Efficient Processing of Top-k Dominating

!'_ Queries on Multi-dimensional Data

M. L. Yiu N. Mamoulis
Aalborg University University of Hong Kong




i Outline

= Motivations and applications
= Background

= Eager approach

= Lazy approach

= Experimental results

= Conclusions




i Top-k Query, Skyline Query

= D: set of points in multi-dimensional space R4
= Top-k query 1

=« Kk points with the lowest F values y (price) Qpl P,

= Top-2: p,, Pe ] - P,
= Require a ranking function ® 05 Ps O

= Result affected by scales of dimensions & 14

= Skyline query 1 5 b, b
— F=x+y . © 7

= p>p (3, plil <pTli]) A (Vi plil <pTil) 7 o
= Points not dominated by any other point 0.5
= Skyline: Dy, Pas Per Py X (time to conf. venue)

= Uncontrolled result size ®



i Top-k Dominating Query

Intuitive score function: w(p) = | { p’eD, p>p’ } |
Top-k dominating query
= Also called k-dominating query [Papadias et. al. 2005]
= Returns k points with the highest u values
= Top-2 dominating points: p, (3), ps (2)

Advantages © "] »
= Control of result size y (price) | © : Opz
= No need to specify ranking function _ P
= Result independent of scales of dimensions 05— p Ps
Application: decision support ]
= The query captures the most " significant’ hotel ] Ps D,
= A conference participant attempts to book p, S
= If p, is fully booked, then try the next one (p:) 0.5 1

X (time to conf. venue)

4



i Related Work

. _ _ Dep W
= Spatial aggregation processing Herer| [Poee
= E.g., count the number of pointsin aregion | e ol lo, 10, €19
] | 003 ‘?4 670 080 |
= Aggregate R-trees [Papadias et. al. 2001] 05 = |
= Example: COUNT R-tree reg ol | e ey
= Each entry is augmented with the COUNT of  —|[ . Ole_ | | €5 081620
points in its subtree Al &) |28 )
= Query: find the number of points in W €18 05 :

= W contains the entry e q

= Increment the answer by COUNT(e,,), e/ €
without accessing its subtree o Tro o] 1

= Augmented values speed up the counting
the process

root node

\S]

3 3 2 3
€ € €; &g

2 EE

e 2|

2
€ €10
€1

2] 3‘

€13 €14
€56

%\ 2|

contents of leaf nodes omitted

5



i Top-k Dominating Query

= Processing of the top-k dominating query

= Naive solution: Block Nested Loop join,
compute the score of every point
= Quadratic cost of input size

= Goal: develop efficient algorithm on indexed
multi-dimensional points (R-tree)

= Eager approach
= Lazy approach



Existing Skyline-based Solution

Tl |
[Papadias et. al. 2005] Apply a skyline algorithm - P,
iteratively to obtain k-dominating points . | °
Example: top-2 dominating query 05 Pro Py =5 Pg
Iteration 1 ] p,° Oop5 777777777
= Property: Vv p,p’eD, p>p’ = u(p)>w(p’) ] Ps
= Find the skyline points ]
= Count their scores (by accessing the tree) 0.5 1
= Report the first result: p, (4)
Iteration 2 low! At large
skyline size!

= Find the constrained skyline (gray region)
= Region dominated by p, but not others (p;, ps)

= Count their scores and compare them with points
in all previous iterations

= Report the next result: p, (2)

Counting cost
1 skyline cost




i Our Observation

The counting operation is the most important
= Index the dataset by a COUNT R-tree

Corner locations of an entry e
= Lower corner e, upper corner et

Three possible dominance relationships
= Full dominance: p; > e,~
= p; dominates all points in e,

= Partial dominance: p, > e;* and p, * e,
= P, may dominate some points in e,

= No dominance: p; * e,*
= p;dominates no points in e,
Similar dominance relationships between entries
= ¢, fully dominates e,
= ¢, partially dominates e,




i Our Eager Approach

Tight-most upper-bound score of an entry e: u(e")
= Tight-most in the sense that the subtree content of e is not used
= Compute u(e-) by visiting nodes in the tree
Traverse the nodes in the tree, in descending order of their
upper bound scores

= Use a max-heap H for organizing the entries to be visited in / eager

descending order of their upper bound scores
=« For each encountered entry e, compute its u(e-) immediately
= Keep the best-k points (with the highest scores) found so far

« Terminates when the top entry of H has upper-bound score
smaller than the current best-k points

No need to compute the whole skyline!



Tight-most Upper-bound Score

Necessary?

