
[HR-Join]

Sum-Max Monotonic Ranked Joins for
Evaluating Top-K Twig Queries on

Weighted Data Graphs

Yan Qi Arizona State University

K. Selcuk Candan Arizona State University

Maria Luisa Sapino University of Torino

Motivation: Query Processing on
Metadata with Conflicts (FICSR[SIGMOD07])

Supported by NSF Grant “Archaeological Data Integration for the

Study of Long-Term Human and Social Dynamics (0624341)”

Taxonomy1 Taxonomy2

FICSR Integrated Representation

Internal FICSR Representation

Simplified Visualization

for the User

Taxa

Chondrichthyes

Dusky Shark

0.1

0.05 Elasmobranchii

White
Shark

Basking
Shark

0.9

0.1

0.1
0.7

Holocephali

Chimaeriformes

0
.1

0
.0

1

0.3
0.5

FICSR Agreements [based on source
analysis and user feedback]

Statement of interest: is it true that “//Chondrichthyes[//Chimaeriformes]//WhiteShark“?

Chondrichthyes

WhiteSharkChimaeriformes

//

//

Related problems

� Web information units [RIU ,Banks, DPBF]

� Keyword search in Relational/OO/XML databases
[XRank, ObjectRank, Banks, CP/CV, DPBF]

� Social network analysis [CDIP]

Common theme:

� Data is a graph…

� …relevant content is distributed across the graph…

� …but, queries (e.g. keyword sets) are not structured.

Twig queries (i.e., structure of
interest) and top-k results

C

\\

B

D

\\

A

A[//C]//B/D

A

E

5

B

3

C

7

D

2

10

1
2

Cost = 17

A

E

5

B

3

C

7

D

2

10

1
2

A

E

5

B

3

C

7

D

2

10

1
2

Cost = 24

More desirable….can we

find it before the other??

Answering twig queries on
weighted graphs

� So, how hard is the “min-cost twig query problem”?

� NP-complete (by reduction from the “group Steiner

tree problem”)

A

B
A

C

G

},,{ CBA=Λ

A group

Steiner tree

problem

instance

Answering twig queries on
weighted graphs

� So, how hard is the “min-cost twig query problem”?

� NP-complete (by reduction from the “group Steiner

tree problem”)

A

B
A

C

Ga1

A

B
A

C
A

B
A

C

Gb1

A

B
A

C

Gc1Ga2

dum

my

dum

my

dum

my
dum

my

1

1 1

1
dummy

root

1 1 1 1

A

dummy

\\

dummy

root

B
C

\\

\\

G´ A twig

query

Also see DBTwig results (Kimelfeld and Sagiv, 06)

So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..

R

qv1

A

qv2

B

qv3

C

qv5

D

qv6

// \\

//
\\

E

qv7

\ \

F

qv4

\\

So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..

� Ranked-join algorithms (FA,TA, NRA) for top-k queries

R

qv1

A

qv2

B

qv3

C

qv5
D

qv6

// \\

//

\\

E

qv7

\\

s1

s3

s4
F

qv4

\\

s2

4321 ssssQ ><><><=

So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..

� Ranked-join algorithms (FA,TA, NRA) for top-k queries

� ….score combination function must be monotonic.

ranked in score(m) ranked in score(n)
ranked in score(m,n)

Sum-Max Monotonicity

� Ranked joins is a good idea…

� ..but, monotonicity does not hold.

� Good news: Sum-Max monotonicity

∑
∈

∈

≤≤

Rsr

ii
Rsr

i
i

srRsr)cost()cost())(cost(max

Cost = 12 Cost = 10 max(10,12)=12 < Cost = 17 < 12+10 = 22

A

E

5

B

3

C

7

D

2

10

1
2

A//C A//D A[//C]//D

Cost=17<22

A

E

5

B

3

C

7

D

2

10

12

A

E

5

B

3

C

7

D

2

10

12

Sum-Max Monotonicity

� Ranked joins is a good idea…

� ..but, monotonicity does not hold.

