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Semantic Modeling: Motivation

= Content-Summarization: Extracting high level
semantic events from low-level sensor readings
o What is the current traffic pattern?
o Which room has the highest-likelihood of occupancy?
o Is a storm approaching?

= Vocal Recognition of Acorn
Woodpeckers by acoustic
Sensors
o Which is this individual?
o Where is this bird?

o Are any birds alarmed? Individual Recognition via
models trained on sound




\ Motivation

Zebranet Project

= Track movement to study zebra
behavior & social patterns

= Zebra’s movement characterized
into (G) Grazing, (W) Walking,
and (F) Fast Moving

= Temporal behavior is a sequence
of states
o Ex: GWWWWFGG

= Training of Markov Chains over
such sequences
= Start state vector (1)
= Transition vector (I')
= P(GWW) = m(G) I'(G,W) [ (W,W)

Zebra Mobility: Markov model
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Semantic Modeling

Hidden Markov Models (HMMs)
o Additional Emission Vector (¢)
o Probability of state path: Akinto MC

0.6

Predator Predator
Present Absent
o Probability of observing sequence

from a particular state path i I

(GWW S,S,5,) S,) ¢(S,,G) 02 02 06 06 03 01
r(s,.S,) 82,\7\/ 82,8 €5, W)

Zebra Mobility: HMM model

o Probability of observing the sequence
is the summation of sequence
probability over all possible state-
paths

Viterbi Algorithm: O(n2k)
computation for a n-state HMM,
and k-length sequence



Goals

Identify interesting behaviors in the network

o Ex: Which zebranet sensors observed FFFFF sequence
with a likelihood of 0.857 (denoting a possible predator
attack)

Sequence Queries

o Range Query: Return sensors which observed a particular
pattern with a likelihood of at least ®?

o Top-1 Query: Which is the sensor that is most likely to
exhibit a given behavior?
Model Query

o 1-NN Query: Which sensor model is the most similar to
the given model?

Where is the woodpecker?



Centralized Solution

Each sensor trains a model on the
observation sequence
o Transmits the model to the Base Station (BS)

Queries are answered at BS

Each update of model is transmitted to the
BS



A Better Solution: Slack-based
Centralized Scheme

Slack parameter maintained at local models

Updates are not transmitted if the change is
within the slack

If query cannot be answered by the BS using
the cached models, it is transmitted to each
node



'Talk Outline

= Motivation & Preliminaries

= MIST: An In-network Model based Index
Structure

= Query Algorithms
= Experiments

= Conclusions



MIST Index Structure

Overlay a tree on the network

Each sensor trains a MC/HMM on the
observed sequences

Bottom-up aggregation of index structure

Types of Index Models
o Average Model
2 Min-Max Model

Index models capture correlation between
constituent models



Modeling Correlations

Models at nodes S, and

Example: 0.75 correlation
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MIST: Average Index Models
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MIST: Min-Max Index Models

Index maintains

o Min Model:
parameters are
minimum of the
constituent models

St Sz
04 |0.6 0.3 |0.7
0.7 |0.3 06 |04

(Ty) \ / (T2)

o Max Model is similarly

defined
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(-min) (rmax)2




Index Models for HMMs

Correspondence of states required to
define index models

Domain knowledge to infer
correspondence between states
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MIST: Hierarchical Index Structure

Average Model:
o (1-€) =(1-¢&) (1- &)

- Bmaxs Bmin aggregated at
node R

Min-Max model aggregation
similar to an R-Tree




Dynamic Maintenance

After every period ‘d’, each sensor trains a
new model on the recent observation
sequence

Update protocol: Child does not update its
parent if the new model is (1-0)—correlated
with the model maintained at the parent

Correlation maintained at the parent

0 (1 - ggq0) = (1-0) (1- €15 giqek)
o Optimal slack analysis in paper
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Range Querying

Return all nodes that have observed a
particular sequence of symbols g: g'...q'...g"
with a probability > @

Assume P(q) = ol ..0'... ok

Pruning by Average model S,

a lb: TTk[max {o ian(l - € ), Bmin (1-0)}]

o ub: [1k[min{o iavg/(l - &), Bmax/(l'a)}]
Pruning by Min-Max models S, & S, ..
2 Ib: P(qlS,.. )(1-5)k

o ub: P(qlS,,)/ (1-0)
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Top-1 Query

Return the sensor that has the highest
probability of observing the query sequence

Pruning employed by index models

o compute lower and upper bounds on the query
probability for each child-subtree

o Prune the child-subtree if the upper bound from
this subtree is smaller than the lower bound from

another child-subtree
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Model Querying

Return the sensor model most similar to the
query model.

Similarity measure: L, distance between
corresponding model parameters

Average Models

o Create an M-Tree index

o Index node: routing object S,,, and covering radius
Min-Max Models

o Build an R-Tree based index
o Index node: MBR in the vector space
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Experimental Results

Datasets

o Lab-data:
4 rooms, 4 sensors in each room.
Temperature readings every 30s for 10 days.
Symbols: C (cold), P (Pleasant), H (Hot)
Example semantic queries: CCHHCC , PPPPP

o Synthetic data
Network size varied between 16-512
State size varied between 3-11
Correlation parameter € varied between 0.001 -0.5
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Compared Techniques

Centralized scheme with no slack

o A node transmits each parameter update to the base
station

o Zero querying cost

Centralized scheme with slack
o Slack maintained at base station
o Updates transmitted if they exceed the slack

o If query cannot be answered by the BS using cached
models, it is transmitted to the nodes.

MIST schemes
o Without slack
o With slack at every level of the tree
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Update cost
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Range query

Synthetic MCs: Range query cost
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Query cost in bytes

Top-1 query

Synthetic HMMs: Top-1 query cost
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Model query

Synthetic MCs: Model query cost
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Communication cost in bytes

Scalability with network size

Scalability with network size
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Semantic Modeling & Querying

Content summarization using MCs and HMMs
Semantic queries

0 Sequence-based: Range and Top-1 queries
o Model-queries

MIST: In-network index structure

o Average model and €, B3,,..,; Bmin

2 Min-Max model

Efficient pruning of queries via MIST

MIST shows superior scalability than centralized
schemes in update, query and total communication
costs
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Future work

Other models

Other ways of summarizing
parameters

J Bmaxs Bmin

Other query algorithms

State correspondence problem
Application domains

Learning the model

Questions?
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