Minimality Attack in Privacy Preserving Data Publishing

Raymond Chi-Wing Wong (the Chinese University of Hong Kong) Ada Wai-Chee Fu (the Chinese University of Hong Kong) Ke Wang (Simon Fraser University) Jian Pei (Simon Fraser University)

> Prepared by Raymond Chi-Wing Wong Presented by Raymond Chi-Wing Wong

Outline

- 1. Introduction
 - k-anonymity
 - I-diversity
- 2. Enhanced model
 - Weaknesses of I-diversity
 - m-confidentiality
- 3. Algorithm
- 4. Experiment
- 5. Conclusion

Minimize information loss, which gives rise to a new attack called Minimality Attack.

1. K-Anonymity

Patient	Gender	Address	Birthday	Cancer
Raymond	Male	Hong Kong	29 Jan	None
Peter	Male	Shanghai	16 July	Yes
Kitty	Female	Hong Kong	21 Oct	None
Mary	Female	Hong Kong	8 Feb	None

Release the data set to **public**

· · · · · · · · · · · · · · · · · · ·			
Gender	Address	Birthday	Cancer
Male	Hong Kong	29 Jan	None
Male	Shanghai	16 July	Yes
Female	Hong Kong	21 Oct	None
Female	Hong Kong	8 Feb	None

QID (quasi-identifier)						
	Patient	Gender	Address	Birthday	Cancer	
	Raymond	Male	Hong Kong	29 Jan	None	
	Peter	Male	Shanghai	16 July	Yes	
	LK _{itty}	Female	Hong Kong	21 Oct	None	
Knowledge 2 Fomale Hong Kong 8 Feb None						
I also know Peter with (Male, Shanghai, 16 July) Release the data set to pub					ublic	
		Gender	Address	Knowledge 1	cancer	
and Knowledge 2, we may deduce the ORIGINAL person.		Male	Hong Kong	29 Jan	None	
		Male	Shanghai	16 July	Yes	
		Female	Hong Kong	21 Oct	None	
		Female	Hong Kong	8 Feb	None	

1	1 I And 2-anonymity : to generate a data set such that each possible OID value appears at least TWO times						
QID (quasi-ide	entifier)						
	Patient	Gender	Address	Birthday	Cancer		
	Raymond	Male	Hong Kong	29 Jan	None		
	Peter	Male	Shanghai	16 July	Yes		
	Kitty Knowledge 2		Hong Kong	21 Oct	None		
Knowledge 2			owledge 2 Long Ear		Hong Kong	8 Feb	None
Asia, 16 July	Asia, 16 July) Release the data set to public						
each possible QIE Birthday) appears	each possible QID value (Gender, Address, Birthday) appears at least TWO times.						
Combining K	nowledge 1	Male	Asia	*	None		
and Knowledge 2,		Male	Asia	*	Yes		
we CANNOT	deduce L person	Female	Hong Kong	*	None		
This data set is	This data set is 2-anonymous		Hong Kong	*	None		

1. K-anonymity

- We have discussed the traditional model of k-anonymity
- Does this model really preserve "privacy"?

Gender	Address	Birthday	Cancer
Male	Male Asia *		Yes
Male	Asia	*	Yes
Female	Hong Kong	*	None
Female	Hong Kong	*	None

1. I-diversity

Patient	Gender	Address	Birthday	Cancer
Raymond	Male	Hong Kong	29 Jan	None
Peter	Male	Shanghai	16 July	Yes
Kitty	Female	Shanghai	21 Oct	None
Mary	Female	Hong Kong	8 Feb	None

Release the data set to **public**

Gender	Address	Birthday	Cancer
Male	Hong Kong	29 Jan	None
Male	Shanghai	16 July	Yes
Female	Shanghai	21 Oct	None
Female	Hong Kong	8 Feb	None

1. I-diversity

	Patient	Gender	Address	Birthday	Cancer
	Raymond	Male	Hong Kong	29 Jan	None
	Peter	Male	Shanghai	16 July	Yes
	L Kitty	Female	Shanghai	21 Oct	None
Knowledge 2		Fomale	Hong Kong	8 Feb	None
Shanghai, 16	July)		Release the	data set to p	ublic
Combining	noulodge 1	Gender	Address	Dirtituay	Cancer
and Knowledge 2, we may deduce the disease of Peter.		Male	Hong Kong	29 Jan	None
		Male	Shanghai	16 July	Yes
		Female	Shanghai	21 Oct	None
		Female	Hong Kong	8 Feb	None

