

Open Data Integration

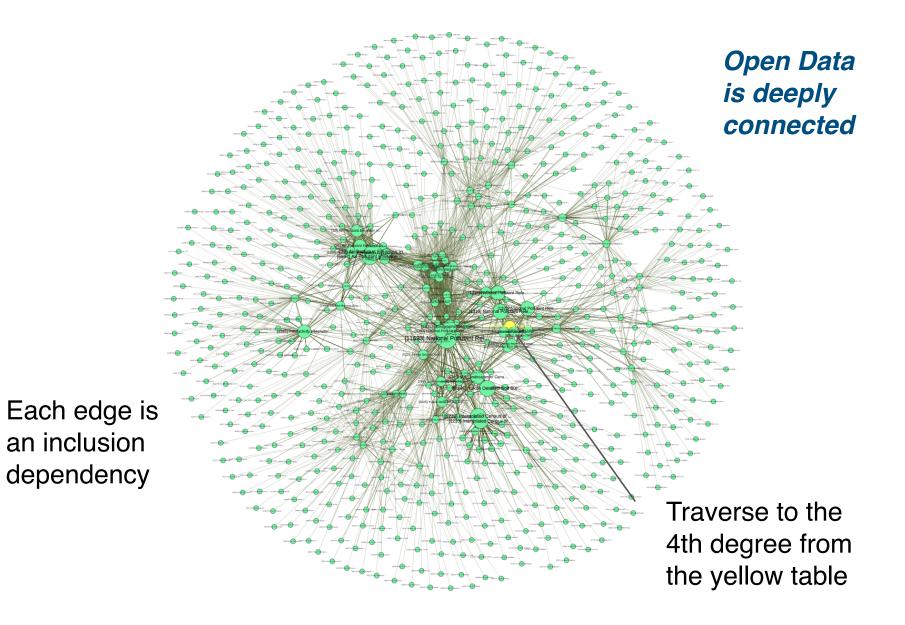
Renée J. Miller miller@northeastern.edu

Open Data Principles

- Timely & Comprehensive
- Accessible and Usable
- Complete

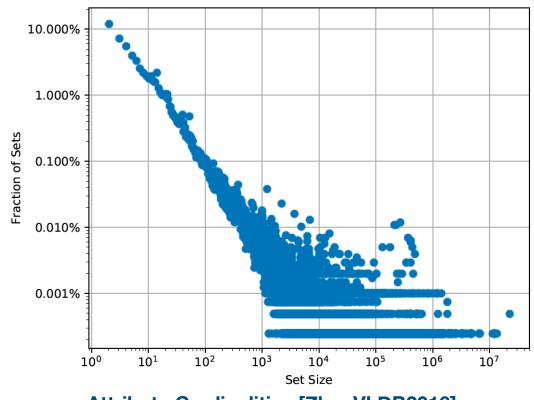
- All public data is made available. Public data is data that is not subject to valid privacy, security or privilege limitations
- Primary
 - Including the original data & metadata on how it was collected

Invaluable for data science



Open Data

- Open Data
 - Wide (avg >16 attributes)
 - Deep (avg > 1500 values)
 - Often with no or incomplete headers (attribute names)
 - Published as CSV, JSON, ...
 - -Growing exponentially

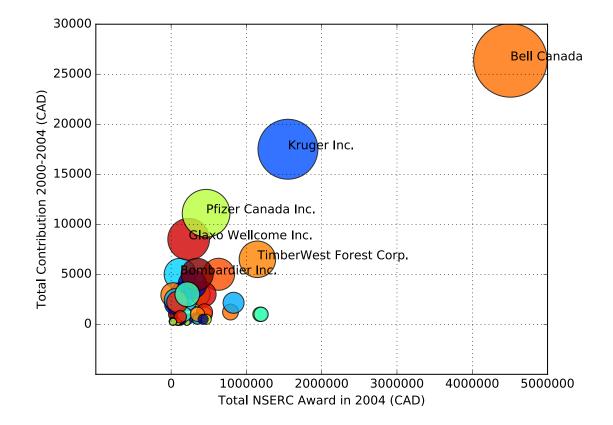


Attribute Cardinalities [Zhu+VLDB2016]

