Our contributions are as follows: 

• We propose two general partitioning strategies for generating 
entity match tasks that can be executed in parallel. The first 
approach is based on the Cartesian product of entities while 
the second, more sophisticated strategy applies a combina-
tion of blocking and parallelization. Both partitioning ap-
proaches aim at avoiding memory bottlenecks and load im-
balances for the resulting match tasks. The partitioning 
schemes are applicable to different match strategies, e.g. 
combining several matchers.  
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• We present a flexible, service-based infrastructure for paral-
lel entity matching on different hardware configurations. 
Caching and affinity-based scheduling of match tasks are 
supported to reduce communication requirements.  

• We implemented the proposed partitioning strategies and 
infrastructure and perform a comprehensive evaluation for 



matching real-world product data. The results show the ef-
fectiveness and scalability of the proposed approaches for 
different match strategies.  

In the next section, we introduce some preliminaries on entity 
matching and the assumed computing environment. Section 3 
describes the two strategies for partitioning the input data. Section 
4 outlines the match infrastructure of our approach. Section 5 
describes the performed experiments and evaluation. We discuss 
related work in Section 6 and conclude with a summary and out-
look. 

2. PRELIMINARIES  
The input of entity matching consists of a set of entities. Entities 
are described by attributes, such as product name, description, 
manufacturer or product type. In this paper we focus on the com-
mon case where all entities to be matched reside already in a sin-
gle dataset. The approaches can be extended to match entities 
from different sources as we will briefly discuss in Section 3.3. 
Entity matching determines a set of correspondences (e1, e2, sim) 
indicating the equivalence similarity (from the interval [0,1]) for 
pairs of entities e1 and e2. All entity pairs with a similarity exceed-
ing a specific threshold are assumed to match. 
We assume that match results are determined according to some 
entity matching workflow as supported by our framework FEVER 
[12]. Entity matching workflows either evaluate the Cartesian 
product of input entities or first apply a blocking operator to re-
duce the search space for matching. Blocking results in a set of 
blocks / clusters of related entities and, ideally, matching can be 
restricted to comparing entities of the same block (for an excep-
tion see Section 3.2). 
Entity matching itself is specified by a matching strategy entail-
ing the execution of one or several matchers, e.g., the similarity 
computation for a specific attribute and similarity measure. There 
are many possibilities to combine the results of several matchers. 
We assume one of the approaches of FEVER, i.e., the combina-
tion is either specified manually (e.g., intersection of matches) or 
determined by a training-based model derived by a machine learn-
ing method such as SVM, decision tree or logistic regression. In 
this paper we largely treat the match strategies as black boxes. 
Our approach for parallel matching focuses on the partitioning the 
input data and defining multiple match tasks on input partitions 
that can be executed in parallel. This kind of data parallelism is 
very generic and can be utilized for different match strategies. In 

our evaluation, we will consider two match strategies with several 
matchers. 
The parallel match execution uses a given computing environment 
CE = (#nodes, #cores, max_mem) consisting of #nodes loosely 
coupled computing nodes each providing #cores cores (proces-
sors) and a maximum main memory max_mem to be shared by the 
cores of a node. For simplicity we assume homogeneous nodes 
with the same number of cores and memory size. However, the 
model can easily be extended for heterogeneous configurations. 
Furthermore, we assume that each node can equally access the 
input data, e.g., from a shared server (shared disk) or by replicat-
ing the input data among the nodes. This data placement enables a 
high flexibility for scheduling match tasks and thus for dynamic 
load balancing. As we will discuss in Section 4, input data may 
also be cached in main memory to improve performance.  

3. PARTITIONING STRATEGIES 
To enable parallel entity matching on multiple nodes and cores, 
we first apply a partitioning strategy to partition the input data 
source and to generate multiple match tasks that can be independ-
ently executed. As shown in Figure 1, we distinguish two differ-
ent partitioning strategies: (1) size-based partitioning to evaluate 
the Cartesian product for entity matching and (2) blocking-based 
partitioning to combine blocking with parallel matching. Strategy 
(2) consists of a separate phase called partition tuning to deal with 
large block size differences. Both partitioning approaches end in a 
step to generate match tasks that compare entities of the input 
partitions. In our infrastructure (Section 4) the match tasks are 
maintained in a central task list and are executed in parallel on the 
computing nodes. The union of the individually determined match 
results finally gives the complete result. 
In the following we describe the two partitioning approaches in 
more detail for the case of a single input dataset. Finally, we 
briefly discuss how we can deal with several input datasets to be 
matched. 

