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FICSR Integrated Representation

Internal FICSR Representation

Simplified Visualization

for the User
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Related problems

� Web information units [RIU ,Banks, DPBF]

� Keyword search in Relational/OO/XML databases  
[XRank, ObjectRank, Banks, CP/CV, DPBF]

� Social network analysis [CDIP]

Common theme: 

� Data is a graph…

� …relevant content is distributed across the graph…

� …but, queries (e.g. keyword sets) are not structured.



Twig queries (i.e., structure of 
interest) and top-k results
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More desirable….can we 

find it before the other??



Answering twig queries on 
weighted graphs

� So, how hard is the “min-cost twig query problem”?

� NP-complete (by reduction from the “group Steiner  

tree problem”)
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Answering twig queries on 
weighted graphs

� So, how hard is the “min-cost twig query problem”?

� NP-complete (by reduction from the “group Steiner  

tree problem”)
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So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..
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So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..

� Ranked-join algorithms (FA,TA, NRA) for top-k queries
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So what can we do?

� Keyword search on graph data [RIU, BANKS] ?
� No…we need to enforce query structure..

� Ranked-join algorithms (FA,TA, NRA) for top-k queries

� ….score combination function must be monotonic. 

ranked in score(m) ranked in score(n)
ranked in score(m,n)



Sum-Max Monotonicity

� Ranked joins is a good idea…

� ..but, monotonicity does not hold.

� Good news: Sum-Max monotonicity
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Sum-Max Monotonicity

� Ranked joins is a good idea…

� ..but, monotonicity does not hold.

� In fact, we can also see that

)cost()cost())(cost(max)cost( 211
2

RRsrR j
Rsr j

≤→







≤

∈

))(cost(max
2

j
Rsr

sr
j∈

∑
∈ 2

)cost(
Rsr

j

j

sr

)cost( 1R

cost
)cost(for range 2R



Progressive enumeration based on 
Sum-Max monotonicity
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� Query: A[//B]//C



Progressive enumeration based on 
Sum-Max monotonicity
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Pruning and data overhead
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HR-Join: Horizon based Ranked 
Join
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Operation of the horizon valve
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Punctuations are propagated by the 
symmetric-hash join
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Operation of the result sieve 
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Query processing using HR-Join
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M-way HR-Joins
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What is missing?

� How to enumerate (subresult) paths in cost order?

� K-shortest simple paths problem [Qi et al. SIGMOD 07]

� ..details are in the paper 

� How to deal with “*” wildcards in twigs??

� can be expensive (too many matches and joins)

� query rewriting…....details are in the paper
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Experiments

� 2GHz Pentium with 1GB main memory.

� Query plans:

� HR-Join and M-Way HR-Join (MHR-Join)

� 2 significantly different join-selectivity distributions: ~10% 

and 1-to-1.

� Data

� FICSR weighted graph data

� Zipfian-like distribution of edge weights



Data overhead of HRM-Join versus 
HR-Join
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Data overhead of HRM-Join versus 
HR-Join

Data Overhead (1-1 map)

0.30

0.00

0.00

0.29

0

0.1

0.2

0.3

0.4

0.5

0.6

HRM-JOIN HR-JOIN
Join type

D
a

ta
 O

v
e

rh
e

a
d

Input Subresults

Interm. Subresults



HR-Join has higher horizon-
management cost (10%)

Horizon Tightening/Relaxation Activity 
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Inter-arrival time of stream 
inputs

Relative Execution Time (HRM / HR) 
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Inter-arrival time of stream 
inputs

Relative Execution Time (HRM / HR) 
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Horizon tightening and *-rewriting
help with “wildcard” queries
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The costs of the distinct results of the 
rewritten query are significantly better

Costs of the Results
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Conclusion

� Sum-max monotonicity…

� …..a self-punctuating, horizon-based ranked join 
operator (binary, m-way)…

� …optimizations…

� Twig query processing over weighted data graphs
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Questions?



The degree of pruning is directly 
correlated with the size of k



The degree of input pruning is more 
important in bigger graphs