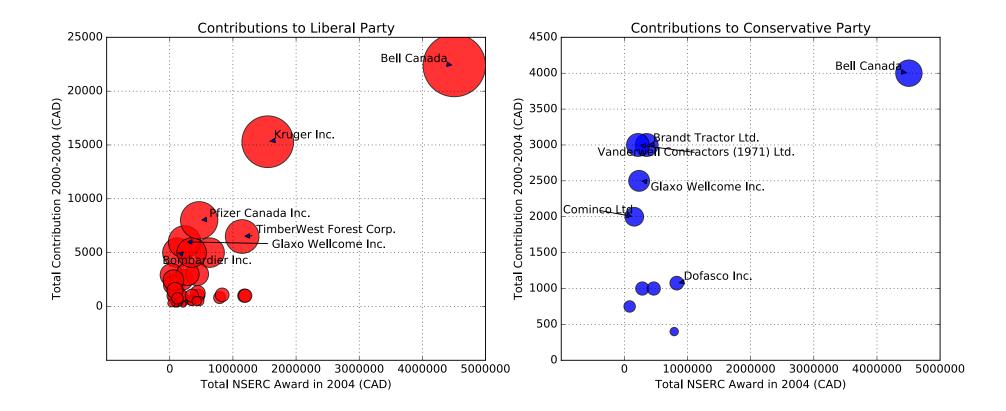
Interactive Navigation of Open Data Linkages

Three minute video of PVLDB2017 System Demonstration: <u>Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian</u>, Renée J. Miller: Interactive Navigation of Open Data Linkages. <u>PVLDB 10(12)</u>: 1837-1840 (2017) (received Best Demo Award)

Goal: Enable Data Science



Goal: Enable Data Science



Data Science Over Open Data

In data science, it is increasingly the case that the main challenge is not in *integrating known data*, rather it is in *finding the right data to solve a given data science problem*.

How can we facilitate data science over Open Data?

Vision for Analysis-Driven Data Discovery

Example Open Government Data

						Open Government	aara.gesg
Fuel Type	Borough	Sector	KWh	Year		www.open.gc.ca	.GOV.UK ^{Beta}
Electricity	Barnett	Domestic	62688	2015	e	- European Union	up Government
Gas	Barnett	Domestic	206438	2015			
Railway Diesel	City of London	Transport	2730044	2014			
Oil	City of London	Domestic	430078	2015			

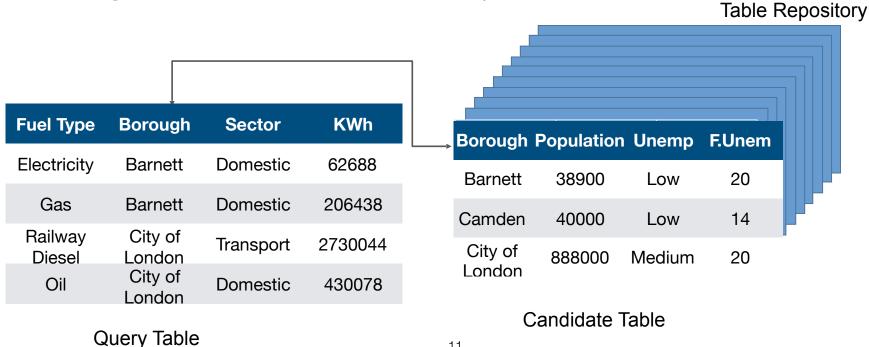
DATA (

- One example table
 - Greenhouse gas emissions in/around London
 - May have many attributes and tens/hundreds of thousands of tuples

Join Table Search

Data Science Question: How can I find more features for my model C02 emission?

