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1. K-anonymity
We have discussed the traditional 
model of k-anonymity
Does this model really preserve “privacy”?
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1. l-diversity
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Simplified 2-diversity: to 
generate a data set such that each 
individual is linked to “cancer” with 
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Now, we cannot deduce 
“Peter” suffered from 
“Cancer”

Combining Knowledge 1 
and Knowledge 2, 
we CANNOT deduce 
the disease of Peter.

This data set is 2-diverse

These two tuples form an equivalence class.



2.1 Weakness of l-diversity

We have discussed l-diversity

Does this model really preserve 
“privacy”?

No.
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Same set of sensitive values 
(i.e. Cancer)

Different released data sets!

Why?

The anonymization algorithm 
tries to minimize the
generalization steps.

Simplified 2-diversity: to 
generate a data set such that each 
individual is linked to “cancer” with 
probability at most 1/2
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Simplified 2-diversity: to 
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2.1 Weakness of l-diversity

Simplified 2-diversity: to 
generate a data set such that each 
individual is linked to “cancer” with 
probability at most 1/2
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• TWO q1 values are 
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There is NO need to 
generalize q1 and q2 to Q.

The original table satisfies 
2-diversity.

•FOUR q2 values are 
linked to TWO “Yes”’s.



2.1 Weakness of l-diversity

Simplified 2-diversity: to 
generate a data set such that each 
individual is linked to “cancer” with 
probability at most 1/2
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The original table satisfies 
2-diversity.

•FOUR q2 values are 
linked to ONE “Yes”.



2.1 Weakness of l-diversity

Simplified 2-diversity: to 
generate a data set such that each 
individual is linked to “cancer” with 
probability at most 1/2
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I deduce that the 
original table MUST be 
Poss. 1.

This person o MUST suffer
From Cancer. 

This attack is called 
Minimality Attack.

That is, P(o is linked to 
Cancer | Knowledge) = 1

Problem: to generate a data set which satisfies the 
following.

for each individual o,
P(o is linked to Cancer | Knowledge) <= 1/l

I also know Peter with QID = (q1)

Knowledge 2

m-confidentiality (where m = l)



2.2 Minimality Attack
Suppose A is the anonymization algorithm which 
tries to minimize the generalization steps for l-
diversity.
We call this the minimality principle.

Then, for any equivalence class E in T*, 
there is no specialization (reverse of generalization) 
of the QID's in E which results in another table T' 
which also satisfies l-diversity.

Let table T* be a table generated by A 
and T* satisfies l-diversity. 



2.2 Minimality Attack
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2.3 General Formula
General Case

One special case was illustrated where

P(o is linked to Cancer | Knowledge) = 1

In general, the computation of

P(o is linked to Cancer | Knowledge)

needs more sophisticated analysis.

Problem: to generate a data set which satisfies the 
following.

for each individual o,
P(o is linked to Cancer | Knowledge) <= 1/l

m-confidentiality (where m = l)



2.3 General Formula (global recoding)

P(o is linked to Cancer | Knowledge) 
Try all possible cases 
Consider a case

Consider o is in an equivalence class E
Suppose there are j tuples in E linked to Cancer
Proportion of tuples with Cancer = j/|E|

j=1
|E|

P(o is linked to Cancer | Knowledge)
=         P(no. of sensitive tuples = j | Knowledge) x j/|E|

The derivation is accompanied by some exclusion of some 
possibilities by the adversary because of the minimality notion.



2.3 An Enhanced Model
NP-hardness

Transform an NP-complete problem 
to this enhanced model (m-confidentiality)

NP-complete Problem: 

Exact Cover by 3-Sets(X3C)
Given a set X with |X| = 3q and a collection C of 3-element 
subsets of X. Does C contain an exact cover for X, i.e. a 
subcollection C’ ⊆ C such that every element of X occurs in 
exactly one member of C’?



2.4 General Model
In addition to l-diversity, all existing models do not 
consider Minimality Attack

Existing Requirements
(c, l)-diversity
(α, k)-anonymity
t-closeness
(k, e)-anonymity
(c, k)-safety
Personalized Privacy
Sequential Releases

The tables generated by the existing algorithm which 
follows minimality principle and satisfies one of the 
following privacy requirements have a privacy breach.



