
Stop and Restart Style
Query Execution

Surajit Chaudhuri
Raghav Kaushik Abhijit Pol
Ravi Ramamurthy

Microsoft Research University of Florida

2

Motivation

� Long running decision support queries
can be resource intensive

� Resource contention can be reduced by
terminating queries

� Terminated queries have to be re-rerun
completely

� Irrespective of how close to completion
they were

� Can we do better?

� Assume database is not updated

3

Framework

INITIAL RUN

QUERY PLAN 1. SAVE “STATE”

2. SAVE RESTART PLAN

RESTART RUN

EXECUTE RESTART PLAN

� Can exploit existing interfaces for termination

� Cancel Query, ODBC Timeout

� Transparent to applications

� Return ALL the results in the restart run

� Natural fit for stateless applications

4

Candidate Approach

Filter Filter

INDEX SCAN
INDEX SCAN

INITIAL RUN RESTART RUN

SKIP

5

Problems with this Approach

� Overheads can be unbounded

� e.g. Filter predicate selects most of the records

� Need to cache results in memory or periodically
flush them to disk

� The query may not be terminated!

� Bounded overhead

� Save and Reuse “Best” K records

� Flush results to disk when the query is
terminated

6

Outline

� Primitives

� Bounded Query Checkpointing

� Opt-Skip Algorithm

� Complex Query Plans

� Experiments

7

Skip-Scan Operator

� Generalization of Scan Operator

� Takes 2 parameters (LB, UB)

� Skips all records between LB and UB

� Sends a EOLB message after processing
LB

Index Scan
SKIP

LB UB

8

Restart Plans for Single Pipelines

INITIAL RUN

Index Scan

Op1

Opn

Skip Scan

Op1

Opn

RESTART RUN

UB
SKIP

LB

EOLB

9

Cost Model

� Work done by query =
Total number of getNext
Calls issued across all
operators

Table
Scan

Table
Scan

Hash Join

Sort

Pipeline2Pipeline1

Pipeline3

10

Example (K = 3)

Output Records of Filter

Operator

Records that do not pass filtering

criteria

Best-3 Region

First-3 Region

Filter

Index Scan

ORIGINAL RUN

11

Bounded Query Checkpointing

� Parameters

� Budget k

� Let id be the current ID of the record in
the leaf node

� Among all bounded RPlan(LB,UB)
where LB < UB <= id

� Maintain the restart plan with maximum
benefit

12

Candidate Windows and Restart Plans (k=3)

Op1

Opn

LB UB

� Track candidate windows (ri-1,ri+k) of size k+2

� Derive LB and UB values from the source RIDS
corresponding to ri-1 and ri+k

� Let GN(ri) denote total GetNext calls issued in the
pipeline until ri was generated at the pipeline root

� Benefit of Restart Plan = GN(ri+k) – GN(ri-1)

13

Opt-Skip Algorithm

/* window, k= total budget */

/* BestW = best window */

Algorithm Opt-Skip

BestW = empty set

W = empty set

For Each intermediate record ri do:

Append ri to W

If W.Size() > k+2 then

W = last k+2 records in W

SkippableW = FindSkippable(W)

If Benefit(SkippableW) > Benefit(BestW) then

BestW = SkippableW

14

Restart plans for Multiple Pipelines

P2

P1

Scan B

Hash Join

Scan A

Filter

SKIP SCAN A

SKIP SCAN B

15

Algorithms for Multiple Pipelines

� Current Pipeline

� Use Opt-Skip on the current pipeline

� Max-Pipeline

� Choose single “best” pipeline from all
completed pipelines

� Merge-Pipeline

� Heuristic to distribute the budget k
among multiple pipelines

� Subtree Caching

16

Experimental Evaluation

� Prototyped in Microsoft SQL Server 2005

� Built skip-scan operator on top of the clustered
index scan operator

� Evaluation Metric

� T1 = Total number of GetNext calls in Initial Run
before termination

� T2 = GetNext calls issued in the restart to reach the
same point in execution

� Percentage Work Saved (PWS) = (T1-T2)/T1*100

17

Goals

� Effect of clustering

� Utility of bounded query
checkpointing for complex queries

� Overheads in the initial run

� Algorithms for multi pipeline plans

18

Effect of Clustering/Correlation

SELECT * FROM LINEITEM WHERE L_RECEIPTDATE > $v1

L_RETURNFLAG

L_ORDERKEY

L_SHIPDATE

19

Effect of Clustering

Effect of Clustering (Termination at 50%)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0.005% 0.01% 0.10% 1% 10%

Selectivity

P
W

S

IND

WC

SC

20

TPC-H Queries (Termination at 50%)

TPCH Queries (K=250)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20 21

TPCH Query

P
W

S

Overheads in Initial Run were < 3% for most Queries

21

Multi-Pipeline Algorithms

M ax-Pipe line vs M erge-Pipe line (Query 21)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Point of Termination

P
W

S MAX-Pipeline

Merge-Pipeline

22

SkyServer Database

Sky Server Queries (K = 250)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

3 6 14 15 18 22 23 28 32 33

SkyServer Query#

P
W

S

23

Summary of Results

� Many cases where bounded
checkpointing is useful

� selective predicates, correlation with the
clustering column, subtree caching

� Saving a small number of records can
result in substantial savings

� Keeping track of previous pipelines is
important

24

Future Work

� Aggregations

� Saving partial sums

� Hash Spills

� Maintaining the skipping invariant

� Handling Updates

� Validate Restart Plan

25

Related Work

� SQL Cursors

� Does not release any state

� Query Resumption
� [Labio et al. SIGMOD 2000]

� [Chandramouli et al. SIGMOD 2007]

� Delta results vs. Full Results

� Skip-Scan can be utilized for resuming
the build phase of hybrid hash join

26

Conclusions

� Resource contention can lead to
termination of queries

� Queries have to be rerun completely

� Bounded Query Checkpointing

� Skip-Scan Operator

� Saving a small amount of records can
lead to substantial savings