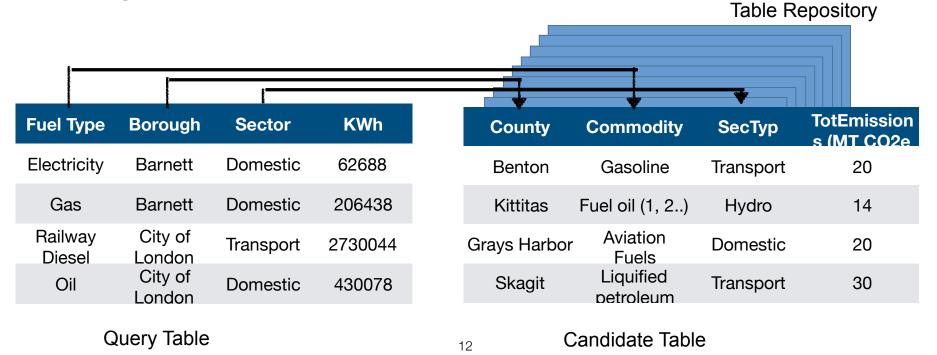
Data Management Task: Find tables that can be joined with a query table.



Union Table Search

Data Science Question: Does my analysis generalize? To new regions, new sectors, ...

Data Management Task: Find tables that can be union with a query table.



Outline

- Open Data
 - What is it and why is it important?
 - Motivating examples
- Analysis-driven Data Discovery
 - Table Join
 - Table Union
- Impact & Open Questions

Join Table Search

Query Q

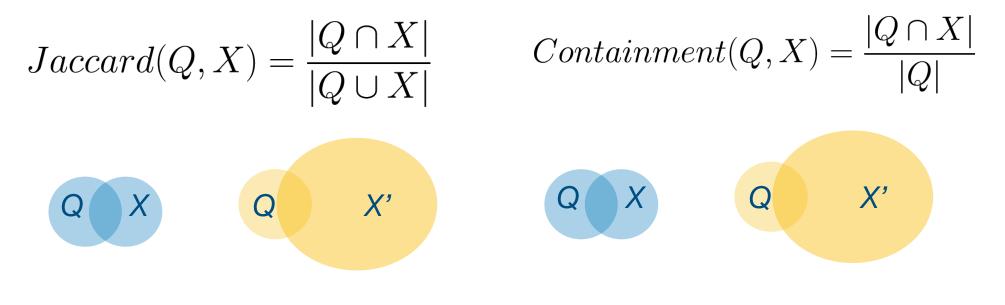
		_					
Electricity	Barnett	Domestic	62688				
Gas	Barnett	Domestic	206438				
Railway Diesel	City of London	Transport	2730044				
Oil	City of London	Domestic	430078				
Over Table							

Query Table

Potential Answer X

Barnett	38900	Low	20			
Camden	40000	Low	14			
City of London	888000	Medium	20			
Candidate Table						

Measuring Join Goodness?



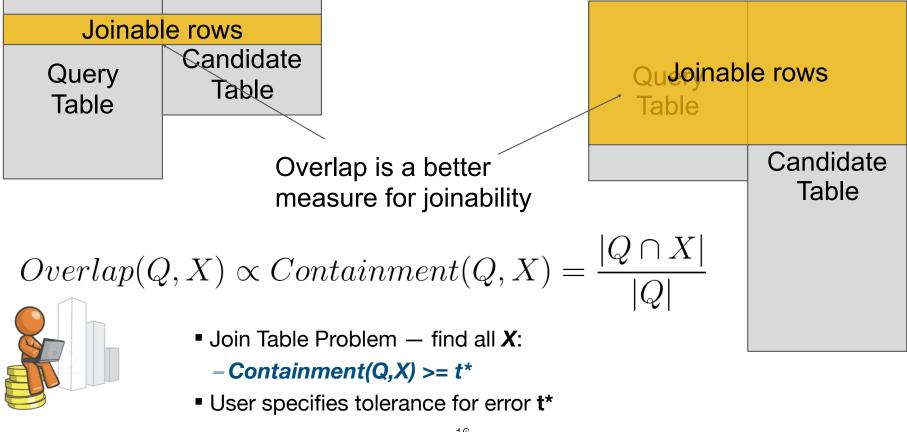
Jaccard(Q,X) >> Jaccard(Q, X')

