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Motivation

Large
result
sets

@ Rank | Results
Ranking queries 1
with —|

scoring functions 3

Can we rank the data according to their typicality?
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Motivation Example

 Mammals: 5400 species, 1200 genera, 153
families and 29 order

» Which one is more typical, lion or platypus?

pltypué a

Giving birth to live young, Laying eggs.
like most other mammals.
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Challenges & Contributions

* How to define typicality in database query
answering?

— Borrow the concept from Psychology and
Cognitive Science.

 How to evaluate typicality ranking queries
efficiently?
— Propose three efficient evaluation algorithms.
« How are the results on real data sets?

— Apply typicality analysis on NBA data set and
Z00 data set.
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Outline

* Problem definition
— Two types of typicality measure

« Query evaluation
— Exact algorithm
— Approximation algorithms

» Experimental results
— /00 database and NBA statistics
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Psychology Point of View

“An object is more typical, if it is more
S|m|Iar to other objects in the same category

“An object is more typical, if it shares more
features with other objects in the same category”

plypus
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From Psychology to Database

 Lion is more typical than platypus as a
mammal

* |f lion and platypus are both unknown
animals, lion is more likely to be labeled as
a mammal

Given a set of objects S and an object o,
o is more typical than other objects in S,

if it is more likely to appear in S than others.
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Simple Typicality

» Given a set of objects S, we treat S as an
independently and identically distributed
sample of a random variable S.

0.4 Probability density
curve of S
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Simple Typicality

* The simple typicality of an object oe S is

defined as T(o,S)zf(())I

— where f is the probability density '
0.4 Probability density
curve of S |
0.3 f
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Top-k Simple Typicality Query

A top-k simple typicality query finds the k
objects with the largest simple typicality
values

0.4 Top-3 most
typical points

0.3
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0.1
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Discriminative Typicality

« Given a set of objects S, and a target subset C,
we treat C and S-C as independently and
identically distributed samples of random

variable C and S-C, respectively.
Target subset C '

Subset S-C
0.4} i

0.2}

© 0000800000000 ©
o, O,

0 V_

0.2}
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Discriminative Typicality

* The discriminative typicality of an object
should capture two factors

— How typical it is
— How discriminative it is

* The discriminative typicality of an object
oe C Is defined as

DT(O,C,S)=f(0)><[f(C|0)—f(S—CIO)]I

/7 ~
Probability density of o in S. Given o, the probability difference
The larger, the more typical. for the appearance of C and S-C.

The larger, the more discriminative.
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Bayesian Explanation

 Discriminative typicality

DT(O,C,S)=f(0)><[f(C|0)—f(S—CIO)]I

-
Bayesian Theorem

DT(O,C,S)=f(0|C)f(C)—f(Ol(S—C))f(S—C)I

The typicality of o The typicality
in the target set C of oin S-C
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Discriminative Typicality

* The curve of discriminative typicality
— O1 is more typical than O2
— But O1 is not as discriminative as O2

Subset S-C I
o4 Targ_et subset C '

0.2

o @000 000 .;.. &
\01 0,
Discriminative typicality curve '
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Top-k Discriminative Typicality

* A top-k discriminative typicality query finds
the object O in target subset C with the
largest discriminative typicality

0.4

0.2

o @000 000 o0 9 . :
'\ O, 0,
Discriminative typicality curve '
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Summary: Typicality Definitions

« Simple typicality
— The membership probability of o in S
» Discriminative typicality

— the difference between its membership
probability in the target set C and S-C

» Challenges of Query Evaluation

— How to compute the probability density of an
object?

— How to find the objects with the highest
probability density?
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Probability Density Estimation

» Kernel Density Estimation
—Gaussian kernel

dist (0,0;)*
2h*

G,(0,0;) =

Gaussian kernel function curve

>
O, 0 X
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Kernel Density Estimation

_dist(0,0;)’

n 1 n >
f()=23.6,0.0)=—=Dc *

/7 N
/ S : .
R4 N Estimated probability
/ N density curve
7N // A
/7 = \\ N
/ N\
/ \
/ \
/ \
: >
0,0 O, 0,0,0.0,0,0, O, 0O, X
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An Exact Algorithm

e Framework

— For each object O, compute its simple
typicality score (i.e., probability density at O).
— Return the k objects with the highest typicality
Scores.
« Complexity
— O(n?), where n is the number of objects in the
data set.

