ﬁ. The Chinese University of Hong Kong

Graph Indexing: Tree + Delta >= Graph

Peixian Zhao, Jeffrey Xu Yu, Philip S. Yu

The Chinese University of Hong Kong, {pxzhao,yu}@se.cuhk.edu.hk

IBM Watson Research Center, psyu@us.ibm.com

An Overview

Graph containment query

The framework and query cost model
Some existing path/graph based solutions
A new tree-based approach

Experimental studies

Conclusion

Graph Containment Query

* (GGiven a graph database G = {g,, g, ..., gy} and a query
graph ¢, find the set sup(q)={g,1q9< g, g EG/

c—cC C C—
C—C—C——C—C | >C—C T/\C_ T
C—cC C\C/ —C
(@) (b) (c) \/
c—cC
>C—C—C
e C),

* Infeasible to check subgraph isomorphism for every g;
in G, because subgraph-isomorphism 1s NP-Complete.

The Framework

» Index construction generates a set of features, F, from the
graph database G. Each feature, /, maintains a set of graph ids
in G containing, 1, sup(f).

e Query processing 1s a filtering-verification process.

 Filtering phase uses the features in query graph, g, to
compute the candidate set.
Co= [sup(f)
fSqnfeF
* Verification phase checks subgraph 1somorphism for every

graph in C . False positives are pruned.

Query Cost Model

* The cost of processing a graph containment query g upon G 1s
modeled as (= (f+ ‘Cq’ % C,
* C,: the filtering cost, and
« C, : the verification cost (NP-Complete)
* Several Facts:
* To improve query performance 1s to minimize |C,|.
* The feature set F selected has great impacts on C;, and [C |.

e There 1s also an index construction cost, which 1s the cost

of discovering the feature set F.

Existing Solutions: Paths vs Graphs

« Path-based Indexing Approach: GraphGrep (PODS’02)
* All paths up to a certain length /, are enumerated as indexing features
— An efficient index construction process
— Index size is determined by /,
— Limited pruning power, because the structural information is lost.

« Graph-based Indexing Approach: gindex (SIGMOD '04)
» Discriminative frequent subgraphs are mined from G as indexing features

— A costly index construction process
— Compact index structure

— Great pruning power, because structural information is well-
preserved

Tree Features?

* Regarding paths and graphs as index features:

* The cost of generating path features 1s small but
the candidate set can be large.

e The cost of generating frequent graph features 1s
high but the candidate set can be small.

* The key observation: the majority of frequent
graph-features (more than 95%) are trees.

 How good can tree features do?

A New Approach: Tree+A

* To explore indexability of path, tree and graph.
e A new approach Tree+A :

* To select frequent tree features.

* To select a small number of discriminative graph-
features that can prune graphs effectively,

on demand, without costly graph mining.

Indexability of Path, Tree and Graph

* We consider three main factors to answer indexability.

* The frequent feature set size: |F]
 The feature selection cost (mining): Cpg

* The candidate set size: |C||

The Frequent Feature Set Size: |F]

e 95% of frequent graph features are trees. Why?
« Consider non-tree frequent graph features g and g’.

» Based on Apriori principle, all g’s subtrees, t;, t,,

..., t, are frequent.

» Because of the structural diversity and vertex/edge
label variety, there is a little chance that subrees of

g coincide with those of g’.

10

Frequent Feature Distributions

Number of Freguent Features

00 ———— .
ol —— é Fo|
60 [fr| = Py [
F 0 |
. OO I gl
4000 - i
2100
3000 - 19
L
2000 - -0 0
100 - §
O A fg 1
0 5 10 15 N 12345678910
Frequent Feature Size Frequent Feature Size

Number of Freguent Features

7000
6000
5000
4000
3000
2000
1000

Numbey
= =
I
Frequent Feafures

The Real Dataset (AIDS antivirus screen dataset) N = 1,000, 6 = 0.1

11

The Feature Selection Cost: Cp,

* (Given a graph database, G, and a minimum support
threshold, o, to discover the frequent feature set £
from G.

* Graph: two prohibitive operations are unavoidable
— Subgraph isomorphism
— Graph isomorphism

» Tree: one prohibitive operation 1s unavoidable
— Tree-in-Graph testing

e Path: polynomial time

12

The Candidate Set Size:

C)

Let pruning power of a frequent feature, f, be

G| - |su
\/

Let pruning power of a frequent feature set S = {f,, 5, ..., f,}

o - [y sup()

power(S) = W

Let a frequent subtree feature set of graph, g, be

T'(g)=1{t;t, ..., t,;. power(g) = power(T (g))
Let a frequent subpath feature set of tree, t, be
P@®=1{p;p5,...,p,} power(t) = power(P (¢))

13

The Pruning Power

Pruning Power

06

0.4

0.2

0

081

| | |
power(g)

power(T(g))

0

20 40 60 80 100
Frequent graphs

120

Pruning Power

10 power(q) 1
‘. power(P(g)) ®
0.8 ¢ .
o.l' . &' o u"' ’
06 - l..' o5 :
" .. o’ 00 000
¢ o Y0t ! o
04 . TR XY N
[] ¢ ..‘.
o2l ¢
' PR f'o
¢ Ol.
0 | | \ \ | |
0 20 40 60 80 100 120

Frequent graphs

The Real Dataset (AIDS antivirus screen dataset) N = 1,000, 6 = 0.1

1

4

Indexability of Tree

e The frequent tree-feature set dominates (95%).

