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Introduction

• What is a sensor network?

– A collection of nodes

– Node components

• Sensors (e.g. temperature)

• Radio (wireless) communication

• Battery power

Crossbow Mica2 WiSARD
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Duke Forest Deployment
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Getting All the Data

• Scientists often want ALL the data!

– No aggregates (e.g. mean)

• Continuous reporting

– Repeatedly transmit readings to root

• Explicitly construct central DB and use 
traditional processing techniques

• Radio costs too high!

�Cost to transmit a bit over radio ~1000 times more 
than to execute machine instruction

�Push processing into network with 
suppression



Outline

1. Suppression

2. Failure!

3. Coping using redundancy

4. BaySail
• Inference of missing readings, parameters
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Suppression

• Push-based communication
– Only report deviations from a model

• Value-based Temporal Suppression

– model: tempt=temp(t – 1)

• In practice, include error tolerance

if (curr_temp != last_sent_temp) {

transmit(temp);

last_sent_temp=curr_temp;

}



The Catch for Suppression

• What about reports generated, but lost to failure?

• For non-reported values, the base station cannot 
distinguish failures from suppressions
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y1, y2, y3, y4

y1, ?2, y3, y4

y1, ?2, y3, ?4

Environment

Supp.Sensor

Network

Base Station

Transmitted

May be a 
spatio-temporal
suppresion scheme
with intra-node 
communication
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Coping With Failure

• Focus on simple temporal suppression

• Learn ALL missing values

System-level acks +
re-transmissions

• Sender re-sends until

receiver returns

acknowledgement

� Minimize chance
report not received

Application-level
redundancy

• Augment existing

reports

� Minimize impact

of missing report

Two Coping Strategies
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Redundancy

• Temporal Suppression with error tolerance

– Report only if reading changes beyond ε since last 
reported

• 5 report types

• Increasing payload, increasing info

Name Payload Addition

Standard Node reading

Counter Incrementing report number

Timestamp Last n report times

Timestamp D Last n report times + direction bits

History last n times + readings



TinyOS Implementation

• Application-level Redundancy

– Simple to implement

• 40-50 lines of additional code to a tutorial example

• Lower-level redundancy

– Activate “acks” in MAC-layer code

– Re-transmissions in application code

• Failure Rates

– Tied to distance, clearance, battery, etc.

– Independent over time

– 30% failure rate with maximum 2 re-transmissions 

gives <3% effective failure rate
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– Temporal suppression with ε = 0.3, prediction = last reported

– Actual: (x1, x2, x3, x4) = (2.5, 3.5, 3.7, 2.7)

– Base station receives: (2.5, nothing, nothing, 2.7)

– With Timestamp (r=1)

• (2.5, failed, suppressed, 2.7)

• |x2 – 2.5| > 0.3; |x3 – x2| ···· 0.3; |2.7 – x2| > 0.3

– With Timestamp+Direction Bit (r=1)

• (2.5, failed & increased, suppressed, 2.7 & decreased)

• x2 – 2.5 > 0.3; –0.3 ···· x3 – x2 ···· 0.3; x2 – 2.7 > 0.3

– With Count

• One suppression and one failure in x2 and x3; not sure which

• A very hairy constraint!

Suppression-Aware Inference
• Redundancy + knowledge of suppression scheme )

hard constraints on missing data
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• Posterior: p(Xmis, ΘΘΘΘ|Xobs), with Xmis subject to constraints



Using Redundancy
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BaySail Key Features

1. Estimates missing readings/parameters

2. Bayesian provides posterior distributions, 
not just single point estimates

3. Missing data not generically missing
• Constrain possible settings using suppression 

scheme and redundancy

4. Computing posteriors is hard
• Gibbs’ sampling iteratively generates samples 

of reading time series and of each parameter

5. Combine simple, low-cost in-network 
reporting with efficient out-of-network 
inference
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BaySail Experimental Example

• Simple model of soil moisture

– ys,t = ct + φ ys,t-1 + εs,t

• ct is a series of known precipitations

• φ 2 (0,1) controls how fast moisture escapes soil

• Cov(Ys, t , Ys’, t’) = σ2 (φ|t – t’|/(1 – φ2)) exp(–τ ||s – s’||)

• τ controls strength of spatial correlation over distance

• Prior: 1/σ2 ~ Gamma, φ ~ U(0,1), τ ~ Gamma

• Joint Posterior: p(Ymis, φ, σ2, τ | Yobs) subject to                

constraints



Why the Direction Bit?

• TS gives OR constraints: |x2-x1| > ε

– Inefficient rejection sampling

• TS+D gives linear constraint: x1 – x2 > ε

– Allows for more efficient sampling [Rodriguez-Yam et al. 04]
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>100x improvement…
the major reason for 
the direction bit!
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3 Missing Values Cluster

BayBase: Conditioning on
model and endpoints

BaySail: Conditioning on
model, endpoints, and that

missing values are 

suppressions

s ss
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Metrics

• Compare posterior mean to actual?

– Mean misleading for bimodal distributions

• High density regions (hdr)

– Given percentage x, return minimal length 
range(s) of values such that x% of sample’s 

probability density contained in range(s)

– Ensure hdr covers actual reading x% of time

50% 90%

r1 r2 r3 r4
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Cost vs. HDR Interval

• Parameters induce 60% suppression rate

– σ2 = 1.0, φ = 0.9, ε = 1.0

• Failure rate 30%

• 3 Schemes

– Samp(τ)

• Fixed reporting every τ rounds

– Supp/TD(r)

• Timestamp + direction for last r reports

– Supp/Ack(r)

• Maximum r re-transmission attempts
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Readings Interval

�BaySail demonstrates significant improvement

80% hdr
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Phi Interval

�Choice has little effect for process parameter

80% hdr



Spatial Inference
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Conclusion

• Suppression is a viable technique only when 

made robust to failure

• BaySail combines low-cost in-network 

redundancy with efficient out-of-network 

statistical inference

– Generates posteriors distributions on raw missing 

values and process parameters

• Future Challenges

– Sophisticated spatio-temporal schemes

• Failure on in-network constraints

• Failure of model parameter transmission

– Storing query results
September 27, 2007 Silberstein, VLDB 200722


