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Conclusion

� There are striking similarities between
� Building a spatial index over a data set, and

� K-anonymizing a data set.

� We can exploit these similarities to:
� Get fast anonymization algorithms without 

inventing anything.

� Get high quality anonymization algorithms without 
inventing anything.

� Open the door to anonymizing dynamic data sets 
(but someone will have to invent measures to 
address privacy problems introduced by updates.)



The problem

� In many cases we would like to release some 
information without tying that information to 
individuals.

� Example: medical records, where we want to 
release demographics and illnesses but not
tie them to specific people.�

� First idea: strip away identifiers (name, id, 
and so forth.)

� Not good enough! (“linking attack”).



Quasi-identifiers and Linking
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� If we eliminate the “Name” field before 
publishing, are we safe?

� No - still have “quasi-identifiers”
� (age, zipcode) in this case
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Linking Attack

fever5370646

back pain5370646

flu5210032

cancer5370826

asthma5210038

asthma5370626

DiagnosisZipcodeAge

5370646Ron

5370646Sam

5210038Tom

5210032Vicky

5370826William

5370626Zach

ZipcodeAgeName

Public Table of Names and addresses “De-identified” medical records

Four individuals in public table are uniquely identified by their age and 

zipcode values



K-anonymity
� Attempts to thwart linking attacks.

� Ensure that each record is indistinguishable from at 
least k – 1 other records with respect to quasi-
identifiers 

� Definition: “Equivalence Class” or “Partition”

� Set of tuples in a table that have the same quasi-
identifier values.

� A table satisfies k-anonymity if every partition has 
cardinality at least k



K-anonymity

fever[53706 – 53710][45 – 49]

back pain[53706 – 53710][45 – 49]

flu[52100 – 52104][30 – 39]

cancer[52100 – 52104][30 – 39]

flu[53705 – 53709][20 – 29]

asthma[53705 – 53709][20 – 29]

DiagnosisZipcodeAge

� Every partition contains at least two records (a 2-

anonymous table)

� Intuition: now linking attack can only connect individual to 

a pair of records.
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So how do you achieve k-

anonymity?

� Most common basic idea: replace quasi-

identifier values with ranges of values.

� The ranges define regions

� Two quasi-identifiers (as in previous example) 
mean rectangles

� Three quasi-identifiers would mean 3D solids.

� All points with quasi-identifier values in the 

same region belong to the same equivalence 

class. 



Visualizing Regions

� For example, a 4-anonymous data set 
might look like this:

Zipcode

age



Connection to Indexing

� To someone who has worked with spatial 
data in a DBMS, the partitions in the previous 
picture look a lot like the partitions of a spatial 
index.

� Spatial indexes partition space, with at least k
and at most 2k records per partition.

� Done for efficiency reasons -
� Partitions map to pages

� <= 2k records fit on page,

� < k would waste space.



So the main idea…

� To anonymize a data set:

� Treat it as an n-dimensional spatial data 

set, where n is the number of quasi-

identifiers.

� “pretend” that pages can hold 2k points, 

where k is the anonymity parameter

� Build spatial index over the data set.

� Use leaves as partitions for k-anonymity.



So what?

� Well, the connection between anonymity and 
indexing is interesting.

� Any tangible benefits?
� Many years of research on fast, scalable index 

building and maintenance algorithms.

� Indexes designed to be integrated in DBMS (could 
support a “k-anonymous file” storage structure).

� Indexes designed to support dynamic data sets 
(more on this later.)



Is indexing really effective?

� To find out, implemented anonymization as 
bulk-loading in R+-trees.

� Specific algorithm: “buffer-tree bulk-loading.”

� Ran performance numbers.

� Result: bulk-loading faster than previously 
proposed anonymization algorithms
� Especially when data set is larger than memory.

� But anonymization algorithms moving target…

� Recent work on scalable Mondrian narrows gap, it 
will be interesting to see how this plays out.



