
Answering Aggregation Queries

in a Secure System Model

Tingjian Ge, Stan Zdonik

Brown University

System Model

Key Holder (Client / SA, etc.)

DB Server Environment

(Only See Encrypted Data)

Encrypted Data on

Disk

Communication of

sensitive data is protected

by encryption

“outside-the-box”

encryption model

Separation of Duties

Server logs, config

files, temp tables,
memory are secure

Communication

protected

Key distribution &

management easy

Privacy & trust

Example: Database-
As-a-Service [HIM02]

Real world example: www.datafix.com.

Problem We Solve

� Goal: maximize processing at server.
� Minimize communication cost.

� Key Holder (e.g., client) is resource-constrained.

� Challenge: query processing without plaintext

� Existing solutions: comparison & indexing.
� E.g., OPES [AKSX04]. Directly compare/index ciphertext.

� Can handle SQL query types except SUM/AVG.

� Proposal of using homomorphism for SUM/AVG, but
insecure [HIM04].

Missing: A comprehensive, secure solution for SUM/AVG

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

Homomorphic Encryption

� A well-known technique in cryptography.

� Additive homomorphic:

� Generalized Paillier cryptosystem.

� Can adjust a parameter to make ciphertext

expansion factor close to 1.

enc(a + b) = enc(a) × enc(b)

C-Store & Compression

� A column-oriented DBMS

� Read-optimized, data warehousing applications

� Data can be uncompressed or compressed:

� Run length, bitmap, and delta encoding

Name SSN Job Salary

Alice 526-92 CEO 999,990

Bob 286-75 R&D 90,000

Cathy 756-98 Sales 99,000

Dan 892-16 Service 89,700

: : : :

: : : :

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

Basic Building Block

v1 v2 v3 ……

v65 ……

v64

v128

plaintext

encrypt

c1

c2

ciphertext

×

product

+

sum
decrypt

+
Algorithm 1

Assume, for now,

no overflow.

Handling Overflows

� If overflow within a vertical slice, result wrong!

� Arguably rare, but we need to handle it.

� Easy way: leave extra space preceding each

plaintext value.

� Less easy way: groups; monitor sums.
v1 v2 ……

v65 v66 ……

Group 1 vertical sums

v1 v2 ……

v65 v66 ……

Group 2 vertical sums

Use Group 2 when Group 1 is full.

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

Why Is Alg. 1 Not Enough?

� Alg. 1 can only SUM/AVG all column values.

� What about SELECT AVG(salary) WHERE age > 25?

� SUM/AVG on C-Store compressed data directly?

v1 v2 v3 ……

v65 ……

v64

v128

plaintext

+

sum

An Extension of Algorithm 1

v1 v2 v3 ……

v65 ……

v64

v128

plaintext

encrypt

c1

c2

ciphertext

×

product

+

sum
decrypt

Algorithm 2

3 5 …… 6

8 0 …… 2

1 0 …… 7 weight matrix

()3

()8

()1

Handling Predicates

� Two categories of predicates:

� Those that do not reference the encrypted column

� Those that do.

� Q1: SELECT AVG(salary) FROM employees WHERE age > 35
AND company = ‘SUN’

� Q2: SELECT AVG(salary) FROM employees WHERE salary >
60000 AND company = ‘MICROSOFT’

� DBMS often compute a bit-string to represent the result of predicate
(1 if a record is qualified, 0 otherwise). The bit-string is a binary
weight matrix for Alg. 2.

� For Q2, use indexing on encrypted columns (e.g., OPES). salary is
encrypted differently for SUM/AVG than in the index.

� 2 predicates � 2 bit-strings � bitwise AND � one bit-string

Update and Storage

� Insert new values incrementally, in enc-block batches.
� OLAP, data warehousing (C-Store): read-optimized, few or no

updates, update in large batches.

� A column can be encrypted differently for SUM/AVG and
for indexing. Storage issue?

� Aggressive compression in C-Store allows storing columns in
different ways (e.g., sort orders).

