
Mining Approximate Top-K Subspace Anomalies in
Multi-Dimensional Time-Series Data

Xiaolei Li, Jiawei Han
University of Illinois at Urbana-Champaign

VLDB 2007

1

Time Series Data

Intel stock

• Many applications produce time series data

2

Time Series Data

• Many applications produce time series data

2

Time Series Data

• Many applications produce time series data

2

Apple, Intel, NASDAQ Computers Stock Values

3

Apple, Intel, NASDAQ Computers Stock Values

3

Apple, Intel, NASDAQ Computers Stock Values

Apple stock has a
very different “trend”

Intel stock had
different magnitude

Compare time series to gather differences

4

Apple, Intel, NASDAQ Computers Stock Values

Apple stock has a
very different “trend”Compare time series to gather differences

4

Apple, Intel, NASDAQ Computers Stock Values

Intel stock had
different magnitude

Compare time series to gather differences

4

Problem Statement

Find anomalies in a

data cube of

multi-dimensional

time series data

5

Table of Contents

1. Time Series Examples

2. Problem Statement ☚

3. Related Work

4. Observed/Expected Time Series and Anomaly Measure

5. Subspace Iterative Search

i. Generating candidate subspaces

ii. Discovering top-k anomaly cells

6. Experiments

7. Conclusion

6

Multi-Dimensional Attributes

• Time series are not flat data; contains multi-dimensional attributes

• Stock example

‣ Apple and Intel are a part of the NASDAQ Computers Index

‣ Apple is hardware/software; Intel is hardware

‣ Related to NASDAQ-100 Technology Stock Index

• Sales example

‣ Multi-dimensional information collected for every sale (e.g., buyer age,
product type, store location, purchase time)

‣ Compare sales by any combination of categories or sub-categories:
“sales of sporting apparel to males with 3+ children have been declining
compared to overall male sporting apparel sales”

7

Multi-Dimensional Attributes

• Time series are not flat data; contains multi-dimensional attributes

• Stock example

‣ Apple and Intel are a part of the NASDAQ Computers Index

‣ Apple is hardware/software; Intel is hardware

‣ Related to NASDAQ-100 Technology Stock Index

• Sales example

‣ Multi-dimensional information collected for every sale (e.g., buyer age,
product type, store location, purchase time)

‣ Compare sales by any combination of categories or sub-categories:
“sales of sporting apparel to males with 3+ children have been declining
compared to overall male sporting apparel sales”

subset

7

Problem Statement

• Find anomalies in the data cube of multi-dimensional time series data

• Input data: relation R with a set of time series S associated with each tuple

‣ Attributes of R form a data cube CR

‣ Each si is a time series

‣ Each ui is a scalar indicating the count of the tuple

Gender Education Income Product Profit Count

Female Highschool 35k-45k Food s1 u1

Female Highschool 45k-60k Apparel s2 u2

Female College 35k-45k Apparel s3 u3

Female College 35k-45k Book s4 u4

Female College 45k-60k Apparel s5 u5

Female Graduate 45k-60k Apparel s6 u6

Male Highschool 35k-45k Apparel s7 u7

Male College 35k-45k Food s8 u8

8

Problem Statement

• Find anomalies in the data cube of multi-dimensional time series data

• Input data: relation R with a set of time series S associated with each tuple

‣ Attributes of R form a data cube CR

‣ Each si is a time series

‣ Each ui is a scalar indicating the count of the tuple

Gender Education Income Product Profit Count

Female Highschool 35k-45k Food s1 u1

Female Highschool 45k-60k Apparel s2 u2

Female College 35k-45k Apparel s3 u3

Female College 35k-45k Book s4 u4

Female College 45k-60k Apparel s5 u5

Female Graduate 45k-60k Apparel s6 u6

Male Highschool 35k-45k Apparel s7 u7

Male College 35k-45k Food s8 u8

8

Problem Statement

• Find anomalies in the data cube of multi-dimensional time series data

• Input data: relation R with a set of time series S associated with each tuple

‣ Attributes of R form a data cube CR

‣ Each si is a time series

‣ Each ui is a scalar indicating the count of the tuple

Gender Education Income Product Profit Count

Female Highschool 35k-45k Food s1 u1

Female Highschool 45k-60k Apparel s2 u2

Female College 35k-45k Apparel s3 u3

Female College 35k-45k Book s4 u4

Female College 45k-60k Apparel s5 u5

Female Graduate 45k-60k Apparel s6 u6

Male Highschool 35k-45k Apparel s7 u7

Male College 35k-45k Food s8 u8

8

Problem Statement

• Find anomalies in the data cube of multi-dimensional time series data

• Input data: relation R with a set of time series S associated with each tuple

‣ Attributes of R form a data cube CR

‣ Each si is a time series

‣ Each ui is a scalar indicating the count of the tuple

Gender Education Income Product Profit Count

Female Highschool 35k-45k Food s1 u1

Female Highschool 45k-60k Apparel s2 u2

Female College 35k-45k Apparel s3 u3

Female College 35k-45k Book s4 u4

Female College 45k-60k Apparel s5 u5

Female Graduate 45k-60k Apparel s6 u6

Male Highschool 35k-45k Apparel s7 u7

Male College 35k-45k Food s8 u8

8

Data Cube Preliminaries

• Given a relation R, a data cube (denoted as CR) is
the set of aggregates from all possible group-by’s
on R

• In a n-dimensional data cube, each cell has the
form c = (a1, a2, ..., an : m) where each ai is the
value of ith attribute and m is the cube measure
(e.g., profit)

• A cell is k-dimensional if there are exactly k (≤ n)
values amongst ai which are not ∗ (i.e., all)

‣ 2-dimensional cell: (Female, ∗, ∗, Book: x)

‣ 3-dimensional cell: (∗, College, 35k-45k, Apparel:
y)

‣ Base cell: none of ai is ∗

• Parent, descendant, sibling relationships

ABC

A B C

AB

All

BCAC

9

Data Cube Preliminaries

• Given a relation R, a data cube (denoted as CR) is
the set of aggregates from all possible group-by’s
on R

• In a n-dimensional data cube, each cell has the
form c = (a1, a2, ..., an : m) where each ai is the
value of ith attribute and m is the cube measure
(e.g., profit)

• A cell is k-dimensional if there are exactly k (≤ n)
values amongst ai which are not ∗ (i.e., all)

‣ 2-dimensional cell: (Female, ∗, ∗, Book: x)

‣ 3-dimensional cell: (∗, College, 35k-45k, Apparel:
y)

‣ Base cell: none of ai is ∗

• Parent, descendant, sibling relationships

ABC

A B C

AB

All

BCAC

9

Data Cube Preliminaries

• Given a relation R, a data cube (denoted as CR) is
the set of aggregates from all possible group-by’s
on R

• In a n-dimensional data cube, each cell has the
form c = (a1, a2, ..., an : m) where each ai is the
value of ith attribute and m is the cube measure
(e.g., profit)

• A cell is k-dimensional if there are exactly k (≤ n)
values amongst ai which are not ∗ (i.e., all)

‣ 2-dimensional cell: (Female, ∗, ∗, Book: x)

‣ 3-dimensional cell: (∗, College, 35k-45k, Apparel:
y)

‣ Base cell: none of ai is ∗

• Parent, descendant, sibling relationships

ABC

A B C

AB

All

BCAC

child

9

Data Cube Preliminaries

• Given a relation R, a data cube (denoted as CR) is
the set of aggregates from all possible group-by’s
on R

• In a n-dimensional data cube, each cell has the
form c = (a1, a2, ..., an : m) where each ai is the
value of ith attribute and m is the cube measure
(e.g., profit)

• A cell is k-dimensional if there are exactly k (≤ n)
values amongst ai which are not ∗ (i.e., all)

‣ 2-dimensional cell: (Female, ∗, ∗, Book: x)

‣ 3-dimensional cell: (∗, College, 35k-45k, Apparel:
y)

‣ Base cell: none of ai is ∗

• Parent, descendant, sibling relationships

ABC

A B C

AB

All

BCAC

child

parent

9

Query Model

• Given R, a probe cell p ∈ CR, and an anomaly

function g, find the anomaly cells among
descendants of p in CR as measured by g

‣ Each abnormal cell must satisfy a
minimum support (count) threshold

‣ Anomaly does not have to hold for entire
time series

‣ Only the top k anomalies as ranked by g
are needed

CR

p

base

10

Query Model

• Given R, a probe cell p ∈ CR, and an anomaly

function g, find the anomaly cells among
descendants of p in CR as measured by g

‣ Each abnormal cell must satisfy a
minimum support (count) threshold

‣ Anomaly does not have to hold for entire
time series

‣ Only the top k anomalies as ranked by g
are needed

CR

p

base

10

Related Work

• Exploratory Data Analysis

‣ [Sarawagi SIGMOD’00] explores OLAP anomaly but necessitates full cube
materialization

‣ [Palpanas SSDBM’01] approximately finds interesting cells in data cube but still
requires exponential calculations

