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Motivation: Query Processing on
Metadata with Conflicts (FICSRsiemopo71)

Taxa’
P Taxa?2
_Ctiondrichthves | | e
T B S Chondrichthyes  Elasmobranchii>
/,/Elasmol?fanehi? Holocephali h‘ _____ _
r:__”(';-—"’ ‘\ ‘C\\ /F
Bsaﬁglrr‘ig Dgrga?rskh T Dusky Shark White Shark
Taxonomy1 Taxonomy2

Supported by NSF Grant “Archaeological Data Integration for the
- Study of Long-Term Human and Social Dynamics (0624341)"




‘ FICSR Integrated Representation
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FICSR Agreements [based on source
analysis and user feedback]
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Statement of interest: is it true that “//Chondrichthyes[//Chimaeriformes]//WhiteShark“?




Related problems

@

Web information units [RIU ,Banks, DPBF]

Keyword search in Relational/OO/XML databases
[XRank, ObjectRank, Banks, CP/CV, DPBF]

Social network analysis [CDIP]

/~ Common theme: ™
o Datais a graph...
o ...relevant content is distributed across the graph...

\ o ...but, queries (e.g. keyword sets) are not structured. )




‘ Twig queries (i.e., structure of
interest) and top-k results

____________________________________

____________________________________

[ A[//C)/B/D J

[ Cost = 17 J [ Cost = 24 J

More desirable....can we
find it before the other??




Answering twig queries on
weighted graphs

= So, how hard is the “min-cost twig query problem”?
= NP-complete (by reduction from the “group Steiner

tree problem?)

@ @ A group A

Steiner tree

@ problem
/

\_ Instance )

o

A={A,B,C}




Answering twig queries on
weighted graphs

= So, how hard is the “min-cost twig query problem”?

= NP-complete (by reduction from the “group Steiner
tree problem?)
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Also see DBTwig results (Kimelfeld and Sagiv, 06)




So what can we do?

@

Keyword search on graph data [riu, BANKS] ?
o No...we need to enforce query structure..

______________________________________________

_______________________________________________



So what can we do?

@

Keyword search on graph data [riu, BANKS] ?
o No...we need to enforce query structure..

Ranked -join algorlthms (FA TA NRA) for top-k queries

Q=s5b>ds,>ds, >4y,




So what can we do?

@

Keyword search on graph data [riu, BANKS] ?

o No...we need to enforce query structure..

Ranked-join algorithms (FA,TA, NRA) for top-k queries
o ....score combination function must be monotonic.
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Sum-Max Monotonicity

Ranked joins is a good idea...
0 ..but, monotonicity does not hold.
Good news: Sum-Max monotonicity

max(cost(sr;)) < cost(R) < Zcost(sri)

sr.e R
i sr.€ER

Al//CJ/D




Sum-Max Monotonicity

Ranked joins is a good idea...
0 ..but, monotonicity does not hold.

In fact, we can also see that

(cost(Rl) < max(cost(s7; ))) — COSt(R,) < cost(R,)

STiER,

cost(R,)
iy A‘ange for cost(Rz)’\;

O AN

malgc(ccl)st(srj ) Z CdSt(Sr )

=
J=2 srjER2

cost




‘ Progressive enumeration based on

Sum-Max monotonicity

= Query: A[//B]//C

-

A//B

v3 (4)

A/IC

~

v2(2)

vl (7)

L=

I . .
matches are arriving in
increasing cost order

S
vi’s denote the join nodes
(with label “A”)

| Stream of matches to A//C

‘ Stream of matches to A//B



Progressive enumeration based on
Sum-Max monotonicity

= Horizon -> Stopping criterion

(a) Horlzon =0 :\ ::\_ ..... h ,E i
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Pruning and data overhead

< Horizon Tightening

@

final horiggr.l . i'n_it_ial horizon
R - -2 - 2 - .
|
leaked oruned ~ COSt
subresult subresult

(data overhead)

#all _ submatches—#necessary _ submatches

dataoverhead =
#all submatches



HR-Join: Horizon based Ranked
JOin Ordered

output stream

Result sieve x HR-Join
controls when a Implements

candidate match | /. | sum-max
be declared pruning
“result”

Relies on the
“punctuations”

received from the
horizon valves \ . < /Z Horizon valve
St P regulates the

availability of the
incoming data to the
vh hash join.

Relies on the “horizon”
value from result sieve

Two ordered
streams

S




Operation of the horizon valve

*Punctuation: blocking due to the horizon limit
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Punctuations are propagated by the
symmetric-hash join
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Operation of the result sieve

* Top: The current best
 Punctuation: indicates that the input streams are punctuated

horizon=25

25

top=current

———F®

punctuations
inﬂnﬂz&,/r\

Indirectly regulates its own input stream by updating the horizon value




Query processing using HR-Join

7

result sieve

Horizon

qv3

horizon
~valves--C_ L ------1

result sieve .
result sieve

ST2 ST3

[ subMatchGen(s1) ][subMatchGen(sZ)][subMatchGen(sS)][subMatchGen(s4)]

—P» not ordered =[> cost-ordered



M-way HR-Joins

Only one result sieve ST3

regulating all valves of
the four input streams.

[ subMatchGen(s1) J[subMatchGen(sZ)][subMatchGen(sS)][subMatchGen(s4)]




What is missing?

@

How to enumerate (subresult) paths in cost order?

0 K-shortest simple paths problem [Qi et al. SIGMOD 07]
OKkIVIIEI+IVIloglV 1))

..details are in the paper

1%, X

How to deal with “*” wildcards in twigs??
o can be expensive (too many matches and joins)
o query rewriting....... details are in the paper



Can we do better?

Horizon values are set based on

(cost(Rl) < max(cost(sr; ))j — cost(R,) < cost(R,)

SriER,

which assumes the worst case:

Horizon tightening factor (tf) can be used when overlaps are
kKnown to be bounded

(cost(Rl) ax(cost(srj))j —> COSt(R,) < cost(R,)

sri€ER,



Experiments

2GHz Pentium with 1GB main memory.

Query plans:
o HR-Join and M-Way HR-Join (MHR-Join)

o 2 significantly different join-selectivity distributions: ~10%
and 1-to-1.

Data

o FICSR weighted graph data
Zipfian-like distribution of edge weights



Data overhead of HRM-Join versus

HR-Join

Data Overhead (10% selectivity)
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has to be
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results




Data overhead of HRM-Join versus
HR-Join
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W Input Subresults
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HR-Join has higher horizon-
management cost (10%)

Count

1000

100 -

10

Horizon Tightening/Relaxation Activity
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O HRi\/I—JOIN
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11 results




Inter-arrival time of stream
Inputs

Relative Execution Time (HRM / HR)
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When inter-arrival is tight, HRM benefits

from reduced horizon management




Inter-arrival time of stream

Inputs

HRMProcessTime/

HRProcesTime
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When selectivity is tight, there is less horizon

tightening, thus HR-Join performs OK




Horizon tightening and *-rewriting
help with “wildcard” queries

@

Time to Enumerate Results
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The costs of the distinct results of the
rewritten query are significantly better

@

Costs of the Results
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Conclusion

Sum-max monotonicity...

cost(R,) 5 i
iy A‘ange for cost(Rz)’\;

O AN

max(ccl)st(srj ) Z CO:St(S” i)

SrJERZ srjeR2

cost

.....a self-punctuating, horizon-based ranked join
operator (binary, m-way)...

...optimizations...

Twig query processing over weighted data graphs




‘ Questions?

Q-




The degree of pruning is directly
correlated with the size of k

@

Input Pruning
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The degree of input pruning is more
important in bigger graphs
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