Same intersection size, but the Jaccard similarity is much smaller on the right

Containment(Q,X) = Containment(Q, X')

Containment is the same for both, independent of the size of X and X'

What is a good measure for joinability?



MinHash LSH (Broder SEQ97)

$$\begin{split} X &= \{x_1, x_2, ..., x_m\} \qquad Y = \{y_1, y_2, ..., y_m\} \\ h_0(X) &= \min_{x \in X} f_0(x) \qquad h_0(Y) = \min_{y \in Y} f_0(y) \qquad P(h_0(X) = h_0(Y)) = \frac{|X \cap Y|}{|X \cup Y|} \\ \end{split}$$
Define a hash function for set, where f_i is a hash function for value (e.g., SHA1) $h_1(X) &= \min_{x \in X} f_1(x) \qquad h_1(Y) = \min_{y \in Y} f_1(y)$ Hash-Tables

 $h_k(X) = \min_{x} f_k(x)$

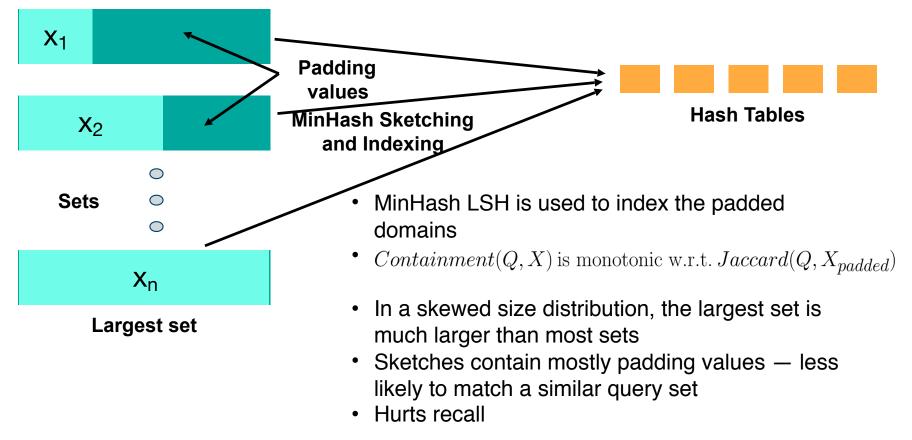
...

 $h_k(Y) = \min_{y \in Y} f_k(y)$

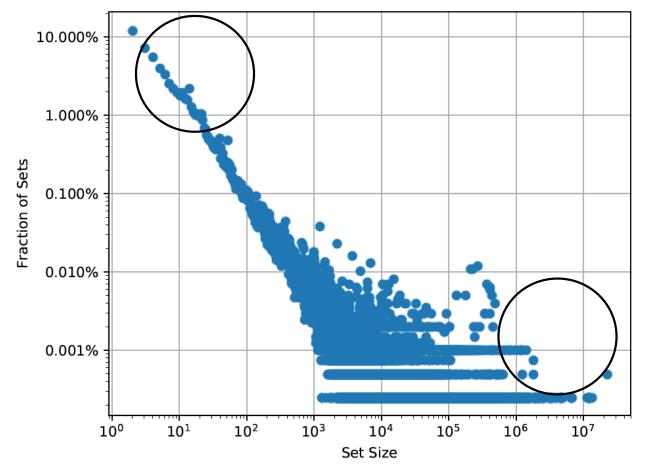
 $X \cup Y$

 $\approx \frac{Count(h_i(X) = h_i(Y))}{k}$

Asymmetric MinHash (Shrivastava&Li WWW15)