‣ [Imielinski DMKD’02] requires anti-monotonic measure and does not focus on
time series

• Time Series Data Cube [Chen VLDB’02]

‣ Only suitable for low-dimensional data

‣ Requires user guidance

• General outlier detection, subspace clustering, and time series similarity search
does not address OLAP-style data

11

Measuring Anomaly: Intuition

12

Measuring Anomaly: Intuition

1.For every cell, compute the expected time series (with
respect to the probe cell)

12

Measuring Anomaly: Intuition

1.For every cell, compute the expected time series (with
respect to the probe cell)

2.Compare the expected time series vs. the observed
time series

12

Measuring Anomaly: Intuition

1.For every cell, compute the expected time series (with
respect to the probe cell)

2.Compare the expected time series vs. the observed
time series

3.Rank to get top k

12

Observed Time Series

• Given any cell c in CR, there is an associated observed time series sc

• In the context of a probe cell p, it is computed by aggregating all time series
associated with both c and p

sc =
∑

tidi ∈ (c ∩ σp(R))

si

13

Observed Time Series (2)

• Example: p = (Gender = “Female”, Product = “Apparel”)

Gender Education Income Product Profit Count

Female Highschool 35k-45k Food s1 u1

Female Highschool 45k-60k Apparel s2 150

Female College 35k-45k Apparel s3 200

Female College 35k-45k Book s4 u4

Female College 45k-60k Apparel s5 600

Female Graduate 45k-60k Apparel s6 50

Male Highschool 35k-45k Apparel s7 u7

Male College 35k-45k Food s8 u8

c sc |c|

Education Income Profit Count

∗ ∗ s2 + s3 + s5 + s6 1000

Highschool ∗ s2 150

College ∗ s3 + s5 800

p

14

Expected Time Series

• Given any cell c that is a descendant of p, there is also an expected time
series ŝc

• Intuition: A descendant cell of p is a subset of p. Assuming that market
segments behave proportionally by its size, one can calculate the
expected time series from p’s time series

ŝc =
(

|c|
|p|

)
sp

c sc ŝc |c|

Education Income Profit Count

∗ ∗ s2 + s3 + s5 + s6 = sp n/a 1000

Highschool ∗ s2 150 / 1000 x sp 150

College ∗ s3 + s5 800 / 1000 x sp 800

15

Anomaly Definition

• General idea: g(sc, ŝc) ⇒ R

16

Anomaly Definition

• General idea: g(sc, ŝc) ⇒ R

• Four types of anomalies

‣ Trend

‣ Magnitude

‣ Phase

‣ Miscellaneous

expected behavior in terms of time. The trend and mag-
nitude are similar though.

4. Misc: Miscellaneous anomalies are the ones which do
not match any of the three above.

M
e
a
s
u
re

Time

(a) Trend Anomaly

M
e
a
s
u
re

Time

(b) Magnitude Anomaly

M
e
a
s
u
re

Time

(c) Phase Anomaly

M
e
a
s
u
re

Time

(d) Miscellaneous Anomaly

Figure 3: Anomaly types

2.4.1 Linear Regression

To represent and detect anomalies, we will use the first-
order linear regression. Although simple, it is very ef-
fective at catching the big anomalies. Because of its limited
representative power, small local anomalies are smoothed
over and only the major trends are left. Alternatively, higher
order regression or more sophisticated methods [14, 13] may
be substituted to catch more subtle anomalies. Further,
many business applications have natural partitionings of
time series so our comparative analysis will be on the general
trend of sub-sequences. As a result, the regression will only
be performed on relatively short time series (i.e., piece-wise
regression). Lastly, as we will show later, aggregation in the
data cube can rely exclusively on the regression parameters
and bypass the original bulky time-series data [8].

An l-th order polynomial fit for a time series of n observa-
tions: 〈z(t0), z(t1), . . . , z(tn)〉, where z(t) is the underlying
function, is an l-th order polynomial estimation function:

ẑ(t) = a0 + a1 t + a2 t2 + . . . + ak tl (4)

where ẑ(t) is the estimated value of z(t). If we set l = 1,
ẑ(t) is then a line of the form a0 +a1 t where a0 is commonly
known as the y-intercept and a1 as the slope. a0 and a1 can
be calculated directly via the least squares error fitting.

2.4.2 Measuring Trend Anomaly

A trend anomaly indicates a difference in general market
trends, as shown in Figure 3(a). The slope of the regression
line naturally captures this. Let a1 be the slope of the ob-
served time series and â1 be the slope of the expected time

series. The difference between a1 and â1 then measures the
trend anomaly.

gtrend(sc, ŝc) = a1 − â1

2.4.3 Measuring Magnitude Anomaly

A magnitude anomaly indicates a difference in the amount
of the measure, as shown in Figure 3(b). The y-intercept of
the regression line is a fitting representative of this. Let a0

and â0 be the y-intercepts of the observed and expected time
series respectively. The difference between them measures
the magnitude anomaly; though when the trend anomaly
is triggered, magnitude is ignored.

gmagnitude(sc, ŝc) = a0 − â0

2.4.4 Measuring Phase Anomaly

A phase anomaly indicates a lag or shift in time of the
measure, as shown in Figure 3(c). The x-intercept of the
regression line is able to capture this with some care. First,
we check that trend anomaly is not triggered. Then, we no-
tice that a difference in x-intercept is always paired with a
difference in y-intercept and vice-versa. In order to deter-
mine the anomaly type, we rely on the original data. Given
the choice of magnitude or phase anomaly, we shift the ob-
served time series either vertically or horizontally to offset
the anomaly difference. Then, whichever shift produces the
most similarity between the expected and observed time se-
ries is the answer. If neither produces sufficient similarity,
we mark it as misc. anomaly. The exact parameters depend
on the application. We implemented this mechanism for a
major industry partner, with satisfactory performance. Let
b0 and b1 be the x-intercepts of the observed and expected
time series after regression respectively.

gphase(sc, ŝc) = b0 − b̂0

2.4.5 Measuring Miscellaneous Anomaly

To measure miscellaneous anomalies, as shown in Fig-
ure 3(d), we use the Euclidean distance between sc and ŝc,
denoted as d(sc, ŝc). Though some preprocessing might be
required to align sc and ŝc correctly. In order to reduce
redundancies with the other anomaly types, miscellaneous
anomaly is only applicable when the other three types are
not triggered.

gmisc(sc, ŝc) = d(sc, ŝc)

2.5 Ranking Anomalies in Data Cube
With g defined for the anomaly types, we can rank all

descendant cells of p in descending order according to their
absolute g values. In all four types, a larger absolute g value
indicates a more substantial anomaly. The original query
would then return the top-k market segments in this rank-
ing. However, because the four types of g’s are incompatible,
it may not make sense to rank them together. Rather, it is
more sensible to have a separate ranking for each distinct g.
As a result, the top-k would be on individual types. With
four types of anomalies defined, the final result would consist
of 4k market segments.

Table 3 shows a summary of g on all the anomaly types.
An additional normalization or adjustment process is often
needed to add weighting factors to g depending on the ap-
plications. For example, one may like to use average instead
of sum in comparison, which will need to divide the value

16

Anomaly Definition

• General idea: g(sc, ŝc) ⇒ R

• Four types of anomalies

‣ Trend

‣ Magnitude

‣ Phase

‣ Miscellaneous

• Measured via first-order linear regression

‣ Simple and efficient (direct cube
aggregation of parameters [Chen
VLDB’02])

‣ Effective at catching obvious anomalies

expected behavior in terms of time. The trend and mag-
nitude are similar though.

4. Misc: Miscellaneous anomalies are the ones which do
not match any of the three above.

M
e
a
s
u
re

Time

(a) Trend Anomaly

M
e
a
s
u
re

Time

(b) Magnitude Anomaly

M
e
a
s
u
re

Time

(c) Phase Anomaly

M
e
a
s
u
re

Time

(d) Miscellaneous Anomaly

Figure 3: Anomaly types

2.4.1 Linear Regression

To represent and detect anomalies, we will use the first-
order linear regression. Although simple, it is very ef-
fective at catching the big anomalies. Because of its limited
representative power, small local anomalies are smoothed
over and only the major trends are left. Alternatively, higher
order regression or more sophisticated methods [14, 13] may
be substituted to catch more subtle anomalies. Further,
many business applications have natural partitionings of
time series so our comparative analysis will be on the general
trend of sub-sequences. As a result, the regression will only
be performed on relatively short time series (i.e., piece-wise
regression). Lastly, as we will show later, aggregation in the
data cube can rely exclusively on the regression parameters
and bypass the original bulky time-series data [8].

An l-th order polynomial fit for a time series of n observa-
tions: 〈z(t0), z(t1), . . . , z(tn)〉, where z(t) is the underlying
function, is an l-th order polynomial estimation function:

ẑ(t) = a0 + a1 t + a2 t2 + . . . + ak tl (4)

where ẑ(t) is the estimated value of z(t). If we set l = 1,
ẑ(t) is then a line of the form a0 +a1 t where a0 is commonly
known as the y-intercept and a1 as the slope. a0 and a1 can
be calculated directly via the least squares error fitting.

