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Semantic Modeling: Motivation 

� Content-Summarization: Extracting high level 

semantic events from low-level sensor readings

� What is the current traffic pattern?

� Which room has the highest-likelihood of occupancy?

� Is a storm approaching?

Individual Recognition via 
models trained on sound

� Vocal Recognition of Acorn 

Woodpeckers by acoustic 

sensors

� Which is this individual?

� Where is this bird?

� Are any birds alarmed?
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Motivation

� Track movement to study zebra 

behavior & social patterns

� Zebra’s movement characterized 

into (G) Grazing,  (W) Walking, 

and (F) Fast Moving 

� Temporal behavior is a sequence 

of states

� Ex: GWWWWFGG

� Training of Markov Chains over 

such sequences

� Start  state vector (π) 

� Transition vector (Γ)

� P(GWW) = π(G) Γ(G,W) Γ(W,W) 

Zebranet Project

Zebra Mobility: Markov model
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Semantic Modeling

� Hidden Markov Models (HMMs)
� Additional Emission Vector (ξ)
� Probability of state path:  Akin to MC   

� Probability of observing sequence 
from a particular state path: 
� P(GWW | S1S2S1) =  π(S1) ξ(S1,G) 
Γ(S1,S2) ξ(S2,W) Γ(S2,S1) ξ(S1,W)

� Probability of observing the sequence 
is the summation of sequence 
probability over all possible state-
paths
� Viterbi Algorithm: O(n2k) 

computation for a n-state HMM, 
and k-length sequence

Zebra Mobility:  HMM model
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Goals 

� Identify interesting behaviors in the network

� Ex: Which zebranet sensors observed FFFFF sequence 

with a likelihood of 0.85? (denoting a possible predator 

attack)  

� Sequence Queries

� Range Query: Return sensors which observed a particular 

pattern with a likelihood of at least Φ?

� Top-1 Query: Which is the sensor that is most likely to 

exhibit a given behavior?

� Model Query

� 1-NN Query: Which sensor model is the most similar to 

the given model? 

� Where is the woodpecker?
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Centralized Solution

� Each sensor trains a model on the 

observation sequence

� Transmits the model to the Base Station (BS)

� Queries are answered at BS

� Each update of model is transmitted to the 

BS
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A Better Solution: Slack-based 
Centralized Scheme

� Slack parameter maintained at local models

� Updates are not transmitted if the change is 

within the slack 

� If query cannot be answered by the BS using 

the cached models, it is transmitted to each 

node
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Talk Outline

� Motivation & Preliminaries

� MIST: An In-network Model based Index 
Structure

� Query Algorithms

� Experiments

� Conclusions
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MIST Index Structure

� Overlay a tree on the network

� Each sensor trains a MC/HMM on the 

observed sequences 

� Bottom-up aggregation of index structure 

� Types of Index Models

� Average Model

� Min-Max Model

� Index models capture correlation between 

constituent models 
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Modeling Correlations

� Models at nodes S1 and 
S2 are (1-ε)-correlated if 
for all corresponding 

parameters σ1 of S1, and 
σ2 of S2 :

� ε → 0 : high similarity
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MIST: Average Index Models

� Index maintains

� Model whose 
parameters are average 
of the constituent 
models

� βmax, βmin, and ε’

� ε’ = ε/(2-ε)

� σ i ≥max {σ i
avg(1 – ε’ ), βmin }

� σ i ≤min {σ i
avg/(1 – ε’) , βmax }
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MIST: Min-Max Index Models

� Index maintains

� Min Model: 

parameters are 

minimum of the 

constituent models

� Max Model is similarly 

defined
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Index Models for HMMs

� Correspondence of states required to 
define index models

� Domain knowledge to infer 
correspondence between states
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MIST: Hierarchical Index Structure

S1 Sc

L1 Lk

R

.  .  .

. . . . . . 

1-ε1’

1-ε2’
1-ε’

� Average Model:

� (1-ε’) = (1- ε1’) (1- ε2’)

� βmax, βmin aggregated at 

node R   

� Min-Max model aggregation 

similar to an R-Tree
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Dynamic Maintenance

� After every period ‘d’, each sensor trains a 

new model on the recent observation 

sequence

� Update protocol: Child does not update its 

parent if the new model is (1-δ)–correlated 

with the model maintained at the parent

� Correlation maintained at the parent 

� (1 - εslack) = (1- δ) (1- εno-slack)

� Optimal slack analysis in paper
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Talk Outline

� Motivation & Preliminaries

� MIST: An In-network Model based Index Structure

� Query Algorithms

� Experiments

� Conclusions
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Range Querying

� Return all nodes that have observed a 

particular sequence of symbols q: q1…qi…qk

with a probability > Φ

� Assume P(q)  =  σ 1 …σ i... σ k

� Pruning by Average model Savg:

� lb:    Π k [max {σ i
avg(1 - εs ), βmin (1-δ)}]

� ub:   Π k [min {σ i
avg/(1 - εs) , βmax/(1-δ)}] 

� Pruning by Min-Max models Smin & Smax

� lb:  P(q|Smin)(1-δ)
k

� ub: P(q|Smax)/(1-δ)
k
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Top-1 Query

� Return the sensor that has the highest 

probability of observing the query sequence

� Pruning employed by index models

� compute lower and upper bounds on the query 

probability for each child-subtree

� Prune the child-subtree if the upper bound from 
this subtree is smaller than the lower bound from 

another child-subtree  
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Model Querying

� Return the sensor model most similar to the 

query model.

� Similarity measure: L2 distance between 

corresponding model parameters  

� Average Models

� Create an M-Tree index 

� Index node: routing object Savg and covering radius

� Min-Max Models 

� Build an R-Tree based index

� Index node: MBR in the vector space
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Semantic Modeling & Querying 

� Motivation & Preliminaries

� MIST: An In-network Model based Index Structure

� Query Algorithms

� Experiments

� Conclusions
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Experimental Results

� Datasets

� Lab-data: 

� 4 rooms, 4 sensors in each room. 

� Temperature readings every 30s for 10 days.

� Symbols: C (cold), P (Pleasant), H (Hot)

� Example semantic queries:  CCHHCC , PPPPP

� Synthetic data

� Network size varied between 16-512

� State size varied between 3-11

� Correlation parameter ε varied between 0.001 -0.5  
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Compared Techniques

� Centralized scheme with no slack

� A node transmits each parameter update to the base 

station 

� Zero querying cost 

� Centralized scheme with slack

� Slack maintained at base station 

� Updates transmitted if they exceed the slack

� If query cannot be answered by the BS using cached 
models, it is transmitted to the nodes.

� MIST schemes

� Without slack

� With slack at every level of the tree



23

Update cost
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Range query
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Top-1 query
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Model query
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Scalability with network size
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Semantic Modeling & Querying 

� Motivation & Preliminaries

� MIST: An In-network Model based Index Structure

� Query Algorithms

� Experiments

� Conclusions
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Semantic Modeling & Querying 

� Content summarization using MCs and HMMs 

� Semantic queries

� Sequence-based:  Range and Top-1 queries

� Model-queries 

� MIST: In-network index structure

� Average model and ε, βmax, βmin

� Min-Max model

� Efficient pruning of queries via MIST  

� MIST shows superior scalability than centralized 
schemes in update, query and total communication 
costs
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Future work

� Other models

� Other ways of summarizing 
parameters
� βmax, βmin

� Other query algorithms

� State correspondence problem

� Application domains

� Learning the model

Questions?