3. Algorithm
Minimality Attack exists
when the anonymization method considers the 
“minimization” of the generalization steps for l-
diversity
Key Idea of Our proposed algorithm:
we do not involve any “minimization” of 
generalization steps for l-diversity in our 
proposed algorithm
With this idea, minimality attack is NOT 
possible.



3. Algorithm
Some previous works pointed out that 

k-anonymity has a privacy breach

However, k-anonymity has been successful in some 
practical applications
When a data set is k-anonymized, 

the chance of a large proportion of a sensitive tuple in any 
equivalence class is very likely reduced to a safe level

Since k-anonymity does not reply on the sensitive 
attribute, 

we make use of k-anonymity in our proposed algorithm and 
perform some precaution steps to prevent the attack by 
minimality



3. Algorithm
Step 1: k-anonymization

From the given table T, generate a k-anonymous table Tk (where k is a 
user parameter) 

Step 2: Equivalence Class Classification
From Tk, determine two sets:

set V containing a set of equivalence classes which violate l-diversity
set L containing a set of equivalence classes which satisfy l-diversity

Step 3: Distribution Estimation
For each E in L, 
find the proportion pi of tuples containing the sensitive value
Generate a distribution D according to pi values of all E’s in L

Step 4: Sensitive Attribute Distortion
For each E in V,

randomly pick a value pE from distribution D
distort the sensitive value in E such that the proportion of sensitive values in E 
is equal to pE



3. Algorithm

Theorem: Our proposed algorithm 
generates m-confidential data set.

for each individual o,
P(o is linked to Cancer | Knowledge) <= 1/m



4. Experiments

Real Data Set (Adults)
9 attributes 
45,222 instances
Default: 

l = 2
QID size = 8

m = l



4. Experiments
Real example
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4. Experiments

Variation of QID size
Compare our proposed algorithm with 
the algorithm which does not consider 
the minimality attack
Measurement

Execution Time
Distortion after Anonymization



4. Experiments

m = 2



4. Experiments

m = 10



5. Conclusion

Minimality Attack
Exists in existing privacy models

Derive Formulae of Calculating the 
Probability of privacy breaching
Proposed algorithm
Experiments
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2. Weakness of l-diversity

Problem of 2-anonymity: to 
generate a data set such that each 
possible value appear at least two 
times
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(3, 3)-diversity



0.2-closeness
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(0.6, 2)-safety
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If an individual with q1 
suffers from HIV,
then another individual with 
q2 will suffer from HIV.

If an individual with q2 
suffers from HIV,
then another individual with 
q1 will suffer from HIV.



Personalized Privacy
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2-diversity for
Personalized privacy

undergradq2

1st-4th

undergrad

Education

q2

q1

QID

none

none

elementary

Guarding Node

undergradq2

undergrad

1st-4th

Education

q2

q1

QID

undergradq2

undergrad

1st-4th

Education

Q

Q

QID



46

2. Weakness of l-diversity

k-anonymization: From the given table T, generate a k-anonymous table 
Tk (where k is a user parameter) 
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Q
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Each possible value 
appears at least two 
times.

Step 1

Suppose k = 2
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2. Weakness of l-diversity

Noneq3

Noneq4

None
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q4

q3

Q

Q

QID

Noneq3

Noneq4

None

Yes

Yes

Yes

Cancer

q4

q3

q2

q1

QID

This equivalence class 
contains more than half 
sensitive tuples

Step 2 Equivalence Class Classification: From Tk, determine two sets:
• set V containing a set of equivalence classes which violate 2-diversity
• set L containing a set of equivalence classes which satisfy 2-diversity

V = {      }Q

L = {                 }

This equivalence class 
contains at most half 
sensitive tuples

q3

This equivalence class 
contains at most half 
sensitive tuples

,  q4
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2. Weakness of l-diversity

Noneq3

Noneq4

None

Yes

Yes

Yes

Cancer

q4

q3

Q

Q

QID

Noneq3

Noneq4

None

Yes

Yes

Yes

Cancer

q4

q3

q2

q1

QID

Step 3 Distribution Estimation
• For each E in L,

find the proportion pi of tuples containing the sensitive value
• Generate a distribution D according to pi values of all E’s in L