2.4.2 Measuring Trend Anomaly

A trend anomaly indicates a difference in general market
trends, as shown in Figure 3(a). The slope of the regression
line naturally captures this. Let a1 be the slope of the ob-
served time series and â1 be the slope of the expected time

series. The difference between a1 and â1 then measures the
trend anomaly.

gtrend(sc, ŝc) = a1 − â1

2.4.3 Measuring Magnitude Anomaly

A magnitude anomaly indicates a difference in the amount
of the measure, as shown in Figure 3(b). The y-intercept of
the regression line is a fitting representative of this. Let a0

and â0 be the y-intercepts of the observed and expected time
series respectively. The difference between them measures
the magnitude anomaly; though when the trend anomaly
is triggered, magnitude is ignored.

gmagnitude(sc, ŝc) = a0 − â0

2.4.4 Measuring Phase Anomaly

A phase anomaly indicates a lag or shift in time of the
measure, as shown in Figure 3(c). The x-intercept of the
regression line is able to capture this with some care. First,
we check that trend anomaly is not triggered. Then, we no-
tice that a difference in x-intercept is always paired with a
difference in y-intercept and vice-versa. In order to deter-
mine the anomaly type, we rely on the original data. Given
the choice of magnitude or phase anomaly, we shift the ob-
served time series either vertically or horizontally to offset
the anomaly difference. Then, whichever shift produces the
most similarity between the expected and observed time se-
ries is the answer. If neither produces sufficient similarity,
we mark it as misc. anomaly. The exact parameters depend
on the application. We implemented this mechanism for a
major industry partner, with satisfactory performance. Let
b0 and b1 be the x-intercepts of the observed and expected
time series after regression respectively.

gphase(sc, ŝc) = b0 − b̂0

2.4.5 Measuring Miscellaneous Anomaly

To measure miscellaneous anomalies, as shown in Fig-
ure 3(d), we use the Euclidean distance between sc and ŝc,
denoted as d(sc, ŝc). Though some preprocessing might be
required to align sc and ŝc correctly. In order to reduce
redundancies with the other anomaly types, miscellaneous
anomaly is only applicable when the other three types are
not triggered.

gmisc(sc, ŝc) = d(sc, ŝc)

2.5 Ranking Anomalies in Data Cube
With g defined for the anomaly types, we can rank all

descendant cells of p in descending order according to their
absolute g values. In all four types, a larger absolute g value
indicates a more substantial anomaly. The original query
would then return the top-k market segments in this rank-
ing. However, because the four types of g’s are incompatible,
it may not make sense to rank them together. Rather, it is
more sensible to have a separate ranking for each distinct g.
As a result, the top-k would be on individual types. With
four types of anomalies defined, the final result would consist
of 4k market segments.

Table 3 shows a summary of g on all the anomaly types.
An additional normalization or adjustment process is often
needed to add weighting factors to g depending on the ap-
plications. For example, one may like to use average instead
of sum in comparison, which will need to divide the value

16

Mining Top-K Anomalies in Data Cube

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

17

Mining Top-K Anomalies in Data Cube

1. Expensive to compute Cp (exponential in number of dimensions)

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

17

Mining Top-K Anomalies in Data Cube

1. Expensive to compute Cp (exponential in number of dimensions)

2. Finds all anomalies before collecting top-k

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

17

SUITS Framework

• Subspace Iterative Time Series Anomaly Search (SUITS)

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

18

SUITS Framework

• Subspace Iterative Time Series Anomaly Search (SUITS)

• Iteratively select subspaces out of the 2n total subspaces

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

18

SUITS Framework

• Subspace Iterative Time Series Anomaly Search (SUITS)

• Iteratively select subspaces out of the 2n total subspaces

• Compute anomalies within subspaces

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

18

SUITS Framework

• Subspace Iterative Time Series Anomaly Search (SUITS)

• Iteratively select subspaces out of the 2n total subspaces

• Compute anomalies within subspaces

• Combine to form overall anomalies

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...

...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.

18

How to Choose Candidate Subspaces

• Intuition

• By definition, anomalies are rare and most of the 2n subspaces do not contain
any

• Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

• Procedure

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...
...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.19

How to Choose Candidate Subspaces

• Intuition

• By definition, anomalies are rare and most of the 2n subspaces do not contain
any

• Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

• Procedure

1. Search for a group of similar anomalies in the set of base cells

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...
...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.19

How to Choose Candidate Subspaces

• Intuition

• By definition, anomalies are rare and most of the 2n subspaces do not contain
any

• Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

• Procedure

1. Search for a group of similar anomalies in the set of base cells

2. Find a subspace correlated with the group

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...
...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.19

How to Choose Candidate Subspaces

• Intuition

• By definition, anomalies are rare and most of the 2n subspaces do not contain
any

• Descendant cells stemming from the same anomalies (in some ancestor cell)
should exhibit similar abnormal behavior

• Procedure

1. Search for a group of similar anomalies in the set of base cells

2. Find a subspace correlated with the group

3. Compute the local top-k anomalies in the subspace

by count. For some other applications, one may like to give
more weight to the market segments that are larger (hence
bigger count) to indicate the preference in analysis.

Type Function g

Trend norm(a1 − â1)
Magnitude norm(a0 − â0)

Phase norm(b0 − b̂0)
Misc norm(d(sc, ŝc))

Table 3: Anomaly detection functions

3. MINING TOP-K ANOMALIES IN DATA

CUBES
With g defined, we return to the original problem of find-

ing top-k anomaly cells among the descendants of p. A näıve
solution to this problem is given in Algorithm 1. Its main
observation is that CR is unnecessary because the query only
focuses on p. Thus, it only computes the data cube Cp using
σp(R) as the fact table. After Cp is constructed, the top-k
anomaly cells within it are returned.

Algorithm 1 Näıve Top-k Anomalies

Input: Relation R, time-series data S, query probe cell p,
anomaly function g, parameter k, minimum support m

Output: Top-k scoring cells in Cp as ranked by g and
satisfies m

1. Retrieve data for σp(R)
2. Compute the data cube Cp with σp(R) as the fact table

with m as the iceberg parameter
3. Return top k anomaly cells in Cp for each g

The core difficulty with Algorithm 1 is how to deal with
the high dimensional space; if there are n attributes in R,
there are 2n cuboids (subspaces) in Cp to examine in or-
der to produce the final answer. This effectively prohibits
full materialization of Cp for a medium n even if σp(R)
does not contain many tuples. To solve this problem, we
propose a new algorithm SUITS, which iteratively select
subspaces with the most potential of containing a top-k
anomaly. Anomaly detection over a subspace tends to be
very efficient since a subspace has typically a small number
of attributes (dimensions). Fortunately, because anomalies
are rare by definition, many of the 2n subspaces are not cor-
related with anomalies. Figure 4 shows the general frame-
work.

Subspaces

Cube

Series

Time

Cube

Series

Top!K

Cube Outliers

...

1A A 2

1
t

t
2

...
...

Candidate

Time

Figure 4: SUITS Framework

A natural question is then, “Which subspaces out of the
2n should one examine?” SUITS chooses them based on
the behaviors of the time series data (i.e., ti’s). Roughly,
abnormal time series in σp(R) are separated into individ-
ual anomalies, and their correlated subspaces are chosen as
candidate subspaces. These subspaces are then examined
via exact cubing analysis. This approach avoids the curse of
dimensionality in the original input data and turns it into a
set of manageable sub-problems.

Additionally, during the computation of top-k’s within
a single subspace, the search space can be pruned if one
detects that certain cuboids and their descendants does not
have the potential to penetrate the top-k. This pruning
method is developed in SUITS, and unpromising lattices in
the data cube are avoided.

In summary, the algorithm proceeds iteratively as follows:
(1) search for a group of anomalies, (2) find a subspace cor-
related with the group, and (3) compute the local top-k
anomalies in the subspace data cube. The local top-k’s
of step (3) are merged together to form the global top-k.
Though this merge is an approximation, we will show em-
pirically that it usually matches the true top-k.

3.1 Retrieving σp(R)

Much like the näıve algorithm, the new algorithm also
needs to first retrieve the set of data relevant to the query
probe p, i.e., σp(R). Since there will be many different
query probes posed to the same database, it is important to
make this retrieval and its subsequent processing efficient.
Thus, we perform preprocessing by pre-computing and stor-
ing CR’s shell-fragments [15] independent of the query and
develop a shell fragment-based retrieval method.

A single shell fragment is a cuboid in CR on a d-dimensional
attribute group where d is a small number (e.g., 1 to 3). For
each cell in a fragment, the tid list of the associated tu-
ples in R is recorded. For example, the shell fragment for
the Gender dimension would contain two cells (i.e., “Male”
and “Female”) and each would record essentially an inverted
index on the tid’s. A complete set of shell fragments (i.e.,
where each dimension in R is represented in at least one shell
fragment) is sufficient to compute any query on CR. Shell
fragments are efficient both in terms of speed and space.