� In fact, we can also see that

)cost()cost())(cost(max)cost(211
2

RRsrR j
Rsr j

≤→







≤

∈

))(cost(max
2

j
Rsr

sr
j∈

∑
∈ 2

)cost(
Rsr

j

j

sr

)cost(1R

cost
)cost(for range 2R

Progressive enumeration based on
Sum-Max monotonicity

v3 (4) v2 (2)

v1 (7)

(a) Horizon = ∞∞∞∞����

A//B A//C

Stream of matches to A//C

vi’s denote the join nodes

(with label “A”)

matches are arriving in

increasing cost order

Stream of matches to A//B

� Query: A[//B]//C

Progressive enumeration based on
Sum-Max monotonicity

v3 (4) v2 (2)

v1 (7)

(a) Horizon = ∞∞∞∞

� Horizon -> Stopping criterion

v3 (4)

v8 (5)

v9 (7)

v2 (2)

v1 (7)

v19 (8)

v8 (9)

14 (<=5+9)

(b) Horizon = 14

v3 (4)

v8 (5)

v9 (7)

v2 (2)

v1 (7)

v19 (8)

v8 (9)v4 (10)

v5 (10)v1 (10)

11
 (<

=1
0+

7)

(c) Horizon = 11

v3 (4)

v8 (5)

v9 (7)

v2 (2)

v1 (7)

v19 (8)

v8 (9)v4 (10)

v5 (10)v1 (10)

v11 (13) v15 (10)

v16 (12)

(d) Horizon = 14

A//B A//C

No

matches
Match with

cost 14
Match with

cost 11

Match with

cost 11

returned

HORIZON TIGHTENING HORIZON RELAXATION

Pruning and data overhead

cost

initial horizonfinal horizon

pruned
subresult

leaked
subresult

(data overhead)

submatchesall

submatchesnecessarysubmatchesall
addataoverhe

_#

−
=

Horizon Tightening

HR-Join: Horizon based Ranked
Join

S1 S2

(Symmetric Hash) Join

O

Horizon

horizon

valve

result

sieve

horizon

valve

HR-Join

(not sorted)

Horizon valve
regulates the
availability of the
incoming data to the
hash join.

Result sieve
controls when a

candidate match
be declared

“result”

Relies on the “horizon”

value from result sieve

Relies on the

“punctuations”

received from the

horizon valves

Implements
sum-max
pruning

Two ordered
streams

Ordered
output stream

Operation of the horizon valve

on=25

 17

19

20

21

27

avail

horizon=25

 17

19

20

21

27

29

avail

horizon=42

 17

19

20

21

27

29

punctuation=

inf inity

avail

horizon=42

 17

19

20

21

27

29

punctuation=

inf inity

punctuation

(d) (e) (f) (g)

S1 S2

(Symmetric Hash) Join

O

Horizon

horizon

valve

result

sieve

horizon

valve

HR-Join

(not sorted)

•Punctuation: blocking due to the horizon limit

Horizon: 25 Horizon: 42 Horizon: 42

Punctuations are propagated by the
symmetric-hash join

Symettric Hash Join

used

punctuation

used

punctuation

punctuation

Symettric Hash Join

used

punctuation

used

punctuation

punctuation

(a) (b)

Punctuations
in the input

streams are
not met yet

Punctuations
are met in the
input streams

S1 S2

(Symmetric Hash) Join

O

Horizon

horizon

valve

result

sieve

horizon

valve

HR-Join

(not sorted)

Operation of the result sieve

rrent

on=

nity

izon=infinity

top=current

punctuation=

infinity

horizon=25

 25

top=current

punctuation

horizon=19

 25

 59

 19

 34

current

punctuation

horizon=19

 25

 59

 19

 34

current

punctuation =

intinity

horizon=25

 25

 59

 34

 48 48 48

 25

top

top

not used candidate top output

(a) (b) (c) (d) (e)

S1 S2

(Symmetric Hash) Join

O

Horizon

horizon

valve

result

sieve

horizon

valve

HR-Join

(not sorted)

• Top: The current best

• Punctuation: indicates that the input streams are punctuated

Indirectly regulates its own input stream by updating the horizon value

Query processing using HR-Join

R

qv1

A

qv2

B

qv3

C

qv5
D

qv6

// \\

//

\\

E

qv7

\\

s1

s3

s4
F

qv4

\\

s2

ST1 ST2 ST3

Horizon

horizon

valves

ST4

qv1 qv3

qv3

O

Horizon

Horizon

horizon

valves

horizon

valves

result sieve

result sieve
result sieve

subMatchGen(s1) subMatchGen(s2) subMatchGen(s3) subMatchGen(s4)

not ordered cost-ordered

M-way HR-Joins

ST1 ST2 ST3

horizon

valves

ST4

qv1 qv3

qv3

O

Horizon

horizon

valves

result sieve

subMatchGen(s1) subMatchGen(s2) subMatchGen(s3) subMatchGen(s4)

Only one result sieve
regulating all valves of
the four input streams.