It suffices to derive a loose upper-score bound

wi(e), for a non-leaf entry e

Eager algorithm is correct, as long as p¥(e) > u(e")

Develop the lightweight counting technique to
compute pY(e), without accessing leaf nodes

Based on dominance relationships between entries
Much lower cost, relatively tight bound © 1

Comparison on the example

Tight-most bounds: p(e,”)=3, u(e,”)=7, u(e;)=3
Loose bounds: pY(e,)=3, n¥(e,)=9, ni(e;)=3
The child node of e, will still be accessed first

Ordering of entries approximately preserved (i.e.,
effective search ordering) ©

0.5

O
p5
O
p P
6 49
@) ¢
P, ®
P
p] p3© p7 8
@) 14
90
e2
1 1 1 1 1 1 1 1 11X
0.5 1
y
el
277
e3
277
777
e

10



i Our Lazy Approach

= Problem of the Eager approach

Some tree nodes may be visited multiple times (due to
explicit counting of upper score bounds of entries)

= We then propose a Lazy approach

Visit each tree node at most ONCE!

Maintain lower p'(e) bound and upper n¥(e) bound for
each visited entry, initially u'(e)=0 and uY(e)=N

When a node is accessed, we refine the bounds of
visited entries

11



i Lazy Approach: Example

Traversal order: assume that the node with —

highest upper bound is visited first

= Update bounds only based on visited entries
= Access root node

= u(e)=[0,3], n(e,)=[0,9], w(e;)=[0,3]

= S5={e,, &, €5}

= Access the child node of e,

u H(p1)=[117]1 “(p2)=[013]1 H(p3)=[0,3]
= Score bounds of e; unchanged

= S={es Py, Py Pz}

]

<

—_

0.5

<

[1] e fully dominates €’
- ul(e) and pY(e) both
added by COUNT(e")

[2] e partially dom. e:
- only uY(e) added by
COUNT(e")

@)
Ps
@)
@) €3
D, % »
@)
P, P 7 %
Oe p9o

T 1 1 1T 1 1 1 11X

0.5 1 12



i Traversal Order of Lazy Approach

Performance of Lazy depends on its traversal order 0
Intuitive order: choose the non-leaf entry (in S) ' —

. . O O O
with the highest upper bound score pi(e) e e |0%) 5 ,
Is this really the best traversal order? el e e, ey 18
Example JEsdof) fold

0.5

= Access ordering: root, e, ...... ey o | $ee

n S={e17/ e19/ e20’ e11/ e12/ 69, elO} I e © % 0 O€]<5> OeI 620

= Current score bounds of e, g leX| e o)l 8

= Upper bound=40 (ST ‘1x

= Lower bound=10+2=12 (low, due to partial dominance)
= Current best score=12, only few entries can be pruned!
Objective of search
= Examine entries of large upper bounds early
= Eliminate partial dominance relationships of entries in S

13



i Analysis of Partial Dominance

A, Ag

= Assume that o and B are two entries 1
= Let A be the length projection of o along a dimension
o Pr( o and B do not intersect along a given dimension 1 )
=1-(, +Ap)
o Pr( o and B have partial dominance relationship )
= Pr( o and B intersect at least one dimension )
=1-(1- (A, + Ay))Y, where d is the number of dimensions

= Observation: the above probability is low when (2, + ;) is small,
l.e., both a and [ are at low levels
= A better traversal ordering
= Find non-leaf entries (in S) with the highest level
= Among them, choose the one with the highest upper bound score

14



i Experiments on Synthetic Data

= Algorithms
=« ITD (Existing Skyline-based method, plus optimizations)
« LCG (Eager approach, with lightweight counting)
=« CBT (Lazy approach, with our novel traversal order)

= Synthetic datasets
= UI (independent), CO (correlated), AC (anti-correlated)

= Default parameters values
= Node page size of COUNT R-tree : 4K bytes
= LRU buffer size (%): 5
= Datasize N (million): 1
=« Data dimensionality d: 3
= Result size k: 16

15



iCounting Technique in Eager

Compare the computation of
exact upper-bound score and
loose upper-bound score

Uniform data
2000

1ei

Xact —— act ——
i * i g
geg| -
1500} @
% E +
g 5eb | :
21000 | _%
= 5| +
~ 500 5 t
Zebt +
+
LT .+ 4o g 080 : : e,
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
value value

Node accesses

value ~ location of the entry e

10000

Upper-bound score of the entry

16



Traversal Order in Lazy

Compare the traversal of
upper-bound order and
novel order

Uniform data
2000

o) BT = | v —
R ! 7000| ]
+ + 7
ges | 5000 |
. 55000 |
ESEE- 4000}
- g
@ +
4ot b 3000 +
2000 | +
285t
1000} *
080 S 0 N, S ——
0 1000 2000 3000 4000 5000 600D 7000 0 1000 2000 3000 4000 5000 6000 7000
loop loop
Value of y Size of S