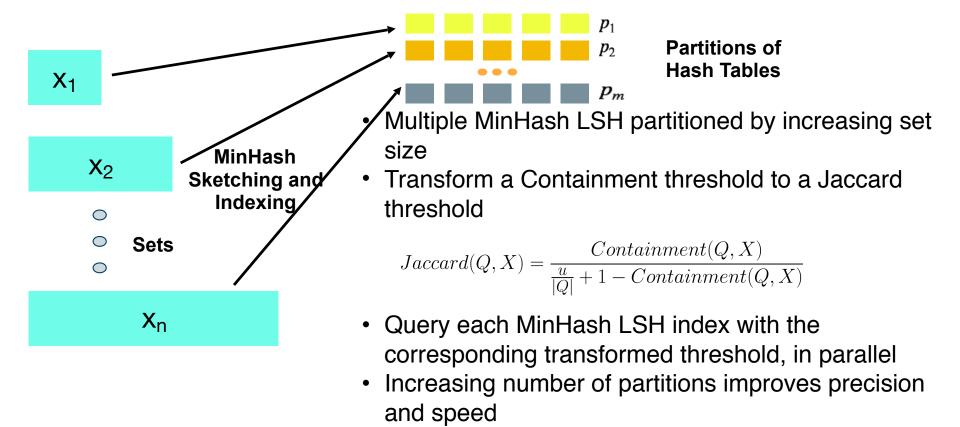


Open Data Attribute Cardinality Sizes



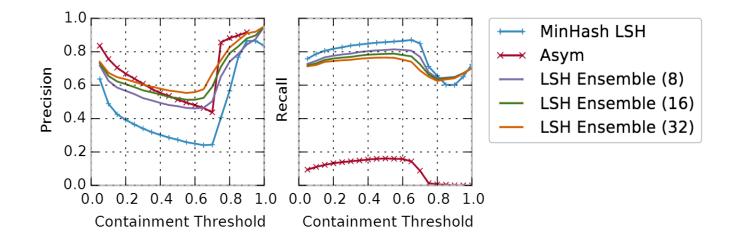
19

LSH Ensemble (Zhu+ PVLDB16)



 Optimal partitioning strategy for power-law set size distribution (Zhu+ PVLDB16)

LSH Ensemble Accuracy



- Creating more *partitions* leads to fewer false positives, while maintaining recall
- Asymmetric MinHash LSH has high precision, but low recall due to padding

LSH Ensemble Query Performance

Search Index	Mean Query (sec)	Precision (threshold=0.5)
MinHash LSH	45.13	0.27
LSH Ensemble (8)	7.55	0.48
LSH Ensemble (16)	4.26	0.53
LSH Ensemble (32)	3.12	0.58

- Fewer false positive attributes to process (higher precision)
- Parallel querying over partitions

Related Work

- Set Similarity Search
 - Prefix Filter

*[Chaudhuri+ICDE06,Bayardo+WWW07,Xiao+ICDE09]

- Position Filter
 *[Xiao+WWW08]
- Cost Models
 *[Behm+ICDE11,Wang+SIGMOD12]
- Comparison

*[Mann+PVLDB16]

DataSet	Avg Set Size	Max Set Size	Dictionary Size	
AOL	3	245	3.9M	
ENRON	135	3,162	1.1M	
DBLP	86	1,625	7K	
WebTables	10	17,030	184M	
Open Data	1.5K	22M	562M	

- Mass Collaboration Data Search
 - Linked Data/Microdata
 *[Bizer+JSWIS09,Meusel+ISWC14]
 - Web Tables

*[Cafarella+ PVLDB08]

*[Bhagavatula+IDEA13]

*[Eberius+SSDBM15]