V = {      }Q

L = {                 }

pi = 0.5

q3 ,  q4

pi = 0

D = {0, 0.5} 

In other words,

Prob(pi = 0) = 0.5
Prob(pi = 0.5) = 0.5



49

2. Weakness of l-diversity

Noneq3

Noneq4

None

Yes

Yes

Yes

Cancer

q4

q3

Q

Q

QID

Noneq3

Noneq4

None

Yes

Yes

Yes

Cancer

q4

q3

q2

q1

QID

Step 4 Sensitive Attribute Distortion: For each E in V,
• randomly pick a value pE from distribution D
• distort the sensitive value in E such that the proportion of sensitive 
values in E is equal to pE

V = {      }Q

L = {                 }

pi = 0.5

q3 ,  q4

pi = 0

D = {0, 0.5} 

In other words,

Prob(pi = 0) = 0.5
Prob(pi = 0.5) = 0.5

Suppose pE is equal to 0.5

None

Distort the sensitive value 
such that pE is equal to 0.5



Future Work

An Enhanced Model of K-Anonymity
Try to find other possible enhanced models 
of K-Anonymity

Minimality Attack in Privacy Preserving 
Data Publishing

Try to find other possible privacy breach 
which is based on the anonymization
method



B.3 Algorithm
Step 1: anonymize table T and generate a table Tk

which satisfies k-anonymity
Step 2: 

find a set V of equivalence classes in Tk which violates α–
deassociation
find a set L of equivalence classes in which satisfies α–
deassociation

Step 3:
generate distribution D on the proportion of sensitive value s of 
equivalence classes in L

Step 4:
For each equivalence class E in V,

Randomly generate a number pE from D
Distort the sensitive attribute of E such that the proportion of
sensitive attribute is equal to pE



B.1.2 K-Anonymity

None

None

Yes

None

Cancer

8 FebShatinFemaleMary

21 OctShatinFemaleKitty

16 JulyFanlingMalePeter

29 JanShatinMaleRaymond

BirthdayDistrictGenderCustomer

None

None

Yes

None

Cancer

*ShatinFemale

*ShatinFemale

*NTMale

*NTMale

BirthdayDistrictGender

Release the data set to public

Problem: to generate a data set such that each 
possible value appears at least TWO times. 

This data set is 2-
anonymous

Two Kinds of  Generalisations
1. Shatin NT
2. 16 July *

“Shatin NT” causes LESS 
distortion than “16 July *”

Question: how can we 
measure the distortion? 



B.1.2 K-Anonymity

Shatin Fanling Mongkok Jordon

NT KLN

HKG

29 Jan 16 July 21 Oct 8 Feb

Jan July Oct Feb

*

Measurement= 1/2 =0.5

Measurement= 2/2=1.0

Male Female

*

Measurement= 1/1=1.0

Conclusion: We propose a 
measurement of distortion of the 
modified/anonymized data.  



B.1.2 K-Anonymity

Shatin Fanling Mongkok Jordon

NT KLN

HKG

29 Jan 16 July 21 Oct 8 Feb

Jan July Oct Feb

*

Measurement= 1/2 =0.5

Measurement= 2/2=1.0

Male Female

*

Measurement= 1/1=1.0

Can we modify the measurement?
e.g. different weightings to each level



B.1.3 An Enhanced Model of 
K-Anonymity (Future Work)

None

None

Yes

Yes

Cancer

8 FebShatinFemaleMary

21 OctShatinFemaleKitty

16 JulyFanlingMalePeter

29 JanShatinMaleRaymond

BirthdayDistrictGenderCustomer

None

None

Yes

Yes

Cancer

*Shatin*
*NT*
*NT*
*Shatin*

BirthdayDistrictGender

Release the data set to public
For each equivalence 
class, there are at most 
half records associated 
with “Cancer”

I also know that there is a person 
with (Male, NT, 16 July)

Knowledge 1

Knowledge 2

Release the data set to public

This data set is 2-
anonymous

This is a user parameter.
In our problem, it is 
denoted by  α (i.e. alpha)

Numerical Attribute?
Change Value?



Experiments



Experiments



A.4 Experiments