R

qv1

A

qv2

B

qv3

C

qv5
D

qv6

// \\

//

\\

E

qv7

\\

s1

s3

s4
F

qv4

\\

s2

What is missing?

� How to enumerate (subresult) paths in cost order?

� K-shortest simple paths problem [Qi et al. SIGMOD 07]

� ..details are in the paper

� How to deal with “*” wildcards in twigs??

� can be expensive (too many matches and joins)

� query rewriting…....details are in the paper

|))|log|||(|||(VVEVkO +

)cost()cost())(cost(max)cost(211
2

RRsrtfR j
Rsr j

≤→







≤

∈

Can we do better?

� Horizon values are set based on

which assumes the worst case:

i.e., subresults may overlap fully.

� Horizon tightening factor (tf) can be used when overlaps are

known to be bounded

)cost()cost())(cost(max)cost(211
2

RRsrR j
Rsrj

≤→







≤

∈

Experiments

� 2GHz Pentium with 1GB main memory.

� Query plans:

� HR-Join and M-Way HR-Join (MHR-Join)

� 2 significantly different join-selectivity distributions: ~10%

and 1-to-1.

� Data

� FICSR weighted graph data

� Zipfian-like distribution of edge weights

Data overhead of HRM-Join versus
HR-Join

Data Overhead (10% selectivity)

0.56

0.00

0.00

0.27

0

0.1

0.2

0.3

0.4

0.5

0.6

HRM-JOIN HR-JOIN
Join type

D
a

ta
 O

v
e

rh
e

a
d

Input Subresults

Interm. Subresults

More

intermediate

hash-join

results

More input data

has to be

considered

Data overhead of HRM-Join versus
HR-Join

Data Overhead (1-1 map)

0.30

0.00

0.00

0.29

0

0.1

0.2

0.3

0.4

0.5

0.6

HRM-JOIN HR-JOIN
Join type

D
a

ta
 O

v
e

rh
e

a
d

Input Subresults

Interm. Subresults

HR-Join has higher horizon-
management cost (10%)

Horizon Tightening/Relaxation Activity

12

684

1

10

100

1000

C
o

u
n

t

HRM-JOIN

HR-JOIN

HR-JOINHRM-JOIN

11 results

Inter-arrival time of stream
inputs

Relative Execution Time (HRM / HR)

0

0.2

0.4

0.6

0.8

1

1.2

10 100

Inter-arrival time of entries in the input streams (ms)

H
R

M
P

ro
c
e
s
s
T

im
e
/

H
R

P
ro

c
e
s
T

im
e

10% 10%

When inter-arrival is tight, HRM benefits

from reduced horizon management

Inter-arrival time of stream
inputs

Relative Execution Time (HRM / HR)

0

0.2

0.4

0.6

0.8

1

1.2

10 100

Inter-arrival time of entries in the input streams (ms)

H
R

M
P

ro
c
e
s
s
T

im
e
/

H
R

P
ro

c
e
s
T

im
e

1-1 1-1

When selectivity is tight, there is less horizon

tightening, thus HR-Join performs OK

Horizon tightening and *-rewriting
help with “wildcard” queries

Time to Enumerate Results

1

10

100

1000

1 2 3 4 5 6 7 8 9 10
Rank of results

T
im

e
 (

s
e
c

)

0.9
0.5
*-Rewritten

Query: A//*[//B]//C

The costs of the distinct results of the
rewritten query are significantly better

Costs of the Results

3.9

4.2

4.5

4.8

5.1

1 2 3 4 5 6 7 8 9 10
Rank of the result

C
o

s
t

0.9

0.5

*-rewritten

Query: A//*[//B]//C

Conclusion

� Sum-max monotonicity…

� …..a self-punctuating, horizon-based ranked join
operator (binary, m-way)…

� …optimizations…

� Twig query processing over weighted data graphs

))(cost(max
2

j
Rsr

sr
j∈

∑
∈ 2

)cost(
Rsr

j

j

sr

)cost(1R

cost
)cost(for range 2R

Questions?

The degree of pruning is directly
correlated with the size of k

The degree of input pruning is more
important in bigger graphs

