
Database Indexes and

K-anonymity

Tochukwu Iwuchukwu

Jeffrey F. Naughton

Conclusion

� There are striking similarities between
� Building a spatial index over a data set, and

� K-anonymizing a data set.

� We can exploit these similarities to:
� Get fast anonymization algorithms without

inventing anything.

� Get high quality anonymization algorithms without
inventing anything.

� Open the door to anonymizing dynamic data sets
(but someone will have to invent measures to
address privacy problems introduced by updates.)

The problem

� In many cases we would like to release some
information without tying that information to
individuals.

� Example: medical records, where we want to
release demographics and illnesses but not
tie them to specific people.�

� First idea: strip away identifiers (name, id,
and so forth.)

� Not good enough! (“linking attack”).

Quasi-identifiers and Linking

53706

53706

52100

52100

53708

53706

Zipcode

fever46Ron

back pain46Sam

flu38Tom

cancer32Vicky

flu26William

asthma26Zach

DiagnosisAgeName

� If we eliminate the “Name” field before
publishing, are we safe?

� No - still have “quasi-identifiers”
� (age, zipcode) in this case

53706

53706

52100

52100

53708

53706

Zipcode

fever46

back pain46

flu38

cancer32

flu26

asthma26

DiagnosisAge

Linking Attack

fever5370646

back pain5370646

flu5210032

cancer5370826

asthma5210038

asthma5370626

DiagnosisZipcodeAge

5370646Ron

5370646Sam

5210038Tom

5210032Vicky

5370826William

5370626Zach

ZipcodeAgeName

Public Table of Names and addresses “De-identified” medical records

Four individuals in public table are uniquely identified by their age and

zipcode values

K-anonymity
� Attempts to thwart linking attacks.

� Ensure that each record is indistinguishable from at
least k – 1 other records with respect to quasi-
identifiers

� Definition: “Equivalence Class” or “Partition”

� Set of tuples in a table that have the same quasi-
identifier values.

� A table satisfies k-anonymity if every partition has
cardinality at least k

K-anonymity

fever[53706 – 53710][45 – 49]

back pain[53706 – 53710][45 – 49]

flu[52100 – 52104][30 – 39]

cancer[52100 – 52104][30 – 39]

flu[53705 – 53709][20 – 29]

asthma[53705 – 53709][20 – 29]

DiagnosisZipcodeAge

� Every partition contains at least two records (a 2-

anonymous table)

� Intuition: now linking attack can only connect individual to

a pair of records.

fever

back pain

flu

cancer

flu

asthma

Diagnosis

53706

53706

52100

52100

53708

53706

Zipcode

46Ron

46Sam

38Tom

32Vicky

26William

26Zach

AgeName

So how do you achieve k-

anonymity?

� Most common basic idea: replace quasi-

identifier values with ranges of values.

� The ranges define regions

� Two quasi-identifiers (as in previous example)
mean rectangles

� Three quasi-identifiers would mean 3D solids.

� All points with quasi-identifier values in the

same region belong to the same equivalence

class.

Visualizing Regions

� For example, a 4-anonymous data set
might look like this:

Zipcode

age

Connection to Indexing

� To someone who has worked with spatial
data in a DBMS, the partitions in the previous
picture look a lot like the partitions of a spatial
index.

� Spatial indexes partition space, with at least k
and at most 2k records per partition.

� Done for efficiency reasons -
� Partitions map to pages

� <= 2k records fit on page,

� < k would waste space.

So the main idea…

� To anonymize a data set:

� Treat it as an n-dimensional spatial data

set, where n is the number of quasi-

identifiers.

� “pretend” that pages can hold 2k points,

where k is the anonymity parameter

� Build spatial index over the data set.

� Use leaves as partitions for k-anonymity.

So what?

� Well, the connection between anonymity and
indexing is interesting.

� Any tangible benefits?
� Many years of research on fast, scalable index

building and maintenance algorithms.

� Indexes designed to be integrated in DBMS (could
support a “k-anonymous file” storage structure).

� Indexes designed to support dynamic data sets
(more on this later.)

Is indexing really effective?

� To find out, implemented anonymization as
bulk-loading in R+-trees.

� Specific algorithm: “buffer-tree bulk-loading.”

� Ran performance numbers.

� Result: bulk-loading faster than previously
proposed anonymization algorithms
� Especially when data set is larger than memory.

� But anonymization algorithms moving target…

� Recent work on scalable Mondrian narrows gap, it
will be interesting to see how this plays out.