*[Lehmberg+WWW16]

Table extension

*Infogather [Yakout+SIGMOD12]

- *[Cafarella+PVLDB09]
- *[DasSarma+SIGMOD12]
- *Mannheim Search Join
- [Lehmberg+JWebSem15]

Outline

- Open Data
 - What is it and why is it important?
 - Motivating examples
- Analysis-driven Data Discovery
 - Table Join
 - Table Union
- Impact & Open Questions

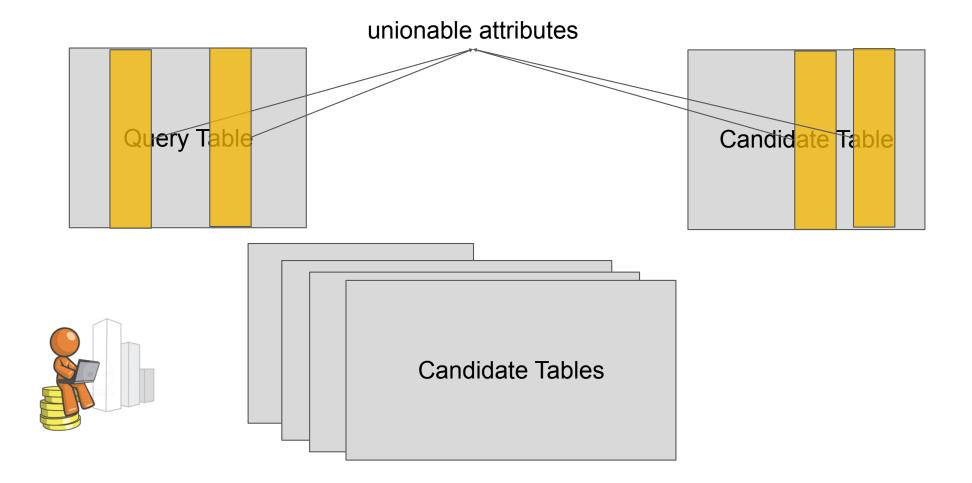
Table Union

Electricity		E	Barnett		Domestic		240.99		
Gas			Brent		Transport		164.44		
Coal		C	Camden 1		Transport		134.90		
Railways die	esel	City	of London	C	Oomestic		10.	52	
Gas			Brent	D	Oomestic		169.69		
Coal			Brent	nt T		Transport 120		.01	
Benton	Benton Transp		Gasoline		64413		62.9	Condia	dete
Kittitas	Kittitas Hyd		Fuel oil (1,2,		12838		66.0	Candio Table	Jale
Grays	Dome	estic	Aviation fuels		1170393		66.1		
Skagit Trans		sport	Liquified		59516		60.1		

- Some attributes may overlap
- Some may refer to entities of common type
- Some may use semantically similar words

Query Table

Unionable Attribute Search

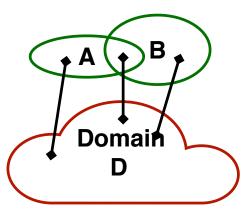


Attribute Unionability Natural Language Semantic Set

Electricity	Barnett	Domestic	240.99		
Gas	Brent	Transport	164.44		
Coal	Camden	Transport	134.90		
Railways diesel	City of	Domestic	10.52		
Gas	Brent	Domestic	169.69		
Coal	Brent	Transport	120.01		
Gasoline	Benton	Transport	64413	62.9	
Fuel oil (1,2,	Kittitas	Hydro	12838	66.0	
Aviation fuels	Grays	Domestic	1170393	66.1	
Liquified petroleum	Skagit	Transport	59516		
					•

- Probabilistic Model
 - Attributes are samples drawn from the same domain
- Three types of attribute unionability/domains
 - Set, semantic, natural language

Attribute Unionability



- Set and Semantic
 - D is set of values or set of ontology classes
- Natural Language
 - Convert values to word embeddings
 - Measure how likely the word embeddings are drawn from the same domain

Ensemble unionability

Measures are incomparable so define based on the corpus. How unexpected is a score given the corpus?

