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Time Series Data

¢ Many applications produce time series data
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Apple, Intel, NASDAQ Computers Stock Values
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Apple, Intel, NASDAQ Computers Stock Values

Compare time series to gather differences

Apple stock has a
very different “trend”
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Apple, Intel, NASDAQ Computers Stock Values

2006 Intel stock had 2687
Tine different magnitude




Problem Statement

Find anomalies Iin a
data cube of
multi-dimensional
time series data
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Multi-Dimensional Attributes

e Time series are not flat data; contains multi-dimensional attributes

e Stock example

» Apple and Intel are a part of the NASDAQ Computers IndeX weww

» Apple is hardware/software; Intel is hardware

» Related to NASDAQ-100 Technology Stock Index

e Sales example

» Multi-dimensional information collected for every sale (e.g., buyer age,
product type, store location, purchase time)

» Compare sales by any combination of categories or sub-categories:
“sales of sporting apparel to males with 3+ children have been declining
compared to overall male sporting apparel sales”
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Problem Statement

e Find anomalies in the data cube of multi-dimensional time series data

e Input data: relation R with a set of time series S associated with each tuple
» Attributes of R form a data cube Cr
» Each sjis a time series

» Each ui is a scalar indicating the count of the tuple

Gender Education Income Product Profit Count
Female Highschool 35k-45k Food S1 U1
Female Highschool 45k-60k Apparel So Uo
Female College 35k-45k Apparel S3 Us
Female College 35k-45k Book S4 Us
Female College 45k-60k Apparel Ss Us
Female Graduate 45k-60k Apparel Se6 Us
Male Highschool 35k-45k Apparel S7 Uz
Male College 35k-45k Food Ss Us
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Data Cube Preliminaries

e Given a relation R, a data cube (denoted as Cr) is

the set of aggregates from all possible group-by’s ABC
on R

¢ In a n-dimensional data cube, each cell has the
form ¢ = (a1, a2, ..., @an : M) where each a; is the AB BC

value of ith attribute and m is the cube measure
(e.q., profit)

e A cell is k-dimensional if there are exactly k (< n)
values amongst ai which are not * (i.e., all)

» 2-dimensional cell: (Female, *, *, Book: x)

» 3-dimensional cell: (*, College, 35k-45k, Apparel: All
y)
» Base cell: none of aj is *

e Parent, descendant, sibling relationships
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Query Model

e Given R, a probe cell p € Cgr, and an anomaly

function g, find the anomaly cells among
descendants of p in Cr as measured by g

» Each abnormal cell must satisfy a
minimum support (count) threshold

» Anomaly does not have to hold for entire
time series

» Only the top kK anomalies as ranked by g
are needed

base

10
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Related Work

e Exploratory Data Analysis

» [Sarawagi SIGMOD’00] explores OLAP anomaly but necessitates full cube
materialization

» [Palpanas SSDBM’01] approximately finds interesting cells in data cube but still
requires exponential calculations

» [Imielinski DMKD’02] requires anti-monotonic measure and does not focus on
time series

e Time Series Data Cube [Chen VLDB’02]
» Only suitable for low-dimensional data
» Requires user guidance

e General outlier detection, subspace clustering, and time series similarity search
does not address OLAP-style data

11



Measuring Anomaly: Intuition




Measuring Anomaly: Intuition

1. For every cell, compute the expected time series (with
respect to the probe cell)
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Measuring Anomaly: Intuition

1. For every cell, compute the expected time series (with
respect to the probe cell)

2.Compare the expected time series vs. the observed
time series

3. Rank to get top k
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Observed Time Series

e Given any cell ¢ in Cg, there is an associated observed time series sc

¢ In the context of a probe cell p, it is computed by aggregating all time series
associated with both c and p

13



Observed Time Series (2)

Gender Education Income Product Profit Count
Female Highschool 35k-45k Food S1 U1
Female Highschool 45k-60k Apparel So 150
Female College 35k-45k Apparel S3 200
Female College 35k-45k Book S4 U4
Female College 45k-60k Apparel Ss 600
Female Graduate 45k-60k Apparel S6 50
Male Highschool 35k-45k Apparel S7 Uz
Male College 35k-45k Food Sg Us
e Example: p = (Gender = “Female”, Product = “Apparel”)
Cc Sc |c|
Education Income Profit Count
sk sk S2+ S+ S5 + S6 1000
Highschool sk So 150
College sk S3 + S5 300

14



—xpected Time Series

e Given any cell ¢ that is a descendant of p, there is also an expected time
series Sc

e |[ntuition: A descendant cell of p is a subset of p. Assuming that market
segments behave proportionally by its size, one can calculate the
expected time series from p’s time series