3.1 Size-based Partitioning 
Size-based partitioning is the simplest approach and is applied for 
evaluating the complete Cartesian product of input entities. The 
goal is to split the input entities into equally-sized partitions so 
that each match task has to match two such partitions with each 
other. This approach is thus very simple and the equally sized 
partitions promise a good load balancing and scalability to many 
nodes. 
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Figure 1: Match Workflows with Partitioning Strategies and Parallel Matching 



The main consideration is to choose a suitable partition size m 
which also determines the number of partitions p (p=⌈n/m⌉ for n 
input entities) and the number of match tasks (see below). The 
number of partitions and match tasks should clearly be higher 
than the number of available cores in the system. On the other 
hand, the partition size should not be too small since otherwise 
the overhead for communication and starting/terminating match 
tasks would be comparatively high compared to the actual match 
work. 
The partition size also influences the memory requirements of a 
match task and is thus restricted by the available memory. This is 
because entity matching typically takes place in main memory so 
that evaluating the Cartesian product of two partitions of size m 
leads to memory requirements of O(m2). The exact memory re-
quirements of a match task depend on the chosen match strategy 
and implementation, e.g., which matchers are executed, whether 
or not a machine learning model is applied, and the number of 
intermediate correspondences. Assuming an average memory 
requirement of cms per entity pair for match strategy ms (for the 
correspondences/similarity values etc.), the memory requirement 
per match task is about cms·m2. These memory requirements have 
to be compared with the available memory per core (or per paral-
lel thread) which can be approximated by max_mem / #cores for 
our model of the computing environment. The memory-restricted 
partition size m can be estimated by )mscores·cmax_mem/(#≤m . 
A memory-efficient match strategy may only consume about 20 B 
per entity pair. For max_mem=2 GB and #cores=4 we could use 
500 MB per match task and could thus match partitions of maxi-
mal size 5,000500MB/20B ==m entities. By contrast, a memory-
consuming match strategy, such as typical for learner-based ap-
proaches, might require cms =1kB. In this case the maximum parti-
tion size would decrease to only 700500MB/1kB ≈=m entities. In 
our evaluation, we will experimentally determine the impact of 
different partition sizes. 
The generation of match tasks is straight-forward for size-based 

partitioning. To evaluate the Cartesian product the entities of each 
partition need to be compared with all entities of the same parti-
tion as well as with the entities of all other partitions. Figure 2 
illustrates the resulting match tasks for p partitions (P1, …, Pp); 
the cross signs indicate the two input partitions per match task. 
For p partitions, size-based partitioning generates p+(p(p-1)/2) 
match tasks, i.e., we match two partitions Pi and Pj if i≤j.  
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3.2 Blocking-based Partitioning 
Figure 2: Match task generation for size-based partitioning Evaluating the Cartesian product does not scale and is thus only 

feasible for small-sized match problems. For larger match prob-
lems the use of blocking becomes necessary to reduce the scope 
for matching. Our second partitioning strategy deals with the re-
sults of a blocking step and uses a partition tuning step before the 
generation of match tasks.  
Blocking entails a logical partitioning of the input entities such 
that all matching entities should be assigned to the same output 
partition, also called cluster or block. By restricting the match 
comparisons to the entities of the same block the match overhead 
can often drastically be reduced. Our partitioning strategy is 
largely independent of the particular blocking approach chosen, 
e.g., Canopy Clustering [15] or Sorted Neighborhood [9]. The 
partitioning criterion is application-dependent and should enable 
matching entities assigned to the same block. In the simplest case, 
one may use a range partitioning on specific attributes for block-
ing, e.g., to partition products by product type or manufacturer, or 
to partition publications by publication year or publication venue. 
Unfortunately, due to missing data values or other data quality 
issues in real-world data (e.g., products without product type in-
formation) it may not always be possible to assign entities to a 
unique block. We therefore assign such entities to a dedicated 
Miscellaneous (misc) block. Entities of this block have to be 
matched against the entities of all blocks. 
The output blocks may largely differ in their size depending on 
the entity values and the applied blocking approach. Hence, sim-
ply using one match task per block would mostly not result in an 
effective parallel matching but poor load balancing (skew effects) 
or/and high communication overhead. On one hand, large blocks 
could dominate the execution time for matching and require more 
memory than available. On the other hand, very small blocks 
would result in tiny match tasks with a relatively high communi-
cation and scheduling overhead. 
To deal with these problems we therefore perform a partition 
tuning to split or combine blocks:  