* Full Paper Thursday 11am Segovia III 28

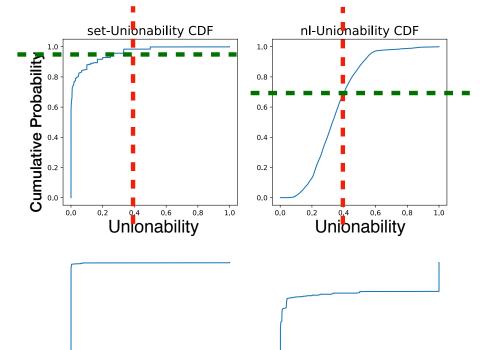
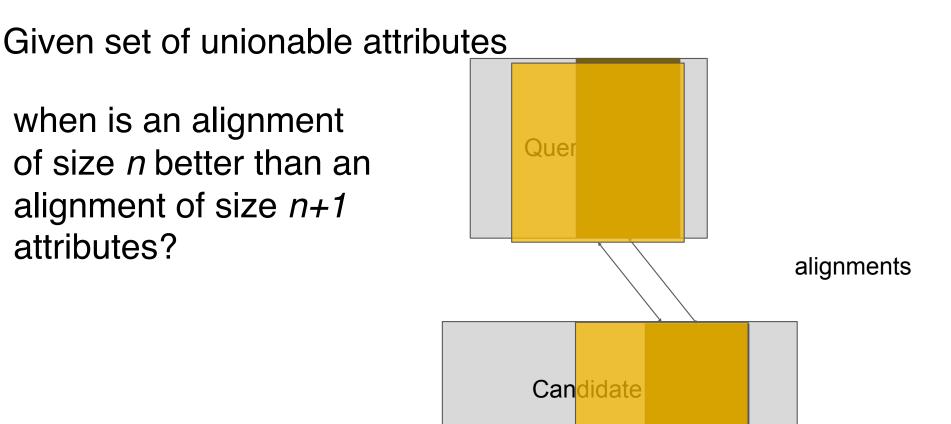


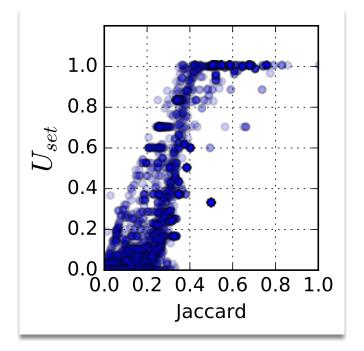
Table Alignment



29

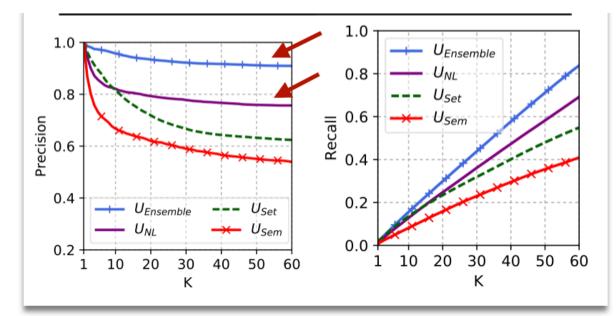
Scaling Unionable Attribute Search

- Set and Semantic Unionability
 - Correlated with Jaccard
- Natural Language Unionability
 - Correlated with Cosine of topic vectors
- Use LSH indices to efficiently retrieve candidate attributes



Evaluation Table Union on Open Data

- NL Unionability outperforms set and semantic (individually)
- Ensemble Unionability (uses all 3) best in accuracy
- Defined as top-K search
 - User defined threshold for unionability is not intuitive



- Semantic Unionability
 - Uses Open Ontology: YAGO
 *[Suchenek+WWW07]
- Public Table Union Search Benchmark