R C
Sec — ? Sp
c Sc Sc Ic]
Education Income Profit Count
sk sk S2+ S3+ S5+ S6 = Sp n/a 1000
Highschool sk Se 150 /1000 x sp 150
College sk S3 + S5 800 / 1000 x sp 800




Anomaly Definition

e General idea: g(sc, S¢) = R

16



Anomaly

Definition

e General idea: g(sc, S¢) = R

e Four types of anomalies

» Trend

» Magnitude

» Phase

» Miscellaneous

Measure

Measure

Measure

Measure

Time

(c) Phase Anomaly

Time

(d) Miscellaneous Anomaly
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Anomaly Definition

e General idea: g(sc, S¢) = R

e Four types of anomalies
» Trend
» Magnitude
» Phase

» Miscellaneous
* Measured via first-order linear regression

» Simple and efficient (direct cube

aggregation of parameters [Chen
VLDB’02])

» Effective at catching obvious anomalies

Time

Time

(d) Miscellaneous Anomaly
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Mining Top-K Anomalies in Data Cube

Algorithm 1 Nailve Top-k Anomalies

Input: Relation R, time-series data .S, query probe cell p,
anomaly function g, parameter k£, minimum support m

Output: Top-k scoring cells in C, as ranked by g and
satisfies m

1. Retrieve data for o,(R)

2. Compute the data cube C, with o,(R) as the fact table
with m as the iceberg parameter

3. Return top k anomaly cells in C), for each g

17
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Mining Top-K Anomalies In

Data Cube

Algorithm 1 Naive Top-k Anomalies

Input: Relation R, time-series data .S, query probe cell p,
anomaly function g, parameter k£, minimum support m
Output: Top-k scoring cells in C, as ranked by g and

satisfies m

1. Retrieve data for o,(R)

2. Compute the data cube C, with o,(R) as the fact table
with m as the iceberg parameter
3. Return top k anomaly cells in C), for each g

1. Expensive to compute Cp (exponential in number of dimensions)

2. Finds all anomalies before collecting top-k
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SUITS Framework

e Subspace Iterative Time Series Anomaly Search (SUITS)
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SUITS Framework

e Subspace Iterative Time Series Anomaly Search (SUITS)
e [teratively select subspaces out of the 2" total subspaces

e Compute anomalies within subspaces
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SUITS Framework

e Subspace Iterative Time Series Anomaly Search (SUITS)
e [teratively select subspaces out of the 2" total subspaces
e Compute anomalies within subspaces

e Combine to form overall anomalies

% N '/I Time Time
t :ﬁ L/A Series Series
,2 | \Candidate % Cube Cube

% Subspaces % \ /

| I

:ﬁ % Top—K

Y | Cube Outliers

™ L~




How to Choose Candidate Subspaces

¢ |ntuition

e By definition, anomalies are rare and most of the 2" subspaces do not contain
any

e Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

e Procedure

AL A, -

: 1 H Iff, Time Time
t ’ :}:: wﬁ Series Series
. | \Candidate / Cube Cube

% Subspaces ? \ /

| |

r{j % Top—K

'f’ﬂ Cube Outliers
N %
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any

e Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

e Procedure
1. Search for a group of similar anomalies in the set of base cells
2. Find a subspace correlated with the group

3. Compute the local top-k anomalies in the subspace
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How to Choose Candidate Subspaces (2)

¢ Time Anomaly Matrix

Education | Income ST SE) -
Bicibeakoa [| i adie : N(T)mne ) | Ma gl;ntu(ie ....................................... Magnmltu(ie _______________
College 35k 45k : Pha Se " N;m;le || MISC
Glalkece il Mag;ntude ____________________________________ Mag;:ltude ......

Graduate 45k—60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

» Partition each observed and expected time series into subseqguences and
compute anomalies

» Group anomalies by type and also amount

» lteratively select groups of similar anomaly cells from matrix
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How to Choose Candidate Subspaces (2)

¢ Time Anomaly Matrix
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How to Choose Candidate Subspaces (3)

e Given a group in the Time Anomaly Matrix, select its correlated subspace
e Rank attribute-value pairs by Anomaly Likelihood (AL) score

» Attribute values that occur very frequently and within a homogenous dimension
have high AL scores

» AL = (Frequency of Attribute-Value) x (Entropy of Attribute)
e Select the top few and form the candidate subspace

Education | Income S[1] S[2] S[3]

. _ — - _____
Highschool | 45k—60k None Magnitude Magnitude
College 35k—-45k Phase None Misc
College 45k—60k Phase Magnitude
Graduate 45k—60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix




How to Choose Candidate Subspaces (3)

e Given a group in the Time Anomaly Matrix, select its correlated subspace

e Rank attribute-value pairs by Anomaly Likelihood (AL) score

» Attribute values that occur very frequently and within a homogenous dimension

have high AL scores

» AL =

(Frequency of Attribute-Value) x (Entropy of Attribute)
e Select the top few and form the candidate subspace
Education | Income S[1] S[2] S[3]
C—— | —— — | —a
Highschool [[2ApIKT 44 Vo] HRQNEe pr‘g\/‘lﬁggw%u‘(}:le AT] Qeafdagnitude
Income = 45k—60k 3 0 | 1= \ﬂ
College ‘Hidueation = Highschool | 1 None 1.58 Misc
Education = College |1 [ 158 — |
College 4@d&bﬁat10n — erx@éjuate 1 Magnitude 1.58 Mapgnitude
C— 1 |—¢ |—¢ —
Graduate 45k—60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix
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Discovering Top-K Anomaly Cells

e Each subspace is small enough (~5 dimensions) for full cube materialization
e Efficient Regression Calculation

» Linear regression needed for anomaly calculation (comparisons between
parameters of observed and expected time series regression)

» Regression parameters can be aggregated losslessly [Chen VLDB'02]
» Only need to perform regression calculation once in the base cuboid

» Higher level cuboids’ regression parameters can be calculated via simple
aggregation

23



Discovering Top-K Anomaly Cells (2)

e More efficient top-k anomaly detection (i.e., avoid computing the whole data
cube)

¢ |ntuition: calculate anomaly upper bounds during cubing and prune branches
If upper bound is below current top-k

® Procedure
» Bottom-up cube calculation [Beyer SIGMOD’99]
» Keep track of current top-k Age,Sex,Height

» Calculate anomaly upper bound AgeSex  AgeHeight  Sex.Height

» If upper bound is below the worst in top-k, stop \/ /

Sex Height

‘\T/'

*

24



SUITS Algorithm in Summary

Algorithm 2 SUITS
Input & Output: Same as Algorithm 1

1. Retrieve data for o,(R)

2. Repeat until global answer set contains global top-£

3. B «+ candidate attribute values from {A;,... A}

4. Retrieve top k anomaly cells from Cp using g and m
5 Add top k cells to global answer set

6 Remove discovered anomalies from input

7. Return top k cells in global answer set

® [inal top-k Is approximation of true global top-k

® [op-k pruning relies on monotonic properties of upper bound.

If not satisfied, need to compute full subspace cube

25



=Xperiments

e Real market sales data from industry partner

e Time series data from 1999 to 2005

e Nearly 1 million sales and 600 dimensions

26



Sample Query 1

Sales

1999 2000 2001 2002 2003 2004 2005
Time

* Probe: Gender = “Male” N Marital = “Single” N Product = luxury item

e Greatest anomaly: Generation = “Post-Boomer” : less than expected

e Explanation: “Post-Boomer” are young and do not have enough money yet
to purchase luxury item

27



Sample Query 2

e Probe: Gender = “Female” N Education = “Post-Graduate” N Product = cheap item

e Greatest anomaly:

1. Employment = “Full-Time” = less

2. Occupation = “Manager/Professional” = less
3. Number of Children Under 16 = 0 = more

e Explanation: Number of Children Under 16 = 0 < “Young” < not enough

accumulated wealth

Sales

1999 2000 2001 2002 2003 2004 2005
Time

28



Query Efficiency
Probe |R| | Naive SUITSy SUITS Common Top-10
Time | Time | % Improve | Time | % Improve

Male, Single 10 | 14 5.0 58% | 5.4 61% 9
Male, Married 10 | 299 95 68% 60 80% 10
Male, Divorced 10 | 3.6 2.8 22% 2.8 22% 10
Female, Single 10 | 15 8.2 46% 7.0 53% 9
Female, Married 10 | 114 31.0 73% | 23.0 80% 8
Female, Divorced 10 | 5.5 3.8 31% 3.7 33% 10
Post-Boomer, Children=0 | 11 | 68.8 39.6 43% 32.1 53% 10
Post-Boomer, Children=1 | 11 | 16.8 5.4 68% 4.8 71% 10
Post-Boomer, Children=2 | 11 | 15.5 7.8 50% 6.7 57% 10
Boomer, Children=0 11 | 108.9 | 75.7 30% 52.4 52% 10
Boomer, Children=1 11 | 120.3 | 68.9 43% | 58.0 52% 10
Boomer, Children=2 11 | 46.6 27.2 42% | 23.6 49% 10

Awverage 48% 55% 9.6

Table 8: Run times of trend anomaly query with low dimensional data (10 < |R| < 11)

29



Dimensionality Efficiency

250000

200000 r

150000 |

100000 |

Query Runtime (ms)

50000 r

7 8 9 10 11 12 13 14
Number of Dimensions

Figure 9: Running time vs. number of dimensions
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Conclusion

e Detecting anomalies in data cube of time series data

e |[terative subspace search

¢ Efficient top-k anomaly detection

e Experiments with real data

Thank You!
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