� Resort to a sparse B+ tree index: sort before using homomorphic
encryption; then sparse page-level index with OPES (first
plaintext value of each page enc’ed twice).

� SELECT AVG(salary) ….. WHERE range-predicate-on-salary

� Initial answer imprecise; post-process 1st and last page of the range
at Key Holder to make it precise.

Handling Compression

� Run Length Encoding (RLE)
� (value, # of repetitions) pairs. Put all value parts in the

homomorphic enc blocks. Put all # of repetitions parts in
the weight matrix.

� Bitmap encoding
� (value, bitmap) pairs. Put all value parts in the

homomorphic enc blocks. Count # of set-bits in bitmap for
the weights.

� Delta encoding

base inc1 inc2

base base+inc1 base+ inc1 +inc2

base x 3 inc1 x 2 inc2 x 1

Decompressed values:

Put in homomorphic enc. block Weights for Alg. 2

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

A Randomized Pre-computation

c1

c2

c3

c4

c5

c6

c7

…
…

segment

Pre-compute modular product of random subsets:

c2c4, c1c2c3, c1c4, c2c3.

Use same amount of space as ciphertext.

Suppose weight matrix for some query’s predicates:

1 0 1 1 ……

0 1 0 1 ……

1 1 1 0 ……

1 0 1 0 ……

1st column: c1c3c4 = (c1c4) × c3

2nd column: c2c3 available.

3rd column: c1c3c4 available from 1st column.

4th column: c1c2 = (c1c2c3) / c3.

Algorithm 3

Determine When to Use Algorithm 3

� If the combined selectivity of all predicates is p, the
fraction of multiplications of Algorithm 2 is 1/p; the
fraction of Algorithm 3 is .

E(M): expectation of # of multiplications per segment.

k: # of values per encryption block.

s: segment size.

� If k = 64, s = 7, on average, Alg. 3 performs better when p is

greater than 0.27.

� During execution, from the weight matrix, we know p,
and decide whether to kick off Algorithm 3 or just use

Algorithm 2.

() 1E M

k s s
≤ +

⋅

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

On Floating-Point Numbers (IEEE 754

Standard Single Precision FP)
� Observation: If we add two numbers that differ at least 24 in

exponents, the result is simply the bigger number.

� Basic idea: Have multiple ciphertext groups, each containing
values within a “24” exponent range. Pick one group to use.

G0: for SUM of a list of

numbers with max exp.

in [248, 255]. G0 contains

all column values with

exp. in [248 – 23, 255],

normalized to 248.

G1: for SUM of a list of

numbers with max exp.

in [240, 247]. G1 contains

all column values with

exp. in [240 – 23, 247],

normalized to 240.

……
32 groups, each

covering a range of

8 for max exp.

Which Group to Use for a Query?

� Use bitmaps, representing a set of records.

� Each group: a bitmap Mi showing which
records are in its “max exp. range”.

� Evaluating predicates of a query gives a
bitmap P. Find the 1st group whose Mi

intersects P.

� Each group: another bitmap Ti showing which
records are in its whole “24” exponent range.
� ANDing P and Ti gives the weight matrix.

Outline

� System Model and Problem to Solve.

� Background.

� Algorithm 1: Basic Building Block.

� Algorithm 2: Handling Predicates and
Compression.

� Algorithm 3: Randomized Pre-computation.

� Handling Floating Point Numbers.

� Experiments.

� Conclusions.

Experiments

Goal: To verify that the

performance is acceptable,

as the only solution.

Performance of Alg. 2 and
comparisons. (SELECT AVG
with a range predicate, 25%
selectivity).

50M records, different selectivities.

Alg. 3 with different segment
sizes, with selectivity fixed at
50%.

Conclusions

� Proposed techniques to answer SUM and AVG
queries in a secure model without decryption key.

� Handle arbitrary predicates and compression
schemes of C-Store.

� Combined with other schemes that handle

comparison and indexing, we approach a nearly
complete solution.

� Proposed a randomized pre-computing technique to
further improve performance.

� Verified that performance is competitive.

Thank you !!

� Questions ?