1. I-diversity

	Patient	Gender	Address	Birthday	Cancer
	Raymond	Male	Hong Kong	29 Jan	None
	Peter	Male	Shanghai	16 July	Yes
	L Kitty	Female	Shanghai	21 Oct	None
Knowledge 2		Ennale	Hong Kong	8 Feb	None
Shanghai, 16 July)			Release the	data set to p	ublic
		Gender	Address	Dirtituay	cancer
		Male	Hong Kong	29 Jan	None
		Male	Shanghai	16 July	Yes
		Female	Shanghai	21 Oct	None
	-	Female	Hong Kong	8 Feb	None

Simplified 2-diversity: to generate a data set such that each individual is linked to "cancer" with probability at most 1/2

1. I-diversity

ie
S
ne
ne
er
е
e
е

2.1 Weakness of I-diversity

We have discussed I-diversity

Does this model really preserve "privacy"?

No.

Simplified 2-diversity: to generate a data set such that each individual is linked to "cancer" with probability at most 1/2

2.1 Weakness OI I-OIVEISILY

	Patient		QID		Cancer
	Raymond		q1		None
	Peter		q2		Yes
	-K <mark>itty</mark>		q3		None
Knowledge 2		1	q4		None
Shanghai, 16	July)		Release the	data set to p	ublic
			QID	KIIOWIEUYE I	cancer
			Q1		None
			Q2		Yes
			Q2		None
			Q1		None

Simplified 2-diversity: to generate a data set such that each individual is linked to "cancer" with probability at most 1/2

2.1 Weakness OI I-OIVEISILY

QID	Cancer
q1	None
q2	Yes
q3	None
q4	None

Release the data set to **public**

QID	Cancer
Q1	None
Q2	Yes
Q2	None
Q1	None

e.g.1	e.g.2		Simplified 2-diversity to
	QID	Cancer	generate a data set such that each individual is linked to "cancer" with
	q1	Yes	probability at most 1/2
	q1	Yes	I-diversity
	q2	None	
Release the data	set to public		
	QID	Cancer	
	Q	Yes	
	Q	Yes	
	Q	None	
	Q	None	
	q2	None	
	q2	None	

			Simplified 2-diversity: to
	QID	Cancer	generate a data set such that each
0 1 \\	q1	Yes	probability at most 1/2
2.1 VV	q1	Yes	I-diversity
	q2	None	
	QID	Cancer	
	Q	Yes	
	Q	Yes	
	Q	None	
	Q	None	
	q2	None	
	q2	None	

		Simplified 2-diversity: to	
QID	Cancer	Knowledge 2 generate a data set such that each	
q1	Yes	I also know Peter with $QID = (q1)$	
q1	Yes	C Knowledge 3 OF I-OIVEISILY	
q2	None	I also know that there are two q1 values and four	
q2	None	q2 values in the table.	
q2	None	Knowledge 4	
q2	None	The anonymization algorithm tries to minimize the generalization steps for 2-diversity	
I will think in the following way.			
Knowledge 1		Poss. 1 Poss. 2 Poss. 3	
QID	Cancer	QIDCancerQIDCancer	
Q	Yes	q1 Yes q2 Yes q1 Yes	
Q	Yes	q1Yesq2Yesq2Yes	
Q	None	q2Noneq1Noneq1None	
Q	None	q2Noneq1Noneq2None	
q2	None	q2 None q2 None q2 None	
q2	None	q2 None q2 None q2 None	

2.2 Minimality Attack

- Suppose A is the anonymization algorithm which tries to minimize the generalization steps for Idiversity.
 We call this the minimality principle.
- Let table T* be a table generated by A and T* satisfies I-diversity.
- Then, for any equivalence class E in T*,
 - there is no specialization (reverse of generalization) of the QID's in E which results in another table T' which also satisfies I-diversity.

m-confidentiality (where m = I)

2.3 Gener

General Case

Problem: to generate a data set which satisfies the following.

for each individual o, P(o is linked to Cancer | Knowledge) <= 1/I

One special case was illustrated where

P(o is linked to Cancer | Knowledge) = 1

In general, the computation of

P(o is linked to Cancer | Knowledge)

needs more sophisticated analysis.