• First, we determine all large blocks for which the mem-
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Figure 3: Blocking and partition tuning example (left) and corresponding match task generation (right) 



ory requirements exceed the maximal size according to 
the estimation described in Section 3.1. These blocks 
are then split into several equally sized partitions obey-
ing the size restriction. Match task generation has to 
consider that all these sub partitions have to be matched 
with each other.  

• Second, we aggregate all smaller blocks (e.g., with a 
size below some fraction of the maximal partition size) 
into larger ones. The reduction in the number of parti-
tions results in fewer match tasks and thus a reduced 
communication and scheduling overhead. On the other 
hand, by comparing all entities of the aggregated blocks 
with each other we may introduce some unnecessary 
comparisons compared to the original blocking. In our 
evaluation we will study this performance tradeoff.  

For match task generation we need to distinguish three different 
cases:  

• All normal (non-misc) blocks that have not been split 
and aggregated result in one match task that matches the 
entities of the block with each other.  

• Blocks that have been split into k sub-partitions result 
into k+(k·(k-1)/2) match tasks to match these sub-
partitions with each other.  

• The misc block (or its sub-partitions in case it had to be 
split) has to be matched with all (sub-) partitions.  

The example in Figure 3 (left) illustrates blocking and partition 
tuning for a small set of 3,600 Drives & Storage products. We 
first block the products by their product type. The resulting blocks 
vary in their size from 200 to 1,300. The misc block is assumed to 
hold 600 products with unknown product type. For a maximal 
(minimal) partition size of 700 (210) entities, partition tuning 
would split the largest partition (‘3½’ drives) into two partitions 
and aggregate the smallest blocks ‘Blu-ray’, ‘HD-DVD’ and ‘CD-
RW’ into one partition of size 600. The resulting match tasks are 
shown in Figure 3 (right). For well-sized “non-misc” blocks we 
only compare the entities within this partition within one match 
task (e.g., product types ‘2½’ and ‘DVD-RW’). Similarly, we 
match the aggregated partition within one match task. The two 
sub-partitions of the split block of ‘3½’ entities result in three 
match tasks. Finally, the misc partition is matched against all 
other partitions resulting in six match tasks. Hence, we generate a 
total of 12 match tasks for the example. A size-based partitioning 
would have created six partitions and 6+6·5/2=21 match tasks. 

3.3 Matching Multiple Input Sources 
The proposed approach for partitioning and entity matching can 
also be applied when data from two or more input sources should 
be matched. A straight-forward approach to deal with this situa-
tion is to first take the union of the input sources and apply the 
proposed approaches for partitioning and parallel matching on the 
combined result (as indicated in Fig. 1). In the case of heteroge-
neous input schemas we first have to align (match) differently 
named but equivalent attributes, either manually or with the help 
of a schema matching tool. In more complex cases we may also 
have to apply some data transformations (e.g., to split complex 
address attribute into several simpler attributes) to ensure the 
comparability of match attributes in the combined data source. 
In the special case when the input sources are duplicate-free we 
can utilize this for a reduced match effort by not matching entities 

of the same source with each other.  For example, for evaluation 
the Cartesian product we would partition both sources into equal-
ly sized partitions and match each of the n partitions of the first 
with each of the m partitions of the second source (m*n match 
tasks compared to (m+n)*(m+n-1)/2 tasks for a single, combined 
source). We can also apply blocking-based partitioning for two 
inputs by applying the same blocking approach to both sources 
and only match corresponding blocks with each other; entities in 
misc blocks need to be matched with all other blocks of the other 
source. For tuning the block sizes we can employ the same ap-
proaches as discussed in the previous subsection.  