Experimental Configuration

� System configurations
� C++

� Tao Linux 1.0

� Intel Pentium 4, 3 GHz processor

� 1 GB memory

� Lands End dataset
� Eight quasi-identifiers

� 4,591,581 records

� Synthetic data set
� Nine quasi-identifiers

� 100 million records

Terminology

� Index bulk-loading is “bottom-up.”

� Start filling a “page” with records;

� When you get 2k records, split.

� Fastest algorithm for anonymization
(Mondrian) is “top-down.”

� Scan full dataset, choose splitting point

� Recursively repeat

Performance and Scalability

Synthetic data

0

200

400

600

800

1000

0.036 0.18 0.36 0.9 1.8 3.6

data set size (GB)

e
x

e
c

u
tio

n
 t

im
e

 (
s

e
c

s
)

Lands End data

0

20

40

60

80

100

120

5 10 25 50 100 250 500 1000

anonymity level k

R+-tree Top-down partitioning

Fast - but what about quality

of result?

� Important question: what do you mean
by quality?

� Two previously proposed metrics:

� Discernibility penalty.

� Certainty metric.

Discernibility Penalty

� E = equivalence class

� DM = discernibility measure

� DM = ∑E|E|2

� The “penalty” for each record is the cardinality of its
equivalence class

� More uniform equivalence classes mean lower penalty.

� Independent of how much an anonymization “blurs”
quasi-identifier values.

More on discernibility

� Both tables have the same discernibility scores

� Version 1 describes zipcode more precisely than
Version 2

fever[53706 – 53710][40 – 49]

back pain[53706 – 53710][40 – 49]

flu[52100 – 52104][30 – 39]

cancer[52100 – 52104][30 – 39]

flu[53705 – 53709][20 – 29]

asthma[53705 – 53709][20 – 29]

DiagnosisZipcodeAge

fever[52000 – 54000][40 – 49]

back pain[52000 – 54000][40 – 49]

flu[52000 – 54000][30 – 39]

cancer[52000 – 54000][30 – 39]

flu[52000 – 54000][20 – 29]

asthma[52000 – 54000][20 – 29]

DiagnosisZipcodeAge

Version 1 Version 2

Certainty Penalty

� Uses the “perimeter” of partitions to compute quality

� ∑E |E| * Perimeter(E)

� Minimizing average perimeter of partitions means
better quality.

� Perimeter is related to how much the quasi-identifier
values have been “blurred.”

Property of R+-trees: Minimum

bounding rectangles

• R+-trees will give you the right partitioning, not the left.

• This tends to give much lower certainty penalty than the left
approach.

20 25 30 35 40 20 25 30 35 40

Note about Minimum

Bounding Rectangles

� Can easily apply “compacting”
procedure to result of any
anonymization algorithm as a post-
processing step.

� Improves metrics like certainty.

Quality

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

5 10 25 50 100 250 500 1000

k

R+-tree Mondrian-compacted Mondrian-uncompacted

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

5 10 25 50 100 250 500 1000

k

R+-treeMondrian-compactedMondrian-uncompacted

Is Using Minimum Bounding

Rectangles a Good Idea?

� Pro: reveal more information about data
while still preserving k-anonymity.

� Con: reveal more information about
data while still preserving k-anonymity.

Our philosophy

� Anonymization algorithms should strive
to maximize quality metrics while still
satisfying definition of anonymization.

� If too much information is being
revealed,

� Augment definition of anonymity.

� Don’t rely on “sloppy” implementation of

definition.

Dynamic Data

� Database indexes support efficient
incremental indexing.
� Most likely much faster than re-

anonymizing from scratch on every update.

� So the indexing approach to
anonymization immediately gives us a
way to anonymize dynamic data sets.

� Is this safe?

Dynamic data (cont.)

� Publishing a sequence of k-anonymous data
sets does not guarantee k-anonymity.

� Problem: watching inserts, deletes, and
updates can violate anonymity.
� Easy: delete until < k records in a partition

� Harder: delete some records, insert some records,
still have >= k, but observant adversary has
learned something…

� So for dynamic data sets we need to augment
indexing approach with some inference
control mechanism to manage updates.
[future work!]

Conclusion

� Spatial indexing provides a scalable, efficient
approach to good quality k-anonymization

� Raises some interesting questions:
� What other lessons from indexing can we exploit?

� Can indexing exploit lessons from anonymization?
� Workload specific splitting policies?

� Is compaction a good idea? Do we need to
change definitions to prevent it?

� Can this form the basis for “anonymized table”
storage option?

� Can this form the basis for anonymization of
dynamic data sets?