2.3 General Formula (global recoding)

P(o is linked to Cancer | Knowledge)

- Try all possible cases
- Consider a case
 - Consider o is in an equivalence class E
 - Suppose there are j tuples in E linked to Cancer
 - Proportion of tuples with Cancer = j/|E|

• P(o is linked to Cancer | Knowledge) = $\sum_{i=1}^{|E|} P(no. of sensitive tuples = j | Knowledge) x j/|E|$

The derivation is accompanied by some exclusion of some possibilities by the adversary because of the minimality notion.

2.3 An Enhanced Model

NP-hardness

- Transform an NP-complete problem to this enhanced model (m-confidentiality)
- NP-complete Problem:

Exact Cover by 3-Sets(X3C)

Given a set X with |X| = 3q and a collection C of 3-element subsets of X. Does C contain an exact cover for X, i.e. a subcollection C' \subseteq C such that every element of X occurs in exactly one member of C'?

2.4 General Model

- In addition to I-diversity, all existing models do not consider Minimality Attack
- The tables generated by the existing algorithm which follows minimality principle and satisfies one of the following privacy requirements have a privacy breach.
- Existing Requirements
 - (c, l)-diversity
 - (α, k)-anonymity
 - t-closeness
 - (k, e)-anonymity
 - (c, k)-safety
 - Personalized Privacy
 - Sequential Releases

Minimality Attack exists when the anonymization method considers the "minimization" of the generalization steps for Idiversity

- Key Idea of Our proposed algorithm: we do not involve any "minimization" of generalization steps for I-diversity in our proposed algorithm
- With this idea, minimality attack is NOT possible.

- Some previous works pointed out that
 k-anonymity has a privacy breach
- However, k-anonymity has been successful in some practical applications
- When a data set is k-anonymized,
 - the chance of a large proportion of a sensitive tuple in any equivalence class is very likely reduced to a safe level
- Since k-anonymity does not reply on the sensitive attribute,
 - we make use of k-anonymity in our proposed algorithm and perform some *precaution* steps to prevent the attack by minimality

Step 1: k-anonymization

From the given table T, generate a k-anonymous table T^k (where k is a user parameter)

Step 2: Equivalence Class Classification

- From T^k, determine two sets:
 - set V containing a set of equivalence classes which violate I-diversity
 - set L containing a set of equivalence classes which satisfy I-diversity

Step 3: Distribution Estimation

- For each E in L, find the proportion p_i of tuples containing the sensitive value
- Generate a distribution D according to p_i values of all E's in L

Step 4: Sensitive Attribute Distortion

- For each E in V,
 - randomly pick a value p_E from distribution D
 - distort the sensitive value in E such that the proportion of sensitive values in E is equal to p_E

Theorem: Our proposed algorithm generates m-confidential data set.

for each individual o, P(o is linked to Cancer | Knowledge) <= 1/m

Real Data Set (Adults)

- 9 attributes
- 45,222 instances
- Default:
 - I = 2
 - QID size = 8
- m = l

- Real example
- QID attributes: age, workclass, marital status
- Sensitive attribuute: education

Age	Workclass	Marital Status	Education
80	Self-emp-not-inc	Married-spouse-absent	7th-8th
80	Private	Married-spouse-absent	HS-grad
80	private	Married-spouse-absent	HS-grad

Age	Workclass	Marital Status	Education
80	With-pay	Married-spouse-absent	7th-8th
80	With-pay	Married-spouse-absent	HS-grad
80	private	Married-spouse-absent	HS-grad

- Variation of QID size
- Compare our proposed algorithm with the algorithm which does not consider the minimality attack
- Measurement
 - Execution Time
 - Distortion after Anonymization

m = 2

m = 10

5. Conclusion

- Minimality Attack
 - Exists in existing privacy models
- Derive Formulae of Calculating the Probability of privacy breaching
- Proposed algorithm
- Experiments