Using these tid lists, retrieving σp(R) at query time is sim-
ple. For each attribute-value restriction pair in p, we fetch
its tid list from the most appropriate shell fragment. The
intersection of all such tid lists is exactly σp(R). This pro-
cess is efficient no matter how many dimensions there are in
R. Additionally, if p overlaps with some multi-dimensional
shell fragments, efficiency will be vastly improved since those
intersections are already pre-computed.

3.2 Selecting Candidate Subspaces
The idea of examining subspaces also exists in other prob-

lems. Subspace clustering [19] aims to find clusters in some
of the 2n subspaces. Principle component analysis and sin-
gular value decomposition also find more useful subspaces.
In these problems, useful subspaces are discovered using sig-
nals such as density or class labels. In SUITS, the time series
data are the signals. Intuitively, a significant anomaly at a
cube cell should carry through to some of its descendants;
for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of common
abnormal ancestors should also exhibit similar anomalies.19

How to Choose Candidate Subspaces (2)

• Time Anomaly Matrix

‣ Partition each observed and expected time series into subsequences and
compute anomalies

‣ Group anomalies by type and also amount

‣ Iteratively select groups of similar anomaly cells from matrix

Education Income S[1] S[2] S[3]

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 35k–45k Phase None Misc
M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 45k–60k Phase Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 Top-K Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

20

How to Choose Candidate Subspaces (2)

• Time Anomaly Matrix

‣ Partition each observed and expected time series into subsequences and
compute anomalies

‣ Group anomalies by type and also amount

‣ Iteratively select groups of similar anomaly cells from matrix

Education Income S[1] S[2] S[3]

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 35k–45k Phase None Misc
M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 45k–60k Phase Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 Top-K Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

➊ ➊

➊ ➊

➊ ➊

20

How to Choose Candidate Subspaces (2)

• Time Anomaly Matrix

‣ Partition each observed and expected time series into subsequences and
compute anomalies

‣ Group anomalies by type and also amount

‣ Iteratively select groups of similar anomaly cells from matrix

Education Income S[1] S[2] S[3]

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 35k–45k Phase None Misc
M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 45k–60k Phase Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 Top-K Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

➊ ➊

➊ ➊

➊ ➊

➋

➋

20

How to Choose Candidate Subspaces (3)

• Given a group in the Time Anomaly Matrix, select its correlated subspace

• Rank attribute-value pairs by Anomaly Likelihood (AL) score

‣ Attribute values that occur very frequently and within a homogenous dimension
have high AL scores

‣ AL = (Frequency of Attribute-Value) x (Entropy of Attribute)-1

• Select the top few and form the candidate subspace

Education Income S[1] S[2] S[3]

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 35k–45k Phase None Misc

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 45k–60k Phase Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 Top-K Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

➊ ➊

➊ ➊

➊ ➊

21

How to Choose Candidate Subspaces (3)

• Given a group in the Time Anomaly Matrix, select its correlated subspace

• Rank attribute-value pairs by Anomaly Likelihood (AL) score

‣ Attribute values that occur very frequently and within a homogenous dimension
have high AL scores

‣ AL = (Frequency of Attribute-Value) x (Entropy of Attribute)-1

• Select the top few and form the candidate subspace

Education Income S[1] S[2] S[3]

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Highschool 45k–60k None Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 35k–45k Phase None Misc

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

College 45k–60k Phase Magnitude Magnitude

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

M
e
a
s
u
re

Time

Graduate 45k–60k None Magnitude Magnitude

Table 4: Time Anomaly Matrix

This solution is definitely viable since CB is relatively
small. But we make two modifications in order to improve
its efficiency. First, the number of times regression needs
to be performed can be reduced through a property of the
least-square error fitting. Second, branches in CB can be
pruned from the top-k search via an upper bound on g. We
explain both of these modifications below.

3.3.1 Cube Aggregation

Recall linear regression is used to represent sc and ŝc. To
compute the regression parameters from the raw data at
each cell in the cube can be costly: At each cell, one has
to aggregate all the time series from its child cells and then
find the least-square fit. Fortunately, it turns out that there
is a shortcut.

Theorem 1 (Regression Aggregation). Let there be
l time series (sc1, sc2, . . . , scl) with their respective regres-
sion y-intercepts and slopes. The y-intercept is the sum of
the l individual y-intercepts: aaggregate

0 =
Pl

i=1 ai
0, and the

slope of the l time series’ aggregate is sum of the l individual
slopes: aaggregate

1 =
Pl

i=1 ai
1.

A proper proof is given in [8]. Theorem 1 means that for
all non-base cuboid cells in the data cube, regression can be
calculated via aggregation of regression parameters of their
child cuboids as opposed to from the raw time series data.
This alternative calculation is lossless with respect to the
least-square fit. Since we are using first order linear regres-
sion, there would be only two parameters that each child
cuboid has to pass up to their parent during aggregation.
Comparing this with full aggregation of the raw time series,
which could have hundreds of values in just one series, the
improvement in efficiency is obvious.

Example 6 (Regression Aggregation). Let cz be a
high-level cell and cx and cy be its only two descendant cells.
After regression on cx and cy, let ax

0 and ax
1 be the regression

parameters for cx and ax
0 and ay

1 be the same for cy. By
Theorem 1, the regression parameters for cz, az

0 and az
1, are

equal to the sums of the regression parameters at cx and cy.
In other words, az

0 = ax
0 + ay

0 and az
1 = ax

1 + ay
1 .

3.3.2 Top-K Pruning

Theorem 1 improves the speed of cubing but does not
change the landscape of search. In order to reduce the search

space, pruning during cubing is necessary. In SUITS, com-
puting CB occurs in a bottom-up fashion [5] and is shown
in Figure 5. That is, cubing starts at the apex and moves
onto higher dimensional cells. Bottom-up cube computation
has two advantages. First, it facilitates iceberg pruning: If
a cell does not satisfy the minimum support condition, none
of its descendants does and thus can all be pruned. Second,
it starts at the most general cells, which, if g is weighted by
Count, are more likely to be the most abnormal cells.

As it turns out, at each cell, one can also calculate an
upper bound on the g scores of all descendant cells. This
upper bound can be used to facilitate more efficient top-k
calculation. For example, suppose the lowest anomaly score
in the top-k seen so far in cubing is x. If the upper bound
at a certain branch of the cube is strictly less than x, the
entire branch can be pruned.

The calculation of upper bound is dependent on anomaly
types. For Miscellaneous anomalies, the Euclidean distance
has a natural upper bound by the triangle inequality: At
any cell, the sum of the individual Euclidean distances of all
cells which contribute to it is the upper bound. For Trend
and Magnitude anomalies, we have the following Lemma.

Lemma 1 (Trend/Magnitude Bound). At any cell c
in a data cube, let A be the set of anomaly values calculated
by either gtrend or gmagnitude for all the tuples which con-
tribute to c. Let P be the set of positive values in A and N
be the set of negative values. A = P ∪N ∪ {0}. Also let P
be the sum of values in P and N be the sum of values in N .
Then, max(|P |, |N |) is the absolute upper bound on g for all
descendants of c.

Proof : First, by the definitions of gtrend and gmagnitude and
Theorem 1, g at cell c can be calculated by simply adding up
the individual values in A. This holds because gtrend and
gmagnitude are differences of sums of regression variables,
which Theorem 1 shows can be aggregated losslessly. Sec-
ond, let c′ be any descendant of c and let A′ be the set of
anomaly values calculated by g for tuples which contribute
to c′. By definition of a data cube, tuples belonging to c′

are a subset of tuples belonging to c. Thus, A′ ⊂ A. P and
N represent the maximum positive and negative aggregates
in A. Thus any A′ could never aggregate to an absolute g
value higher than max(|P |, |N |).

For the Phase anomaly, the upper bound is slightly trick-
ier because the x-intercept is a fraction of regression val-

➊ ➊

➊ ➊

➊ ➊

for if all descendants are normal, their common ancestor
would also be normal. Furthermore, descendants of com-
mon abnormal ancestors should also exhibit similar anom-
alies. Specifically, tuples in σp(R) that share a common
abnormal ancestor cell, which would also be a descendant
cell of p, are likely to exhibit similar anomalies.

SUITS exploits this notion by grouping the tuples in σp(R)
based on their anomaly types and values. For a set of tu-
ples in σp(R) to be in the same group, they must have (1)
the same anomaly type, (2) similar anomaly scores (e.g.,
±δ range), and (3) same time span. Roughly, tuples within
a group are base-level descendants of a single anomaly in
a (possibly high level) descendant of the probe cell. At
each iteration, the largest group is extracted and the most
promising attribute values within it form the candidate sub-
space. This process starts with the construction of a Time
Anomaly Matrix.