— Complexity similar to the discrete 1-median
problem.
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RT: Randomized Tournament

* The typical objects in a random sample
are very likely to be typical in the data set

Final winner
O

"

Winners go to "
the next level é
. " Random
t objects )
per group ‘ ‘I grouping
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RT: Randomized Tournament

» Step 1: Given a group size t, randomly
partition the data set into | n/t| groups

@ ® o0 000 0 ¢ |

O, O, 0;0,05040,04 O Oy X

G1={O1, 055 O10} ® ® &
01 O5 010 X

G2={021 035 O8} ‘ ‘ ‘ >
O, O3 Og X

G3={0,,04,0,,0,} oo o >
O, OO, Oq X
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RT: Randomized Tournament

« Step 2: Find the most typical point in each
group

G1={0,, O, O,;} — most typical point =O;

G2={0,, O,;, Og} — most typical point =0,

O O O
O, Os Os

XV

00 @

XV
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RT: Randomized Tournament

« Step 3: Partition the winners again and
repeat the tournament, until the final
winner is found.

G={03, 05, 06} — most typical point =05

O—oO0 ' Yo¥ ' YoNoRNe
—/ —/
C3

O

The approximate most typical point is O, '
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RT: Randomized Tournament

« Complexity: O(tn)= O(t?)xO(n/t)
— Complexity in each group: O(t?)
— Total number of groups: O(n/t)

* Analysis
— Pros: very efficient.
— Cons: no approximation quality guarantee.

Can we find an approximation algorithm with quality guarantee? l
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Local Typicality Approximation

« Observation in Kernel Density Estimation

— Typicality of o is the sum of contribution from other
objects in the data set.

— The contribution decays exponentially as the distance
to o increases.

Gaussian kernel function curve

R AN

>
O, 0 O, X
* Local Approximation

— To approximate the typicality score of O, we only
need to consider the points in the neighborhood of Q.
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Local Typicality Approximation

 o-local neighborhood

— The o-local neighborhood of an object o contains the
points whose distance to o is at most c.

>

0,0 O, 0,0,0.0,0,0, O, O, X

V]
P

e} o :

 Local simple typicality

— The local simple typicality of a point o Is the
probability density estimated by its c-local
neighborhood.
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DLTA

 Direct Local Typicality Approximation

— For each object O, compute its /ocal simple
typicality.

— Return the k objects with the greatest local
simple typicality scores.

« Approximation Quality

— Suppose O is the most typical object, and O’
IS the object with largest local typicality. Then

7(0,5)-T(0',5)<
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Computing o-Local Neighborhood
+ VP-Tree

— An index structure in generic metric space.
— Support various similarity search.

Qe

Root
a,o,cd| |ef,qg,h
ab|lcd| |ef||g,h
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Computing o-Local Neighborhood

« Computing o-local neighborhood

— The o-local neighborhood of a point p can be
computed by recursive tree search

P ]

Root
P
a,o,c,d| |e,f,g,h
. NIZAN
abllcd| |ef]|lg,h

o-local neighborhood: ¢ e, f g, h
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DLTA: Summary

« Computing the local typicality of o
— O(LN(o, o) time.
* LN(o, o) is the o-local neighborhood of o

* The c-local neighborhood may contains all the
points

« Complexity: O(n?)
* Analysis
— Pros: provide constant-factor approximation;

efficient in practice.
— Cons: time complexity is still O(n2).
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LT3: Local Tournament

 Review: randomized tournament

Final winner
O

Random
grouping
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LT3: Local Tournament

* Review: Local Typicality Approximation

— Only the objects in the local neighborhood
contributes a lot In typicalityf computation

-
-

-
f’

his closeto e and f
d(e,h) > d(f,h)

-
a_---
_ -

a is far away from both e and f
d(a,e) =d(a,f)

 Local Tournament

Tournament Local typicality Local
mechanism | © approximation tournament
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LT3: Local Tournament

« Combined with local typicality approximation.

Final winner
O

"

Select the
local winners. =un Local
: ‘ grouping
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Local Tournament

» Computing the most typical point
— Conduct tournaments from bottom up.

The approximate most typical point: e '

c,e

b,c e,h

SN N

a,bl|cd| |ef||gh
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Local Tournament

« Computing the 2nd most typical point
— Remove the most typical point e

— Re-conduct The approximate 2nd most typical point: CI
containing e ﬁ

c,h
\
° b,C f.h
® be O AN

abljcd| | f||gh
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Local Typicality Computation by Sampling

« Sample the o-local neighborhood of o

— Draw a random sample S in the o-local
neighborhood of a node.

— Estimate the local typicality using the random
sample S.