FAQ

2.: α-deassociation requirement

Bucketization

QID	Cancer
Q1	Yes
Q2	Yes
Q2	None
Q1	None

QID	BID
q1	1
q4	1
q2	2
q3	2

BID	Cancer
1	Yes
1	None
2	Yes
2	None

(3, 3)-diversity

QID	Disease	
q1	HIV	
q1	none	Se
q2	none	
q2	none	
q2	HIV	
q2	HIV	

QID	Disease
q1	HIV
q1	HIV
q2	none
q2	none
q2	none
q2	HIV

0.2-closeness

QID	Disease
q1	HIV
q1	none
q2	none
q2	none
q2	HIV
q2	HIV

QID	Disease
Q	HIV
Q	HIV
Q	none
q2	none
q2	none
q2	HIV

	(k e)-	an	onγ	rmitv (k	(2, 5k)-anonymity				
QID	Income		QID	Income					
q1	30k		q1	30k					
q1	20k		q1	30k					
q2	30k		q2	20k					
q2	20k		q2	10k					
q2	40k		q2	40k					
QID	Income		QID	Income					
q1	30k		Q	30k					
q1	20k		Q	30k					
q2	30k		Q	20k					
q2	20k		q2	10k					

q2

40k

40k

q2

_						-	
	QID	Disease					
	q1	HIV					
	q1	none					
	q1			none			
	q2			HIV		\mathbf{D}	
	q2			none			
	q2			none			
	q2			none			
	q2			none			
	q2			one			
	q2						
	QID		Disease				
	q1			HIV			
	q1			none			
	q1		none				
	q2		HIV				
	q2			none			
	q2			none			
	q2	q2		none			
	q2	q2		none			
	q2			none			
	q2			none			
	q2			none	none		
	q2			none			

QID	Disease					
q1		HIV				
q1		HIV				
q1		none				
q2		none				
q2		none				
q2		none				
q2		none				
q2		none				
q2		one				
q2		none				
 QID		Disease				
Q		HIV				
Q		HIV				
Q		none				
Q		none				
Q		none				
Q		none				
Q		none				
Q		none				
Q		none				
q2		none				
q2		none				
q2		none				

(0.6, 2)-safety

If an individual with q1 suffers from HIV, then another individual with q2 will suffer from HIV.

If an individual with q2 suffers from HIV, then another individual with q1 will suffer from HIV.

QID	Education	Guarding Node		QID	Education	Guarding Node
q1	undergrad	none elementary		q1	1st-4th	elementary
q2	1st-4th			q2	undergrad	none
q2	undergrad	none		q2	undergrad	none

QID	Education
q1	undergrad
q2	1st-4th
q2	undergrad

QID	Education
Q	1st-4th
Q	undergrad
q2	undergrad

2-diversity for Personalized privacy

Future Work

- An Enhanced Model of K-Anonymity
 - Try to find other possible enhanced models of K-Anonymity
- Minimality Attack in Privacy Preserving Data Publishing
 - Try to find other possible privacy breach which is based on the anonymization method

- Step 1: anonymize table T and generate a table T^k which satisfies k-anonymity
- Step 2:
 - find a set V of equivalence classes in T_k which violates $\alpha-$ deassociation
 - find a set L of equivalence classes in which satisfies $\alpha-$ deassociation
- Step 3:
 - generate distribution D on the proportion of sensitive value s of equivalence classes in L
- Step 4:
 - For each equivalence class E in V,
 - Randomly generate a number p_E from D
 - Distort the sensitive attribute of E such that the proportion of sensitive attribute is equal to p_E

B.1.2 K- Problem: to generate a data set such that each possible value appears at least TWO times.

	Customer	Gender	District	Birthday	Cancer	
	Raymond Peter		Shatin	29 Jan	None	
			Fanling	16 July	Yes	
Kitty		Female	Shatin	21 Oct	None	
		Female	Shatin	8 Feb	None	
Two Kinds of Generalisations 1. Shatin \rightarrow NT 2. 16 July \rightarrow * "Shatin \rightarrow NT" causes LESS distortion than "16 July \rightarrow *" Question: how can we measure the distortion? This data set is 2- anonymous			Release the data set to public			
		Gender	District	Birthday	Cancer	
		Male	NT	*	None	
		Male	NT	*	Yes	
		Female	Shatin	*	None	
		Female	Shatin	*	None	

B.1.3 An Enhanced Model of K-Anonymity (Future Work)

Avg. cred. of problematic tuples