4. MATCH INFRASTRUCTURE 
We implemented a distributed service-based infrastructure to 
execute entity matching workflows in parallel according to the 
proposed strategies. Figure 4 shows the architecture of the system. 
It consists of different kinds of services, namely a workflow ser-
vice, a data service, and multiple match services, running on sev-
eral loosely coupled nodes (servers or workstations). The work-
flow service is the central access point of the infrastructure man-
aging the execution of match workflows. Since we currently re-
strict parallel processing on matching, we use the workflow ser-
vice to perform the pre- and post-processing including blocking 
and partitioning of the input data as well as merging the final 
match result. The workflow service initially generates all match 
tasks and maintains them in a common task list for scheduling 
them among the match services. The input data, blocking output 
and match results are stored and managed by a data service. We 
currently use a central DBMS server for this purpose. All services 
are implemented in Java and use the Remote Method Invocation 
(RMI) protocol for communication. 
Match services run on dedicated nodes and can concurrently exe-
cute several match tasks within threads (one match task per 
thread). The number of threads may be set to the number of cores 
but can also be chosen differently. Each match service can utilize 
a partition cache to temporarily store entity partitions. Cached 
partitions can be used by all threads of a match service to reduce 
the amount of communication for repeatedly fetching the same 
data from the data service. The cache size per match service is 
configured by the maximal number of cached partitions c; c=0 
means that caching is disabled. The caches are managed accord-
ing to a LRU replacement strategy. That is when a newly fetched 

 
Figure 4: Service-based infrastructure for  

parallel entity matching 



partition is to be stored in a full cache, it replaces the partition 
with the oldest access time. 
The workflow service is responsible for assigning unprocessed 
match tasks in its task list to the match threads for execution. 
When partition caching is enabled, we use a simple strategy to 
perform an affinity-based scheduling aiming at assigning match 
tasks to match services where needed partitions are already 
cached. To maintain an approximate cache status at the workflow 
service, match services report which partitions they cache when-
ever a match task is completed. By sending the cache information 
together with the match results of a match task the cache status at 
the workflow service is maintained without additional messages. 
After the completion of a match task is reported, the workflow 
service assigns a new match task to the respective (preferably a 
task for which needed partitions are cached at the thread’s match 
service). This task selection and assignment is repeated as long as 
there are still open tasks to execute. This simple scheme supports 
a distributed match processing with dynamic load balancing on 
the one hand and locality of match processing to exploit caching 
on the other hand. Furthermore, the scheduling approach can eas-
ily cope with heterogeneous nodes (different speeds, different 
number of cores/threads).  
New match services can be added on demand by starting the new 
service on a dedicated physical machine and informing the work-
flow service about the new match service. Similarly, match ser-
vices can be taken out from match processing. This makes the 
infrastructure dynamic and adaptable, i.e., depending on the com-
plexity of the match problem we can adjust the number of used 
match services. The architecture is also robust against failures of 
match services. If a match service does not respond anymore, the 
workflow service can assign the match tasks of the respective 
service among the remaining services.  

5. EXPERIMENTS 
We conducted a series of experiments to evaluate the effective-
ness of the proposed partitioning strategies for parallel entity 
matching for different hardware configurations, match problems 
and match workflows. After a description of the experimental 
setup we first focus on parallel matching using several cores of a 
single server. We then analyze the scalability of parallel matching 
for multiple nodes. Finally, we evaluate the impact of caching on 
execution times. 

5.1 Experimental setup 
We ran our experiments on up to six nodes with four cores. Each 
node has an Intel(R) Xeon(R) W3520 4x2.66GHz CPU, 4GB 
memory, and runs a 64-bit Debian GNU/Linux OS with a 64-bit 
JVM. Both the workflow service and the data service run on a 
dedicated server so that up to four nodes (16 cores) are used for 
parallel match processing. We use 3 GB main memory (heap size) 
per node for matching. Following the notation of Section 2.1, the 
setup can be described with CE = (4, 4, 3GB). In one experiment, 
we vary the number of threads from 1 to 8. We initially disable 
partition caching (c=0) but study the effect of caching in Section 
5.4.   
The main input dataset for entity matching contains about 
114,000 electronic product offers from a price comparison portal. 
Each product is described by 23 attributes. In addition to this 
large scale match problem we also use a representative subset of 
20,000 products to define a smaller-scale match task.  