* Discovering frequent tree-features can be done
much more efficiently than mining frequent

general graph-features.

* Frequent tree features can contribute similar

pruning power as frequent graph features do.

15

Add Graph Features On Demand

* Consider a query graph g which contains a subgraph g

» If power(7(g)) = power(g), there 1s no need to index the
graph-feature g.

« If power(g) >> power(7(g)), it needs to select g as an
index feature, because g 1s more discriminative than 7(g),
in terms of pruning.

* Select discriminative graph-features on-demand, without

mining the whole set of frequent graph-features from G.

» The selected graph features are additional indexing

features, denoted A, for later reuse.

16

Discriminative Ratio

* A discriminative ratio, €(g), 1s defined to measure the
similarity of pruning power between a graph-feature
g and 1ts subtrees T(g).

power(g) - power(T (g}

2(g) =1 powe pove(g) -0

| if power(g) =0

1

* A non-tree graph feature, g, 1s discriminative 1f

&(g) 2 g,.

17

Discriminative Graph Selection (1)

e Consider two graphs g and g’°, where gl g°.
 If the gap between power(g’) and power(g) is large, reclaim
g’ from G. Otherwise, do not reclaim g’ in the presence of
g.
* Approximate the discriminative between g’ and g, in the

presence of frequent tree-features discovered.

sup(g)(?) sup(g')(?)
E(QJEGOT Tf(g')ii_’fo

|sup(T (g))[2|4
|sup(T (g'))| 04|

sup(7T,) - sup(Ty)

18

Discriminative Graph Selection (2)

* Let occurrence probability of g in the graph DB be

sup(g)
prig =0l _,

e The conditional occurrence probability of g°, w.r.t.

g | Prigng) Prld) |suplg')
Prigle)= —p =Py =
/ (.9 |9) Pr(g) Pr(g) \sup(g)|

» When Pr(g’|g) is small, g’ has higher probability to
he discriminati

19

Discriminative Graph Selection (3)

* The upper and lower bound of Pr(g’|g) become

| _ [l-lswlT(g))
Pr(gg))] M- —@ ¢

W T-ap

suply) U o1 -¢)

Pr o) = > ; T —
r(glg) sup(g)] (|- M-Isl'tt_pe(nf(g)!)

because «(g) > ¢, and «(g’) >¢,. recall: ox=[sup(x)|/| G|

20

Discriminative Graph Selection (4)

* Because 0 < Pr(g’|g) <1, the conditional occurrence
probability of Pr(g’|g), 1s solely upper-bounded by

Ti (g’)

maz|e, 0 _a T4(1-ae
(Org)- o)) 21 -

21

An Experimental Study

We compared our Tree+A with glndex (X. Yan, P.S. Yu, and J. Han,
SIGMOD’04) and C-Tree (H. He and A.K. Singh, ICDE’06).

We used AIDS Antiviral Screen Dataset from the Developmental
Theroapeutics Program in NCI/NH
()

* 42,390 compunds from DTD’s Drug Information System.

» 63 kinds of atoms (vertex labels).

* On average, a compond has 43 vertices and 45 edges.

» Atmax, 221 vertices and 234 edges.

We also used the graph generator (M. Kuramochi and G. Karypis,
ICDM’01).

We tested on a 3.4GHz Intel PC with 2GB memory.

22

Index Construction (Real Dataset)

Number of features

10000
9000
8000
7000
6000
5000
4000
3000
2000

[[
| TreetA —<X—
glndex ———

0 2000 4000 6000 8000 10000

Database size

Feature Size

Index construction time (Sec)

600

500

400

300

200

100

0

Index size (Kbyte)

25

N
(o]

-
an

-
Q

&)

o

2000 4000 6000 8000 10000
Database size

Index Size

Tree+A —<—
glndex ———
C-Tree —&—

2000 4000 6000 8000 10000

Database size

Construction Time

23

Real Dataset: False Positive Ratio (|Cq|/|sup(q)|)

6 | | | [
Tree+A —X—
5 | gindex —+— —
L C-Tree ———
o Tree —&—
a 4 |
=1
0
—~ 3 r 7
G
© o L i
1 L i
| | | | |
0 5 10 15 20 25 30

Query size
N=1,000

24

Conclusion

» Tree 1s an effective and efficient graph indexing

feature to answer graph containment queries.
 We analyze the indexibility for tree features.

 We propose a Tree+A approach that holds a compact
index structure, achieves better performance in index
construction, and provides satisfactory query
performance for answering graph containment

queries.

25