The Time Anomaly Matrix has size T × Q, where T is
the number of tuples in σp(R) and Q is the number of sub-
sequences SUITS will examine within S. Partitioning the
time series satisfies the condition that anomalies will be
found in sub-sequences. In business and many other ap-
plications, how to partition the si’s is often natural, e.g.,
every financial quarter.

Each entry (i, j) in the matrix corresponds to the jth time
series sub-sequence of the ith tuple in σp(R), and the value
stored in the entry is the anomaly type and anomaly value
of the corresponding sub-sequence. Formally, let s[j]ci rep-
resent the jth sub-sequence of sci where ci is the ith cell or
tuple in σp(R). Then, the (i, j) entry in the matrix contains
the output of g(s[j]ci , ŝ[j]ci).

Example 4 (Time Anomaly Matrix). Using R from
Table 1, let p be (Gender = “Female”, Product = “Ap-
parel”). The last 4 rows in Table 2 show σp(R). For each
tuple’s si, we divide it into three pieces. Table 4 shows the
results. Under each piece is the anomaly type; we have omit-
ted the score for simplicity.

The Time Anomaly Matrix merely calculates anomalies in
the base cuboid. Our overall goal is to find anomalies in pos-
sibly high-level cube cells. To enumerate all possible cube
cells is cumbersome; instead we iteratively select potential
subspaces. This process starts with the grouping of cells
in the matrix. We use a simple method of hashing entries
in the matrix into buckets by their anomaly type, anom-
aly score, and time. Each bucket will only hold one type,
a small range of scores, and consecutive time spans. We
then greedily select the largest such group by choosing the
largest bucket. In Table 4, the six entries with Magnitude
anomaly (in bold) form the largest group.

The next step is to find a useful subspace associated with
this group. To exhaustively search for this is prohibitive. In
many high-dimensional problems, greedy/heuristic methods
are used to “bypass” the curse of dimensionality. For exam-
ple, decision trees use an information-theoretic heuristic to
greedily choose the decision nodes independently. CLIQUE
[3] uses a coverage measure to select clusters in subspaces
and greedily grow them to form bigger clusters. [2] uses an
evolutionary algorithm to detect outliers in high-dimensional
data. In SUITS, we take a similar approach by evaluating
the attribute values individually in a statistical test to de-
termine how well alone it correlates with the anomaly group.
We term the score of this test the Anomaly Likelihood

(AL) score. The few top-scoring values then form the cor-
related subspace. To measure the AL score of an attribute-
value pair (ai = vj), the purity of attribute ai is calculated
first via entropy.

Entropy(ai) = −
X

vj∈ai

p(vj) log2 p(vj) (5)

A “pure” attribute, that is an attribute whose values are
homogeneous, would have low entropy; while an “impure”
attribute whose values are uniformly distributed would have
high entropy. If an attribute is pure, it is more likely to
be correlated with the group than one that is impure. To
give a trivial example, consider the Gender attribute for p
in Example 4. It is 100% pure because all its values are
“Female” and is trivially correlated with any anomaly. The
equation below shows the AL score formula.

AL(ai = vj) = Frequency(ai = vj) × Entropy(ai)
−1 (6)

For each value vj , it is also weighed by its frequency within
the group. One can see that attribute values that occur very
frequently and within a homogeneous attribute will have
high AL scores.

Example 5 (AL Scores). Table 5 shows results from
the Magnitude anomaly group in Table 4. Within the In-
come attribute, the value “45k–60k” appears 3 times and no
other value appears. The Income attribute is pure and thus
scores an infinity for the AL score. Within the Education
attribute, 3 different values appear uniformly, which maxi-
mizes entropy. In this case, Income = “45k–60k” is clearly
correlated with the anomaly while Education is not. The AL
score reflects this notion.

Attribute Value Frequency AL Score

Income = 45k–60k 3 ∞
Education = Highschool 1 1.58
Education = College 1 1.58
Education = Graduate 1 1.58

Table 5: Attribute value AL scores

In practice, Table 5 would be much bigger and the dif-
ferences within it would not be as clear-cut. We select the
top few scoring (5–7) attribute-value pairs to be candidate
attribute values. The subspace formed by these values is
the candidate subspace.

3.3 Discovering Top-K Anomaly Cells
The set of candidate attribute values describes a subspace

within the original high-dimensional space. Its correlation to
anomalies has only been suggested via simple entropy analy-
sis. In this section, more exact cubing analysis is performed
and the top-k cells in the subspace are found.

Let the set of candidate attribute values be B. A straight-
forward solution is to materialize the data cube CB , rank all
cells by g, and return the top k. Note that the dimension-
ality of CB is not necessarily equal to |B|. In Table 5 for
example, even if all four attribute values are added to B,
dimensionality is still just two. Second, to compute CB , all
tuples in σp(R) are used, not just the candidate group. This
ensures the detected top-k patterns apply globally. Though
to ensure sub-sequences are searched, CB only includes the
time span of the found group.

21

Table of Contents

1. Time Series Examples

2. Problem Statement

3. Related Work

4. Observed/Expected Time Series and Anomaly Measure

5. Subspace Iterative Search

i. Generating candidate subspaces

ii. Discovering top-k anomaly cells ☚

6. Experiments

7. Conclusion

22

Discovering Top-K Anomaly Cells

• Each subspace is small enough (~5 dimensions) for full cube materialization

• Efficient Regression Calculation

‣ Linear regression needed for anomaly calculation (comparisons between
parameters of observed and expected time series regression)

‣ Regression parameters can be aggregated losslessly [Chen VLDB’02]

‣ Only need to perform regression calculation once in the base cuboid

‣ Higher level cuboids’ regression parameters can be calculated via simple
aggregation

23

Discovering Top-K Anomaly Cells (2)

• More efficient top-k anomaly detection (i.e., avoid computing the whole data
cube)

• Intuition: calculate anomaly upper bounds during cubing and prune branches
if upper bound is below current top-k

• Procedure

‣ Bottom-up cube calculation [Beyer SIGMOD’99]

‣ Keep track of current top-k

‣ Calculate anomaly upper bound

‣ If upper bound is below the worst in top-k, stop

ues (x-intercept = −slope/y-intercept). In this case, one
can derive a looser upper bound using similar ideas from
Lemma 1 except by setting the denominator in P and N to
the smallest value.

As an example, suppose there are three dimensions in a se-
lected subspace. Here, we want to compute the top-3 trend
anomaly cells in a 3D data cube. Table 6 shows the base
cuboid. Sample differences between the observed and ex-
pected time series are shown. a1 is the observed slope and
â1 is the expected slope. The difference is a trend anomaly.
Cubing starts at the apex and proceeds bottom-up; Figure
5 shows the ordering. The algorithm records a “current-
best” top-k, denoted by K, which records the top-k seen so
far during cubing. It is initialized to an empty set. While
|K| < k or the upper bound value at any cell is larger than
the smallest anomaly in K, the algorithm proceeds to com-
pute the data cube.

Age Sex Height a1 â1 a1 − â1

5 M Short 1 0 1
5 M Tall 0 0 0
5 F Tall −3 −3 0
10 F Tall 1 3 −2
10 F Short 2 −3 5

Table 6: Sample base cuboid

*

Age

Age,Sex

Age,Sex,Height

Sex,Height

HeightSex

Age,Height

Figure 5: Bottom-Up Cube Computation

After calculating the apex cell, K = {(∗, ∗, ∗) : 4}. Next,
cuboid Age is calculated. The first two rows in Table 7 show
cells in Age. For example, a1 of (5, ∗, ∗) is calculated from
1 + 0 − 3. Because |K| < 3 at this point, both (5, ∗, ∗) : 1
and (10, ∗, ∗) : 3 are added to K. Next, cuboid (Age, Sex)
is calculated. Rows 3–5 in Table 7 show the cells. The last
column shows the upper bound. At (10, F, ∗), the upper
bound is 5, because 5 is the only positive anomaly value in
Table 6 for (10, F, ∗) and the negative value has a smaller
absolute value (| − 2| < |5|). At (5, M, ∗) and (5, F, ∗), the
upper bounds are less than or equal to the smallest anom-
aly in K. Thus, their descendants, e.g., (5, M, Short), are
pruned from future search. (10, F, ∗) is added to K and
search recurses on its descendants.

Age Sex Height a1 â1 a1 − â1 (a1 − â1).ub

5 ∗ ∗ −2 −3 1 1
10 ∗ ∗ 3 0 3 5
5 M ∗ 1 0 1 1
5 F ∗ −3 −3 0 0
10 F ∗ 3 0 3 5

Table 7: Cuboids Age and (Age, Sex)

Correctness: We argue the correctness of the algorithm via
contradiction. Suppose a cell c’s anomaly score V is larger

than the smallest value in the final top-k, but somehow c
was pruned and thus not included in the top-k. Suppose
the pruning occurred at an ancestor cell c0 whose anomaly
upper bound was V0. By Lemma 1, V0 ≥ V . There are
two possible cases. First, if V is larger than the smallest
value in the top-k, V0 must be as well. Thus the pruning
could not have happened. Second, if V0 is less than the
smallest value in the top-k, then pruning c was the correct
decision, but c should not be in the top-k. Both cases result
in contradictions.