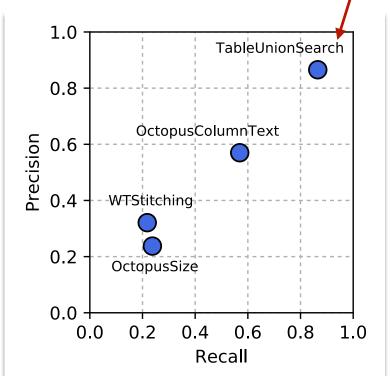
https://github.com/RJMillerLab/table-union-search-benchmark

Using Search on Mass Collaboration Data

- Search on metadata
 - Schema Matching attributes that matched can be "unioned"
 - * [Ling+IJCAI13], [Lehmberg and BizerPVLDB17]
 - Schema plus keyword description of each attribute
 - ✤ [Pimplikar&SarawagiPVLDB12]
- Keyword Search and Clustering of Tables
 - Tables in the same cluster are "unionable"
 *Octopus [Cafarella+PVLDB09]
- Entity-table search
 - Union tables that share a subject attribute (entities of same type)
 *[Das Sarma+SIGMOD12]

Comparison to WebTable Union

- Octopus [Cafarella+PVLDB09]
 - Keyword search; cluster result
 - Attribute Similarity (using instance only)
 - Size: avg length values
 - ColumnText: tf-idf of values
- Stitching [Lehmberg&BizerPVLDB17]
 - Instance-based schema matching
- Entity-Complement [DasSarma+SIGMOD12]
 - Union entity tables w/ same subject attribute
 - This comparison in paper



Outline

- Open Data
 - What is it and why is it important?
 - Motivating examples
- Analysis-driven Data Discovery
 - Table Join
 - Table Union
- Impact & Open Questions

Open Data vs. Enterprise

	<u>Avg #Attr</u>	Max Cardinality	Avg Cardinality	<u>#UniqVal</u>
OpenData	16	22M	1.5K*	609M
Enterprise -	12	900K	4.0K	4M

- Enterprise data lakes
 - Can be massive
 - Maintaining join graphs can be expensive/inpractical
 - Data scientists may not know/understand all data available
 *Need Analysis-Driven Data Discovery

From 167 table subset of MIT's 2400 table data warehouse [Deng+CIDR17]
 Note that operational databases and corporate data lakes can be much wider and larger
 * Attributes containing string values

Open Problems

- Near-term: analysis-driven data discovery
 - Bags vs. Sets
 - Multi-attribute join search
 - Finding tables that join and contain new information
 - Incorporating entity-resolution into scalable search
 - Search over quantities (with different measures)
 - Schema inference

Vision

- Query discovery over massive data lakes
 - Finding not only the tables that can be integrated but also the best way to transform and integrate them meaningfully
 - Lessons from mapping discovery
- Data Quality over Open Data
 - Are "Principles of Open Data" being achieved?

*Truth finding has been studied over mass collaboration data [Pochampally+SIGMOD14]

*Can we quantify when open data is accurate, complete, primary?

- Shazia Sadiq+, "Data Quality: The Role of Empiricism", SIGMOD Record 2018

Acknowledgments

- This work was done in collaboration with Professor Ken Q. Pu, UOIT and
 - Erkang (Eric) Zhu
 - *****Table Join and Open Data Search
 - *PhD expected December 2018
 - Fatemeh Nargesian
 - *Table Union Search
 - *****PVLDB2018: Paper will be presented this Thursday 11am Segovia III
 - *PhD expected December 2018

Data Curation Lab

Database Systems Research Bringing data to life

- Hiring Postdocs and PhD students
 - https://db.ccis.northeastern.edu/research-opportunities/
 - datalab-apply@ccis.northeastern.edu

Northeastern University

DATA Lab @ Northeastern

Scalable Management and Analysis of Big Data