The first match strategy (WAM) executes two matchers (edit 
distance on product title, TriGram similarity on product descrip-
tion) and calculates a weighted average of the two matcher re-
sults. The second match strategy (LRM) executes three matchers 
(Jaccard, TriGram, and Cosine attribute similarity) and uses the 
machine learning approach Logistic Regression to combine their 
results. The WAM strategy applies an internal optimization to 
reduce memory requirements by eliminating all correspondences 
of a matcher with a similarity too low for reaching the combined 
similarity threshold. For example, if matching entity pairs need to 
have an average similarity of at least 0.75 for two matchers, all 
correspondences with a single-matcher similarity below 0.5 can 
be discarded since the average similarity threshold cannot be 
reached anymore. 
In this study we do not evaluate matching effectiveness but focus 
on efficiency, in particular execution times for matching. In 
[12,13] we have evaluated the effectiveness of different match 
strategies for a similar match problem on product entities and 
found learner-based approaches to be generally more effective 
than simple matcher combinations such as WAM when several 
matchers on different attributes need to be combined .  

5.2 Parallel matching on a single node 
We first analyze the impact of the number of treads as well as of 
the maximal and minimal partition size for the small match prob-
lem on one node.  
For a 4-core node we consider between 1 and 8 threads for match-
ing on one node. We evaluate the Cartesian product (size-based 
partitioning) for the small match problem using a conservative 
partition size of 500 entities. Figure 5 shows the resulting execu-
tion time and speedup for both match strategies WAM and LRM. 
We observe that our size-based partitioning enables an effective 
parallel matching resulting in improved execution times. For one 
and two threads the two match strategies perform similarly but for 
more threads the memory-optimized WAM strategy outperforms 
LRM because more threads reduce the amount of memory per 
match task. WAM also benefits more from parallel matching with 
an almost linear speedup for up to 4 threads (factor 3.5) while 
LRM achieves a speedup of up to 2.5. WAM can benefit only 
marginally from more than 4 threads and LRM not at all. Hence 
we will use at most 4 threads (= #cores) per node in our further 
experiments. 
Next we evaluate the influence of the (maximum) partition size 
for evaluating the Cartesian product with size-based partitioning 
introduced in Section 3.1. Figure 6 shows the execution time as 
well as the consumed memory for partition sizes between 100 and 
1000 entities (using 1 node running 4 match threads). We observe 
that increasing the partition size from 100 to 200 strongly im-
proves execution times especially for LRM (factor 2). This is 
mainly because of the strong reduction of the number of match 
tasks and thus for communication and scheduling overhead. Fur-
thermore, larger match tasks better utilize the available processing 
capacity. Further increasing the partition size leads to additional 
execution time improvement for WAM. For LRM, on the other 
hand, the memory consumption (and the amount of paging I/O) 
grows with larger partitions and execution times start to deterio-
rate for more than 500 entities per partition. For our further ex-
periments we use the favorable maximal partition sizes of 500 for 
LRM and 1,000 for WAM. 



Figure 8: Speedup small scale match problem 

As pointed out in Section 3.2, we also need to consider a minimal 
partition size in the case of blocking-based partitioning. We ana-
lyzed the influence of this parameter for blocking on the manufac-
turer attribute. Again the evaluation was done for the smaller 
match problem on a single node executing 4 parallel threads (par-
tition size=1000/500). Figure 7 shows the execution times for the 
two match strategies for minimal partition sizes between 1 (i.e., 
no merging of small partitions) and 700, as well as the number of 
match tasks. We observe that merging small partitions is espe-
cially effective for combining the smallest blocks as it signifi-
cantly reduces the number of match tasks and the associated 
overhead. These improvements are achieved for both match 
strategies but are especially pronounced for LRM. LRM suffers 
from a much higher number of match tasks than WAM (and thus 
a higher execution time) because of the smaller maximal partition 
size. For the remaining experiments we choose beneficial mini-
mum partition sizes, namely 200 for WAM and 100 for LRM. 