3.4 Iterative Search

After discovering the local top-k cells in a subspace, they
are merged into a global top-k. Entries from the original
group are removed from the Time Anomaly Matrix. The
whole process repeats until the Time Anomaly Matrix is
empty. In the example of Table 4, the first iteration finds
the rule: “Income = 45k–60k → Magnitude Anomaly : S[2–
3]”. In the next iteration, the entries with phase anomaly
are selected and produce the following rule: “Education =
College → Phase Anomaly : S[1]”. Algorithm 2 shows a
high-level summary of SUITS.

Algorithm 2 SUITS

Input & Output: Same as Algorithm 1

1. Retrieve data for σp(R)
2. Repeat until global answer set contains global top-k
3. B ← candidate attribute values from {A1, . . . An}
4. Retrieve top k anomaly cells from CB using g and m
5. Add top k cells to global answer set
6. Remove discovered anomalies from input
7. Return top k cells in global answer set

3.5 Discussion

Top-K Approximation. SUITS combines local top-k’s to
form the global top-k. This is different from Algorithm 1
where the global top-k is computed directly. Though theo-
retically these methods could produce different answers, we
argue that it is unlikely and the benefits of SUITS outweighs
the risks by far. Consider Algorithm 1 for a relative small
30-dimensional problem. It has to compute 230 cuboids!
This is simply impractical. SUITS, on the other hand, can
handle it easily by partitioning the data.

Next, we examine the likelihood of SUITS producing a
different answer set than Algorithm 1. Every anomaly in
the data must be correlated with a subspace; in the case
of top-k anomalies, the correlation should be rather obvious
and thus easily detectable by the AL scores. As a result,
they will likely become candidate subspaces for SUITS. After
the candidate subspace is chosen, the rest of the calculation
(cubing and top-k pruning) is lossless. The source of error is
when a subspace is never chosen by SUITS. This could occur
if a “bad” attribute somehow has a very low AL score; but
in testing, we found this to be rare. In the next section, we
show empirically that SUITS usually produces the true top-
k. Further, it does it within a fraction of the time required
by the näıve algorithm.

Pruning. The top-k pruning mechanism relies on the sat-
isfaction of Lemma 1. In the case of regression and our defi-

24

SUITS Algorithm in Summary

ues (x-intercept = −slope/y-intercept). In this case, one
can derive a looser upper bound using similar ideas from
Lemma 1 except by setting the denominator in P and N to
the smallest value.

As an example, suppose there are three dimensions in a se-
lected subspace. Here, we want to compute the top-3 trend
anomaly cells in a 3D data cube. Table 6 shows the base
cuboid. Sample differences between the observed and ex-
pected time series are shown. a1 is the observed slope and
â1 is the expected slope. The difference is a trend anomaly.
Cubing starts at the apex and proceeds bottom-up; Figure
5 shows the ordering. The algorithm records a “current-
best” top-k, denoted by K, which records the top-k seen so
far during cubing. It is initialized to an empty set. While
|K| < k or the upper bound value at any cell is larger than
the smallest anomaly in K, the algorithm proceeds to com-
pute the data cube.

Age Sex Height a1 â1 a1 − â1

5 M Short 1 0 1
5 M Tall 0 0 0
5 F Tall −3 −3 0
10 F Tall 1 3 −2
10 F Short 2 −3 5

Table 6: Sample base cuboid

*

Age

Age,Sex

Age,Sex,Height

Sex,Height

HeightSex

Age,Height

Figure 5: Bottom-Up Cube Computation

After calculating the apex cell, K = {(∗, ∗, ∗) : 4}. Next,
cuboid Age is calculated. The first two rows in Table 7 show
cells in Age. For example, a1 of (5, ∗, ∗) is calculated from
1 + 0 − 3. Because |K| < 3 at this point, both (5, ∗, ∗) : 1
and (10, ∗, ∗) : 3 are added to K. Next, cuboid (Age, Sex)
is calculated. Rows 3–5 in Table 7 show the cells. The last
column shows the upper bound. At (10, F, ∗), the upper
bound is 5, because 5 is the only positive anomaly value in
Table 6 for (10, F, ∗) and the negative value has a smaller
absolute value (| − 2| < |5|). At (5, M, ∗) and (5, F, ∗), the
upper bounds are less than or equal to the smallest anom-
aly in K. Thus, their descendants, e.g., (5, M, Short), are
pruned from future search. (10, F, ∗) is added to K and
search recurses on its descendants.

Age Sex Height a1 â1 a1 − â1 (a1 − â1).ub

5 ∗ ∗ −2 −3 1 1
10 ∗ ∗ 3 0 3 5
5 M ∗ 1 0 1 1
5 F ∗ −3 −3 0 0
10 F ∗ 3 0 3 5

Table 7: Cuboids Age and (Age, Sex)

Correctness: We argue the correctness of the algorithm via
contradiction. Suppose a cell c’s anomaly score V is larger

than the smallest value in the final top-k, but somehow c
was pruned and thus not included in the top-k. Suppose
the pruning occurred at an ancestor cell c0 whose anomaly
upper bound was V0. By Lemma 1, V0 ≥ V . There are
two possible cases. First, if V is larger than the smallest
value in the top-k, V0 must be as well. Thus the pruning
could not have happened. Second, if V0 is less than the
smallest value in the top-k, then pruning c was the correct
decision, but c should not be in the top-k. Both cases result
in contradictions.

3.4 Iterative Search

After discovering the local top-k cells in a subspace, they
are merged into a global top-k. Entries from the original
group are removed from the Time Anomaly Matrix. The
whole process repeats until the Time Anomaly Matrix is
empty. In the example of Table 4, the first iteration finds
the rule: “Income = 45k–60k → Magnitude Anomaly : S[2–
3]”. In the next iteration, the entries with phase anomaly
are selected and produce the following rule: “Education =
College → Phase Anomaly : S[1]”. Algorithm 2 shows a
high-level summary of SUITS.

Algorithm 2 SUITS

Input & Output: Same as Algorithm 1

1. Retrieve data for σp(R)
2. Repeat until global answer set contains global top-k
3. B ← candidate attribute values from {A1, . . . An}
4. Retrieve top k anomaly cells from CB using g and m
5. Add top k cells to global answer set
6. Remove discovered anomalies from input
7. Return top k cells in global answer set

3.5 Discussion

Top-K Approximation. SUITS combines local top-k’s to
form the global top-k. This is different from Algorithm 1
where the global top-k is computed directly. Though theo-
retically these methods could produce different answers, we
argue that it is unlikely and the benefits of SUITS outweighs
the risks by far. Consider Algorithm 1 for a relative small
30-dimensional problem. It has to compute 230 cuboids!
This is simply impractical. SUITS, on the other hand, can
handle it easily by partitioning the data.

Next, we examine the likelihood of SUITS producing a
different answer set than Algorithm 1. Every anomaly in
the data must be correlated with a subspace; in the case
of top-k anomalies, the correlation should be rather obvious
and thus easily detectable by the AL scores. As a result,
they will likely become candidate subspaces for SUITS. After
the candidate subspace is chosen, the rest of the calculation
(cubing and top-k pruning) is lossless. The source of error is
when a subspace is never chosen by SUITS. This could occur
if a “bad” attribute somehow has a very low AL score; but
in testing, we found this to be rare. In the next section, we
show empirically that SUITS usually produces the true top-
k. Further, it does it within a fraction of the time required
by the näıve algorithm.

Pruning. The top-k pruning mechanism relies on the sat-
isfaction of Lemma 1. In the case of regression and our defi-

• Final top-k is approximation of true global top-k

• Top-k pruning relies on monotonic properties of upper bound.
If not satisfied, need to compute full subspace cube

25

Experiments

• Real market sales data from industry partner

• Time series data from 1999 to 2005

• Nearly 1 million sales and 600 dimensions

26

Sample Query 1

• Probe: Gender = “Male” ^ Marital = “Single” ^ Product = luxury item

• Greatest anomaly: Generation = “Post-Boomer” : less than expected

• Explanation: “Post-Boomer” are young and do not have enough money yet
to purchase luxury item

nitions of anomaly, this is possible because the anomaly val-
ues are aggregated via SUM. The anomaly values themselves
might not increase or decrease monotonically, but the upper
bounds do. If Lemma 1 is not satisfied (i.e., non-monotonic
measure), one will not be able to prune in cube computa-
tion. However, this only affects individual partitions of the
algorithm. The overall divide-and-conquer search still ap-
plies. Further, because the dimensionality of each partition
is relatively low, full cube computation could be tolerated.

Optimizations. There are many tricks one can play to
speedup computation. First, if the AL score of some at-
tribute value is infinity, it means that value is trivially cor-
related with the anomaly. Thus, it can be output directly
without cubing. Second, in [5], dimensions are sorted in de-
scending order of cardinality in order to maximize the chance
of early pruning. The same can be applied here. By sorting
dimensions in ascending order of upper bound values, the
chance of pruning should be greater.