» Chernoff-Hoeffding bound

— (¢,0)-approximation of local typicality if sample
size: =
;2
o2t In =
327 e In-

2

1S >

E
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Analysis of LT3

e Summary

— Local tournament, combining
 Local typicality approximation.
« Randomized tournament.

— Local neighborhood sampling.
» Approximation quality

— Probabilistic approximation quality guarantee
* Time complexity

— O(nlogn)

* VP-tree contruction
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Algorithm Summary

. Answer Time .
Algorithm Quality Complexity Techniques
Exact 5
Algorithm Exact On®)
oT No quality O(kn) Randomized
guarantee tournament
Constant Local typicality
DLTA approximation O(n3) approximation;
ratio VP-tree index
Local typicalit
Probabilistic Aboroximation.
LT3 quality O(nlogn) Local tournament;
guarantee _ _
Uniform sampling
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Empirical Study

 Real Data Sets

— Zoo Database from the UCI Machine Learning
Database Repository.

— NBA 2005-2006 Season Statistics from Yahoo!
Sports.

« Synthetic Data Sets

— Quadraped Animal Data Generator from the
UCI Machine Learning Database Repository.
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Zoo Database

* 40 mammals, 20 birds, 14 fish, 10 invertebrate,
8 insects, 5 reptiles, 3 amphibians

Category Most typical Most discriminative typical | Most atypical
Mammal | Boar, Cheetah, Leopard, Lion,| Boar, Cheetah, Leopard, Lion Platypus
Lynx, Mongoose, Polecat, Lynx, Mongoose, Polecat,

Puma, Raccoon, Wolf Puma, RaCCOOH, Wolf
Bird Lark, Pheasant, Sparrow, Lark, Pheasant, Sparrow, Penguin
Wren Wren
Fish Bass, Catfish, Chub, Herring, | Bass, Catfish, Chub, Herring, Carp
Piranha Piranha
Invertebrate Crayfish, Lobster Crayfish, lobster Scorpion
Insect Moth, Housefly Gnat Honeybee
Reptile Slowworm Pitviper Seasnake
Amphibian Frog Frog Newt, Toad

Introduction
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NBA 2005-2006 Season Statistics

The top-3 most typical players

Name Position | Minutes | PPG | 3PT | Rebounds | Ast | Blk | PF
Danny Granger | Forwards | 22.6 7.5 | 1.6 4.9 1.2(0.8]|2.7
Devean George | Forwards | 21.7 6.3 3 3.9 1.0/0.5(2.2
Michael Finley | Guards 26.5 | 10.1 5 3.2 1.5(0.1 (1.3
The top-3 most atypical players

Name Position | Minutes | PPG | 3PT | Rebounds | Ast | Blk | PF
Tracy McGrady | Guards 37.1 244 | 6.6 6.6 4810919
Allen lverson Guards 43.1 33.0 | 4.1 3.2 7410117
Doug Christie | Guards 26.5 3.7 | 0.1 1.9 20(0.1(1.4
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Approximation Quality
* DLTA has the best approximation quality.

» LT3 performs a little worse than DLTA, but
the overall error rate iIs still under 5%.

 The error rate of RT is around 10% to 15%.

Approximation Quality
DLTA > LT3 > RT
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Approximation Quality

Error rate (%)

(a) Error rate vs. neighborhood.
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Efficiency and Scalability

 All three algorithms are scalable.
— 100,000 tuples, 25 dimensions.

« RT has a linear scalabillity.

« LT3 has a better performance and scalability
than DLTA on large databases.

« DLTA is not as efficient as RT and LT3, but still
a lot better than the exact algorithm.

Efficiency and scalability:
RT > LT3 > DLTA
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Efficiency and Scalability

S ' " DTLA - 5 400 X R Exact ——
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(¢) Runtime vs. dimensionality. (d) Runtime vs. cardinality.
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Related Work

» Psychology and Cognitive Science
— No efficient query answering algorithm.

« Top-k Ranking Queries
— Requires a scoring function defined by users.

* Discrete 1-Median Problem
— Different optimization functions.
« Spatially-decaying aggregation
— Defined on Euclidian plane or graphs.
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Summary

« Top-k typicality queries

— Simple typicality and discriminative typicality.

— Applications: summarization of answer set, etc.
A series of efficient algorithms

— Exact algorithm.

— Randomized tournament.

— Local typicality approximation: DLTA and LT3.
« Empirical study

— Real data sets and synthetic data sets.
 Future direction

— How to use typicality in data summarization?

— How to evaluate the typicality of a group of objects?
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Q&A

Thank you!