5.3 Parallel matching on multiple nodes 
To analyze the scalability of our partitioning strategies and infra-
structure we now evaluate parallel matching for up to 4 nodes and 
16 cores (threads). Particularly, we perform experiments for the 
small as well as for the large match problem applying the partition 
sizes determined in the previous experiments. 
Figure 8 shows execution times and speedup results for up to 16 
cores for both size-based partitioning (continuous lines) and 
blocking-based partitioning (dashed lines) with the two match 
strategies on the small-scale problem. The configurations up to 4 
threads refer to the use of 1 node, for up to 8 threads to 2 nodes 
and so on. We observe that execution times scale linearly for up 

to 16 cores for both partitioning strategies and both match strate-
gies. As expected, the use of blocking improves execution time. 
Our blocking-based partitioning with its partition tuning proves to 
be very effective since we achieve the same high speedup values 
(of up to 14 for 16 cores) than for the simpler size-based partition-
ing on the Cartesian product. LRM is consistently less efficient 
than WAM due to its increased memory consumption and the 
larger number of match tasks. 

Figure 5: Speedup per multiproces-
sor node 

Figure 6: Influence of the maxi-
mum partition size 

Figure 7: Influence of the mini-
mum partition size 

Figure 9 shows the performance of blocking-based partitioning 
for matching the full dataset of 114,000 entities. The evaluation of 
the Cartesian product (ca. 6.5 billion entity pairs) was too time-
consuming and not further regarded. Blocking-based partitioning 
resulted in about 1,200 match tasks for WAM compared to 3,900 
tasks for LRM due to its more limited partition sizes. More than 
half of these tasks involve sub-partitions of the misc block. We 
observe that as in the smaller match task blocking-based partition-
ing enables a linear speedup for the whole range of up to 4 nodes 
and 16 cores for both match strategies. We could thus reduce the 
execution time from approx. 6 hours to merely 24 minutes for the 
WAM and from 8 hours to 51 minutes for the LRM. 

5.4 Parallel matching with caching 
We finally study how caching of entity partitions and affinity-
based scheduling of match tasks, described in Section 4, impact 
performance. For this experiment we focus on the large-scale 
match task and the use of blocking. In this case we had 306 parti-
tions including 7 misc blocks. We used a small cache size of 16 
partitions per match node (c=16), i.e. about 5% of the input data-
set. 

Figure 9: Speedup large scale match problem 



cores 1 2 4 8 12 16
tnc 376 163 91 45 31 24
tc 278 147 81 39 28 22
∆ = tnc - tc 98 16 10 6 3 2
∆ / tnc 26% 10% 11% 12% 9% 10%
hr 82% 82% 82% 83% 76% 81%  

Table 1: Comparison of execution times (in minutes) for 
WAM using the blocking strategy (large scale problem) 

cores 1 2 4 8 12 16
tnc 473 285 163 96 64 51
tc 386 251 144 79 56 45
∆ = tnc - tc 87 34 18 17 9 6
∆ / tnc 18% 12% 11% 17% 13% 12%
hr 79% 81% 79% 79% 81% 79%  
Table 2: Comparison of execution times (in minutes) for 
LRM using the blocking strategy (large scale problem) 

 
The match execution times for different number of cores and the 
use of caching are shown in Table 1 (WAM) and Table 2 (LRM). 
Each Table compares the non-caching execution time (tnc) with 
the execution time using caching (tc). A delta (∆) displays the 
difference between both; a ratio between ∆ and tnc measures the 
benefit (improvement) by using the cache. The cache hit ratio hr 
shows the percentage of data partition accesses that are served 
from the cache (cache hits), i.e. without fetching the data from the 
data service. 
We observe that caching and affinity-based task scheduling lead 
to very high hit ratios (76-83%) and significant execution time 
improvements for both match strategies. The hit ratios are very 
high despite the small cache size since many match tasks involve 
the small set of misc blocks and since affinity-based routing 
helped to schedule match tasks to the nodes with needed parti-
tions in the cache. The execution times improved for both WAM 
and LRM by about 15% on average. The improvements are espe-
cially pronounced for non-parallel matching on 1 core where, 
without caching, the delays to fetch partitions from the data ser-
vice directly increase the execution times.  For more than 1 core 
we obtain similar execution time improvements with caching and 
therefore comparable speedup behavior than without caching.  
 