4. EXPERIMENTS

To show the effectiveness of SUITS, we experimented with
both synthetic and real world data. SUITS was implemented
in C++ and compiled with GCC. All experiments were per-
formed on a Linux machine with an Intel Core2 E6600 CPU
and 2GB of memory.

4.1 Real World Data

We obtained real sales data from a Fortune 500 company.
For confidentiality reasons, the name of the company, the
names of products, or actual sales numbers cannot be re-
vealed. The data include records from 1999 to 2005 and
contains over 925,000 sales and nearly 600 dimensions. The
measure in the cube is number of sales. g was computed for
the entire time span and not sub-sequences.

4.1.1 Sample Queries

To perform some sample queries, we restricted ourselves to
30 of the 600 dimensions. They included age, gender, mar-
ital status, household size, occupation, employment, race,
and more. Construction of 1D shell fragments around this
data took approximately 8 seconds. For the first query,
the probe cell was set to (Gender = “Male”, Marital =
“Single”, Product = a luxury item). Of its descendants,
(Generation = “Post-Boomer”) had the largest magnitude
anomaly (Figure 6); it was significantly less than the ex-
pected. This matches our intuitions because post-boomers
are those under age 35 and probably do not have enough
financial resources to purchase the luxury item. The sec-
ond and third largest abnormal descendants were (Occupa-
tion = “Manager/Professional”) and (Occupation = “Man-
ager/Professional”, Number of Children Under 16 = 0).
Both of these segments have significantly more sales than
the expected, and that makes sense because they have high-
paying jobs and more disposable income.

For the second query, the probe cell was set to (Gender
= “Female”, Education = “Post-Graduate”, Product = a
cheap item). Of its descendants, (Employment = “Full-
Time”) had the largest trend anomaly; its trend was declin-
ing while the expected trend was relatively flat. This makes
sense because presumably a full-time employee with a post-
graduate degree should have relatively good financial stand-
ing such that she will purchase more expensive alternatives.
The other anomalies in the top-10 had similar results (e.g.,

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 6: Gender = “Male”, Marital = “Single”,
Product = a luxury item, Generation = “Post-
Boomer”

Occupation = “Manager/Professional”). But the third largest
anomaly in the top-10 was a little intriguing.

With (Number of Children Under 16 = 0), the observed
trend was higher than expected: The expected trend was 8
while the observed was 14. Figure 7 shows the data along
with their least-square fit lines. One explanation could be
that females who do not have children in the household
tend to be relative young and thus have not had time to
accumulate enough financial resources to purchase more ex-
pensive alternatives. The age dimension did not show up
as anomaly here, because its values were not grouped in
ranges and probably were too small individually to register
in the top-k. We did partially verify the explanation by set-
ting the probe to (Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of Children
Under 16 = 0). In the top-10 anomaly of this query, the only
anomaly whose trend was unexpectedly higher was (Gen-
eration = “Post-Boomer” (i.e., young)) (Figure 8). This
partially corroborates our age conjecture.

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 7: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0

 1999 2000 2001 2002 2003 2004 2005

S
a

le
s

Time

Expected
Observed

Figure 8: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0, Generation = “Post-
Boomer”

These two sample queries show typical market analysis

27

Sample Query 2

• Probe: Gender = “Female” ^ Education = “Post-Graduate” ^ Product = cheap item
• Greatest anomaly:

1. Employment = “Full-Time” ⇒ less

2. Occupation = “Manager/Professional” ⇒ less

3. Number of Children Under 16 = 0 ⇒ more

• Explanation: Number of Children Under 16 = 0 ⇔ “Young” ⇔ not enough

accumulated wealth

nitions of anomaly, this is possible because the anomaly val-
ues are aggregated via SUM. The anomaly values themselves
might not increase or decrease monotonically, but the upper
bounds do. If Lemma 1 is not satisfied (i.e., non-monotonic
measure), one will not be able to prune in cube computa-
tion. However, this only affects individual partitions of the
algorithm. The overall divide-and-conquer search still ap-
plies. Further, because the dimensionality of each partition
is relatively low, full cube computation could be tolerated.

Optimizations. There are many tricks one can play to
speedup computation. First, if the AL score of some at-
tribute value is infinity, it means that value is trivially cor-
related with the anomaly. Thus, it can be output directly
without cubing. Second, in [5], dimensions are sorted in de-
scending order of cardinality in order to maximize the chance
of early pruning. The same can be applied here. By sorting
dimensions in ascending order of upper bound values, the
chance of pruning should be greater.

4. EXPERIMENTS

To show the effectiveness of SUITS, we experimented with
both synthetic and real world data. SUITS was implemented
in C++ and compiled with GCC. All experiments were per-
formed on a Linux machine with an Intel Core2 E6600 CPU
and 2GB of memory.

4.1 Real World Data

We obtained real sales data from a Fortune 500 company.
For confidentiality reasons, the name of the company, the
names of products, or actual sales numbers cannot be re-
vealed. The data include records from 1999 to 2005 and
contains over 925,000 sales and nearly 600 dimensions. The
measure in the cube is number of sales. g was computed for
the entire time span and not sub-sequences.

4.1.1 Sample Queries

To perform some sample queries, we restricted ourselves to
30 of the 600 dimensions. They included age, gender, mar-
ital status, household size, occupation, employment, race,
and more. Construction of 1D shell fragments around this
data took approximately 8 seconds. For the first query,
the probe cell was set to (Gender = “Male”, Marital =
“Single”, Product = a luxury item). Of its descendants,
(Generation = “Post-Boomer”) had the largest magnitude
anomaly (Figure 6); it was significantly less than the ex-
pected. This matches our intuitions because post-boomers
are those under age 35 and probably do not have enough
financial resources to purchase the luxury item. The sec-
ond and third largest abnormal descendants were (Occupa-
tion = “Manager/Professional”) and (Occupation = “Man-
ager/Professional”, Number of Children Under 16 = 0).
Both of these segments have significantly more sales than
the expected, and that makes sense because they have high-
paying jobs and more disposable income.

For the second query, the probe cell was set to (Gender
= “Female”, Education = “Post-Graduate”, Product = a
cheap item). Of its descendants, (Employment = “Full-
Time”) had the largest trend anomaly; its trend was declin-
ing while the expected trend was relatively flat. This makes
sense because presumably a full-time employee with a post-
graduate degree should have relatively good financial stand-
ing such that she will purchase more expensive alternatives.
The other anomalies in the top-10 had similar results (e.g.,

 1999 2000 2001 2002 2003 2004 2005

S
a
le

s

Time

Expected
Observed

Figure 6: Gender = “Male”, Marital = “Single”,
Product = a luxury item, Generation = “Post-
Boomer”

Occupation = “Manager/Professional”). But the third largest
anomaly in the top-10 was a little intriguing.

With (Number of Children Under 16 = 0), the observed
trend was higher than expected: The expected trend was 8
while the observed was 14. Figure 7 shows the data along
with their least-square fit lines. One explanation could be
that females who do not have children in the household
tend to be relative young and thus have not had time to
accumulate enough financial resources to purchase more ex-
pensive alternatives. The age dimension did not show up
as anomaly here, because its values were not grouped in
ranges and probably were too small individually to register
in the top-k. We did partially verify the explanation by set-
ting the probe to (Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of Children
Under 16 = 0). In the top-10 anomaly of this query, the only
anomaly whose trend was unexpectedly higher was (Gen-
eration = “Post-Boomer” (i.e., young)) (Figure 8). This
partially corroborates our age conjecture.

 1999 2000 2001 2002 2003 2004 2005

S
a
le

s

Time

Expected
Observed

Figure 7: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0

 1999 2000 2001 2002 2003 2004 2005

S
a
le

s

Time

Expected
Observed

Figure 8: Gender = “Female”, Education = “Post-
Graduate”, Product = a cheap item, Number of
Children Under 16 = 0, Generation = “Post-
Boomer”

These two sample queries show typical market analysis

28

Query Efficiency

Probe |R| Näıve SUITS0 SUITS Common Top-10
Time Time % Improve Time % Improve

Male, Single 10 14 5.9 58% 5.4 61% 9
Male, Married 10 299 95 68% 60 80% 10
Male, Divorced 10 3.6 2.8 22% 2.8 22% 10
Female, Single 10 15 8.2 46% 7.0 53% 9
Female, Married 10 114 31.0 73% 23.0 80% 8
Female, Divorced 10 5.5 3.8 31% 3.7 33% 10
Post-Boomer, Children=0 11 68.8 39.6 43% 32.1 53% 10
Post-Boomer, Children=1 11 16.8 5.4 68% 4.8 71% 10
Post-Boomer, Children=2 11 15.5 7.8 50% 6.7 57% 10
Boomer, Children=0 11 108.9 75.7 30% 52.4 52% 10
Boomer, Children=1 11 120.3 68.9 43% 58.0 52% 10
Boomer, Children=2 11 46.6 27.2 42% 23.6 49% 10

Average 48% 55% 9.6

Table 8: Run times of trend anomaly query with low dimensional data (10 ≤ |R| ≤ 11)

queries and how their results can either be confirmed by in-
tuition or shed light on some unexpected behavior. The for-
mer case offers assurance to the analyst that common-sense
marketing tactics will work and the latter offers a chance to
enter an un-tapped market. One may remark that the dif-
ferences in trend are rather small in the examples we have
shown. But the truth is, in real world market data, there are
no “nice” anomalies where the trends are completely oppo-
site. A difference in slope of just 1 or 2 is already significant.