Experimental Configuration

� System configurations
� C++ 

� Tao Linux 1.0

� Intel Pentium 4,  3 GHz processor

� 1 GB memory

� Lands End dataset 
� Eight quasi-identifiers

� 4,591,581 records 

� Synthetic data set 
� Nine quasi-identifiers

� 100 million records



Terminology

� Index bulk-loading is “bottom-up.”

� Start filling a “page” with records;

� When you get 2k records, split.

� Fastest algorithm for anonymization 
(Mondrian) is “top-down.”

� Scan full dataset, choose splitting point

� Recursively repeat



Performance and Scalability

Synthetic data
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Fast - but what about quality 

of result?

� Important question: what do you mean 
by quality?

� Two previously proposed metrics:

� Discernibility penalty.

� Certainty metric.



Discernibility Penalty

� E = equivalence class

� DM = discernibility measure

� DM = ∑E|E|2

� The “penalty” for each record is the cardinality of its 
equivalence class

� More uniform equivalence classes mean lower penalty.

� Independent of how much an anonymization “blurs”
quasi-identifier values.



More on discernibility

� Both tables have the same discernibility scores

� Version 1 describes zipcode more precisely than 
Version 2

fever[53706 – 53710][40 – 49]

back pain[53706 – 53710][40 – 49]

flu[52100 – 52104][30 – 39]

cancer[52100 – 52104][30 – 39]

flu[53705 – 53709][20 – 29]

asthma[53705 – 53709][20 – 29]

DiagnosisZipcodeAge

fever[52000 – 54000][40 – 49]

back pain[52000 – 54000][40 – 49]

flu[52000 – 54000][30 – 39]

cancer[52000 – 54000][30 – 39]

flu[52000 – 54000][20 – 29]

asthma[52000 – 54000][20 – 29]

DiagnosisZipcodeAge

Version 1 Version 2



Certainty Penalty

� Uses the “perimeter” of partitions to compute quality

� ∑E |E| * Perimeter(E)

� Minimizing average perimeter of partitions means 
better quality.

� Perimeter is related to how much the quasi-identifier 
values have been “blurred.”



Property of R+-trees: Minimum 

bounding rectangles

• R+-trees will give you the right partitioning, not the left.

• This tends to give much lower certainty penalty than the left 
approach.
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Note about Minimum 

Bounding Rectangles

� Can easily apply “compacting”
procedure to result of any 
anonymization algorithm as a post-
processing step.

� Improves metrics like certainty.



Quality
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Is Using Minimum Bounding 

Rectangles a Good Idea?

� Pro: reveal more information about data 
while still preserving k-anonymity.

� Con: reveal more information about 
data while still preserving k-anonymity.



Our philosophy

� Anonymization algorithms should strive 
to maximize quality metrics while still 
satisfying definition of anonymization.

� If too much information is being 
revealed,

� Augment definition of anonymity.

� Don’t rely on “sloppy” implementation of 

definition.



Dynamic Data

� Database indexes support efficient 
incremental indexing.
� Most likely much faster than re-

anonymizing from scratch on every update.

� So the indexing approach to 
anonymization immediately gives us a 
way to anonymize dynamic data sets.

� Is this safe?



Dynamic data (cont.)

� Publishing a sequence of k-anonymous data 
sets does not guarantee k-anonymity.

� Problem: watching inserts, deletes, and 
updates can violate anonymity.
� Easy: delete until < k records in a partition

� Harder: delete some records, insert some records, 
still have >= k, but observant adversary has 
learned something…

� So for dynamic data sets we need to augment 
indexing approach with some inference 
control mechanism to manage updates. 
[future work!]



Conclusion

� Spatial indexing provides a scalable, efficient 
approach to good quality k-anonymization

� Raises some interesting questions:
� What other lessons from indexing can we exploit?

� Can indexing exploit lessons from anonymization?
� Workload specific splitting policies?

� Is compaction a good idea? Do we need to 
change definitions to prevent it?

� Can this form the basis for “anonymized table”
storage option?

� Can this form the basis for anonymization of 
dynamic data sets?