6. RELATED WORK 
Entity matching is a very active research area and many ap-
proaches have been proposed and evaluated as described in recent 
surveys [1, 6, 11, 14]. However, only a few approaches consider 
parallelized entity matching [3, 4, 10, 19]. In [4] the authors de-
scribe first ideas for parallelizing entity matching in the Febrl 
system. The initial implementation uses the Message Passing 
Interface (MPI) standard and was evaluated on a single compute 
node. D-Swoosh [3] does not independently match pairs of enti-
ties but iteratively merges together matching entities and uses the 
merged entities for further matching. This execution model is 
more difficult to distribute on several processors because it re-
quires communication between match tasks to interchange 
merged entities. They propose different strategies for this exten-
sion for both evaluating the Cartesian product and the use of 
blocking. [10] proposes parallel linkage algorithms using 
match/merge for three input cases (clean-clean, clean-dirty, dirty-
dirty) without considering blocking. Their partition strategy only 
splits the larger input source into multiple pieces which are dis-
tributed together with the smaller input source to available proc-
essors. The implementation is based on distributed MATLAB. 

Our model of match processing is easier to distribute and usable 
in combination with different partitioning strategies. We consider 

memory requirements of different match strategies and the avail-
able computing environment for an optimal data partitioning. 
Unique features of our blocking-based partitioning include the 
proposed partition tuning and the consideration of non-
partitionable entities (misc block). The D-Swoosh performance 
was determined only for emulated distributed environments while 
we use a real implementation. Furthermore, D-Swoosh and [10] 
evaluated smaller match tasks (5,000 – 50,000 entities) in contrast 
to our large match task of 114,000 entities. 

Recently a first approach for parallel entity matching on a cloud 
infrastructure has been proposed in [19]. In particular, the authors 
explain how token-based similarity functions (e.g. N-Gram, 
PPJoin++) on a single attribute can be calculated on the popular 
MapReduce implementation Hadoop [8]. The approach is based 
on a complex workflow consisting of a preprocessing of all tokens 
and utilizing a token-based dynamic data redistribution for paral-
lel matching. While the authors show the applicability of the 
Map-Reduce model for parallel entity resolution, the overall ap-
proach has to be specified at a low programming level  making 
the resulting code hard to maintain and reuse, as already observed 
in [17, 18]. The token-based data redistribution can lead to large 
differences in partition sizes and therefore load balancing prob-
lems. Furthermore, large partitions for frequent tokens may not fit 
into memory causing performance degradations.  The relatively 
low speedup values (about 4.2 for 10 cores) are further influenced 
by an expensive materialization of temporary results between map 
and reduce tasks.  

By contrast we are not focusing on parallelizing specific matchers 
but propose a more general model that allows the parallel process-
ing of complex match strategies that may contain several match-
ers. The parallel processing is based on general partitioning 
strategies that take memory and load balancing requirements into 
account thereby supporting a good speedup for parallel entity 
matching. Further performance benefits are achieved by caching 
entities and applying an affinity-based scheduling of match tasks. 
In contrast to [19] we consider the use of blocking strategies to 
reduce the search space. Transferring the proposed approach to a 
cloud environment is left for future work.  

7. CONCLUSIONS AND FUTURE WORK 
We propose two general partitioning strategies, size-based and 
blocking-based partitioning, for parallel entity matching on single 
or multiple input sources. These approaches can be used in com-
bination with different mach strategies including the use of learn-
er-based combinations of multiple matchers. Size-based partition-
ing is used to evaluate the Cartesian product in parallel. We 
choose the partition size according to the memory requirements of 



a match strategy. Blocking-based partitioning is used in combina-
tion with blocking to reduce the search space and applies a parti-
tion tuning for efficient parallel matching. The partitioning strate-
gies are implemented and evaluated on a newly developed ser-
vice-based infrastructure for parallel entity matching. The evalua-
tion on large product collections shows the high effectiveness and 
scalability of the proposed partitioning strategies for both parallel 
matching within multi-core nodes and on multiple nodes. Hence, 
we are able to significantly reduce the execution times for differ-
ent match strategies. The use of partition caches at match nodes 
and affinity-based scheduling of match tasks also improved per-
formance. 

In future work, we plan to adapt our approaches to cloud architec-
tures for parallel blocking and matching. Moreover, we will in-
vestigate optimizations within match strategies, e.g., to execute 
different matchers in parallel.  
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