4.1.2 Query Efficiency

In Table 8, we show efficiency results of many trend anom-
aly queries. For each query, we processed it in three differ-
ent ways. First, we used the Näıve algorithm as described
in Algorithm 1. Second, we used SUITS0, which is SUITS
without the top-k pruning. That is, it uses the iterative
subspace search but local candidate cubes are fully materi-
alized. And lastly, we used SUITS as described in the paper.
Table 9 shows a similar experiment with magnitude anomaly
queries except without SUITS0. In both tables, |R| shows
the total number of dimensions in the data; we chose a rela-
tively small number because for even slightly larger datasets,
Näıve is orders of magnitudes slower.

Probe |R| Näıve SUITS Common
Male, Single 10 13.4 8.2 38% 10
Male, Married 10 182.4 46.9 74% 10
Male, Divorced 10 4.1 3.1 24% 10
Female, Single 10 15.4 7.7 50% 10
Female, Married 10 85.5 17.4 80% 9
Female, Divorced 10 6.5 4.1 37% 10
High School 11 92.5 22.9 75% 10
College 11 382.4 35.5 91% 10
Post-Graduate 11 110.7 34.9 68% 10

Average 60% 9.9

Table 9: Magnitude anomaly query run times

In both tables, we notice that SUITS is, on average, over
50% faster than the Näıve algorithm. This is especially true
for the large queries, either by a large number of dimensions
or a large number of tuples. This is not surprising because
SUITS breaks a very large problem into more manageable
parts. Figure 9 shows a closer look at a single query as the

number of dimensions increase from 7 to 14. At 7, the Näıve
algorithm is faster than SUITS, because the data cube is rel-
atively small and SUITS has additional overhead. However,
as dimensionality increases, the trends of Näıve and SUITS
are very different. Näıve shows the expected curse of dimen-
sionality; in fact, with |R| = 12, Näıve ran out of memory for
full cube materialization. With SUITS, we observe a more
or less linear or even sub-linear behavior. This is because
SUITS is more dictated by the anomalies inside the data
rather than the external size of the data.

 0

 50000

 100000

 150000

 200000

 250000

 7 8 9 10 11 12 13 14

Q
u
e
ry

 R
u

n
ti
m

e
 (

m
s
)

Number of Dimensions

Naive
SUITS

Figure 9: Running time vs. number of dimensions

As mentioned previously, the top-k produced by SUITS is
not guaranteed to be the same as the true top-k. This could
occur if particular attributes or combinations of attributes
are not examined within a single iteration of SUITS. In prac-
tice, we noticed that this sometimes happens with dimen-
sions of high cardinality (e.g., zip code, state). The reason
is that high-cardinality dimensions often have high entropy
just by definition and thus low AL scores. And so they some-
times are not picked as candidates. An easy way to fix this
would be to normalize entropy based on the cardinality of
the dimension. However, this scenario is usually the excep-
tion rather than the rule. The last columns of Tables 8 and
9 show the number of items in the top-10 that is common
between the SUITS top-10 and the true top-10. As shown,
SUITS usually produces the same top-10 as the true top-10.

4.2 Synthetic Data
To test SUITS in a more controlled environment, we also

generated our own data. Each data set consisted of 95% nor-
mal, background “noise” and 5% abnormal patterns. For the
normal portion, each value under each dimension was picked

29

Dimensionality Efficiency

Probe |R| Näıve SUITS0 SUITS Common Top-10
Time Time % Improve Time % Improve

Male, Single 10 14 5.9 58% 5.4 61% 9
Male, Married 10 299 95 68% 60 80% 10
Male, Divorced 10 3.6 2.8 22% 2.8 22% 10
Female, Single 10 15 8.2 46% 7.0 53% 9
Female, Married 10 114 31.0 73% 23.0 80% 8
Female, Divorced 10 5.5 3.8 31% 3.7 33% 10
Post-Boomer, Children=0 11 68.8 39.6 43% 32.1 53% 10
Post-Boomer, Children=1 11 16.8 5.4 68% 4.8 71% 10
Post-Boomer, Children=2 11 15.5 7.8 50% 6.7 57% 10
Boomer, Children=0 11 108.9 75.7 30% 52.4 52% 10
Boomer, Children=1 11 120.3 68.9 43% 58.0 52% 10
Boomer, Children=2 11 46.6 27.2 42% 23.6 49% 10

Average 48% 55% 9.6

Table 8: Run times of trend anomaly query with low dimensional data (10 ≤ |R| ≤ 11)

queries and how their results can either be confirmed by in-
tuition or shed light on some unexpected behavior. The for-
mer case offers assurance to the analyst that common-sense
marketing tactics will work and the latter offers a chance to
enter an un-tapped market. One may remark that the dif-
ferences in trend are rather small in the examples we have
shown. But the truth is, in real world market data, there are
no “nice” anomalies where the trends are completely oppo-
site. A difference in slope of just 1 or 2 is already significant.

4.1.2 Query Efficiency

In Table 8, we show efficiency results of many trend anom-
aly queries. For each query, we processed it in three differ-
ent ways. First, we used the Näıve algorithm as described
in Algorithm 1. Second, we used SUITS0, which is SUITS
without the top-k pruning. That is, it uses the iterative
subspace search but local candidate cubes are fully materi-
alized. And lastly, we used SUITS as described in the paper.
Table 9 shows a similar experiment with magnitude anomaly
queries except without SUITS0. In both tables, |R| shows
the total number of dimensions in the data; we chose a rela-
tively small number because for even slightly larger datasets,
Näıve is orders of magnitudes slower.

Probe |R| Näıve SUITS Common
Male, Single 10 13.4 8.2 38% 10
Male, Married 10 182.4 46.9 74% 10
Male, Divorced 10 4.1 3.1 24% 10
Female, Single 10 15.4 7.7 50% 10
Female, Married 10 85.5 17.4 80% 9
Female, Divorced 10 6.5 4.1 37% 10
High School 11 92.5 22.9 75% 10
College 11 382.4 35.5 91% 10
Post-Graduate 11 110.7 34.9 68% 10

Average 60% 9.9

Table 9: Magnitude anomaly query run times

In both tables, we notice that SUITS is, on average, over
50% faster than the Näıve algorithm. This is especially true
for the large queries, either by a large number of dimensions
or a large number of tuples. This is not surprising because
SUITS breaks a very large problem into more manageable
parts. Figure 9 shows a closer look at a single query as the

number of dimensions increase from 7 to 14. At 7, the Näıve
algorithm is faster than SUITS, because the data cube is rel-
atively small and SUITS has additional overhead. However,
as dimensionality increases, the trends of Näıve and SUITS
are very different. Näıve shows the expected curse of dimen-
sionality; in fact, with |R| = 12, Näıve ran out of memory for
full cube materialization. With SUITS, we observe a more
or less linear or even sub-linear behavior. This is because
SUITS is more dictated by the anomalies inside the data
rather than the external size of the data.

 0

 50000

 100000

 150000

 200000

 250000

 7 8 9 10 11 12 13 14

Q
u

e
ry

 R
u

n
ti
m

e
 (

m
s
)

Number of Dimensions

Naive
SUITS

Figure 9: Running time vs. number of dimensions

As mentioned previously, the top-k produced by SUITS is
not guaranteed to be the same as the true top-k. This could
occur if particular attributes or combinations of attributes
are not examined within a single iteration of SUITS. In prac-
tice, we noticed that this sometimes happens with dimen-
sions of high cardinality (e.g., zip code, state). The reason
is that high-cardinality dimensions often have high entropy
just by definition and thus low AL scores. And so they some-
times are not picked as candidates. An easy way to fix this
would be to normalize entropy based on the cardinality of
the dimension. However, this scenario is usually the excep-
tion rather than the rule. The last columns of Tables 8 and
9 show the number of items in the top-10 that is common
between the SUITS top-10 and the true top-10. As shown,
SUITS usually produces the same top-10 as the true top-10.

4.2 Synthetic Data
To test SUITS in a more controlled environment, we also

generated our own data. Each data set consisted of 95% nor-
mal, background “noise” and 5% abnormal patterns. For the
normal portion, each value under each dimension was picked

30

Conclusion

• Detecting anomalies in data cube of time series data

• Iterative subspace search

• Efficient top-k anomaly detection

• Experiments with real data

Thank You!

31