(best score of a point) (number of existing entries in memory)

17



I/O cost vs N

time (s)

; ITD ITD
time (s) ITD ITD 600 ITD — —
500 T 605 [ 161 R O 1o 1103~ 2297/
0 vo ITD N ™ 500 O CPU L LCG
400 - O CpPU - _
400 -
| ITD
300 D 300 LCG
200 - LCGCBT 200 - ITD
ITD LCG 100 LCG LeaG CBT
i CBT 7| [LCG BT
100 e LCG gy - o ﬂ BT c
LCGcpr CBT Ij |:| 0 — = B Ll N it
1A= 1] Ij . ‘ ‘ ‘ ‘ (million)
T T T T 1 N (n’ulhon) 0.25 0.5 1 2 4
0.25 0.5 1 2 4
UI data AC data
CO data
time (s)
507 o 10 ITb
O cPU |
60 -
40 - ITD
ITD
ITD LCG CBT
20 ITD LCGCBT
LeGcpr | [LCOCBT | |LOG |:| |:| ﬂ
0= 105 00 w ' N (million)
0.25 0.5 1 2 4

18



Application of Top-k Dominating Points

= Real datasets (sports statistics)
= NBA: 19112 players; BASEBALL: 36898 pitchers

= Apply top-k dominating queries to discover “top” players,
without using any expert knowledge

= Results match the public’s view of super-star players in
NBA and BASEBALL

Identified by player name & year Attributes

Score NBA Plaver / Year op pts reb ast
18385 Wilt Chamberlain / 1967 82 | 1992 | 1952 | 702
18299 Billy Cunningham / 1972 84 | 2028 | 1012 | 530

18062 Kevin Garnett / 2002 82 | 1883 | 1102 | 495
18060 Julius Erving / 1974 84 | 2343 014 | 462

TOp'S 17991 | Kareem Abdul-Jabbar /1973 | 82 | 2275 | 1383 | 413

dominating

points Score BASEBALL Pitcher / Year W z sV 50
34659 Ed Walsh / 1912 27 62 10 254
34378 Ed Walsh / 1908 40 66 6 269
34132 Dick Radatz / 1964 16 79 29 181
33603 Christy Mathewson / 1908 37 56 3 259

33426 Lefty Grove / 1930 28 50 9 209




Skyline vs Top-k Dominating points

oa

20000

18000

18000 |

14000 |

12000

10000

Perform a skyline query, compute top-k dominating points by
setting k to the skyline size (69 for NBA and 50 for BASEBALL)

Plot their dominating scores in descending order

Observations

= Top-k dominating points have much higher scores than skyline points
= Top-k dominating points are more informative to users

Top- K Comnaing —
i msr::,nFE——

o 1 2 A 40 50 EL]
K

NBA

7

:

A5000

3000 -

25000

20000

18000

1000

Top-k E-:-mﬁhh:é'ljiFE —
1IIII EII:I i]IIII deII B0
K
BASEBALL 20



i Conclusions

Recognize the importance of top-k dominating query
as a data analysis tool

Our algorithms on R-tree
« LCG (Eager approach, with lightweight counting)
« CBT (Lazy approach, with a novel traversal order)

CBT has the best performance, relatively stable
performance across different data distribution

Future work
=« For non-indexed data, algorithms based on hashing
= Approximate top-k dominating result, with error guarantee

21



i References

[Papadias et. al. 2001] D. Papadias, P. Kalnis, J. Zhang,
and Y. Tao. Efficient OLAP Operations in Spatial Data
Warehouses. In SSTD, 2001.

[Papadias et. al. 2005] D. Papadias, Y. Tao, G. Fu, and B.
Seeger. Progressive Skyline Computation in Database
Systems. TODS, 30(1):41-82, 2005.

22



i Alternative solutions?

y
Pre-computation possible? " .
= Materialize the "score’ of every point i | o |
= Updates: change the ‘score’ of influenced points 0_5: P, g) 77777 p, p,
= Update cost is expensive for dynamic datasets - ) 2 s
Approximation by using dominating area? i ’ b,
= DomArea(p;,) = Area dominated by the point p, 7
= Dominating area cannot provide bounds for p Y

= DomArea(p;) > DomArea(p,)

= but u(py)=1 < p(p,)=2 M
Unlike the dominating area, computing u value (or
even its upper bound) requires accessing data

Related work on skyline

= Skyline on R-tree: BBS [Papadias et. al. 2005]
= Best-first traversal (from the origin) of R-tree

= Keep found skyline points for pruning others 23



