
RankMass Crawler

A Crawler with High Personalized
PageRank Coverage Guarantee
Junghoo Cho
Uri Schonfeld

Work done in UCLA

1 shuri@shuri.org © http://www.shuri.org

Motivation

� Impossible to download the entire
web:
� Example: many pages from one
calendar

� When can we stop?

� How to gain the most benefit from
the pages we download

2 shuri@shuri.org © http://www.shuri.org

Main Issues

� Crawler Guarantee:
� guarantee on how much of the “important” part of

the Web they “cover” when they stop crawling
� If we don’t see the pages, how do we know how

important they are?
� Crawler Efficiency:

� Download “important” pages early during a crawl
� Obtain coverage with a min number of downloads

3 shuri@shuri.org © http://www.shuri.org

Outline

� Formalize coverage metric
� L-Neighbor: Crawling with RankMass
guarantee

� RankMass: Crawling to achieve high
RankMass

� Windowed RankMass: How greedy do you
want to be?

� Experimental Results

4 shuri@shuri.org © http://www.shuri.org

Web Coverage Problem

� D – The potentially infinite set of
documents of the web

� DC – The finite set of documents in
our document collection

� Assign importance weights to each
page

5 shuri@shuri.org © http://www.shuri.org

Web Coverage Problem

� What weights? Per query? Topic?
Font?

� PageRank? Why PageRank?
� Useful as importance mesure

� Random surfer.

� Effective for ranking.

6 shuri@shuri.org © http://www.shuri.org

PageRank a Short Review

||

1
)1(

)(
D

d
c

r
dr

ipIjp j

j

i −+












= ∑

∈

p1

p2

p3

p4

7 shuri@shuri.org © http://www.shuri.org

Now it’s Personal

� Personal, TrustRank, General

i

p j

j

i td
c

r
dr

ipIj

)1(

(

−+












= ∑

∈

















=

Μ

2

1

t

t

T

p3

p4

8 shuri@shuri.org © http://www.shuri.org

RankMass Defined

� Using personalized pagerank formally define
RankMass of DC :

� Coverage Guarantee:
� We seek a crawler that given �, when it stops the

downloaded pages DC:

� Efficient crawling:
� We seek a crawler that, for a given N, downloads |DC|=N

s.t. RM(DC) is greater or equal to any other |DC|=N, DC�
D

∑ ∈
=

Ci Dp iC rDRM)(

ε−>=∑ ∈
1)(

Ci Dp iC rDRM

9 shuri@shuri.org © http://www.shuri.org

How to Calculate RankMass

� Based on PageRank

� How do you compute RM(Dc)
without downloading the entire
web

� We can’t compute the exact but
can lower bound

� Let’s a start a simple case

10 shuri@shuri.org © http://www.shuri.org

Single Trusted Page

� t1=1 ; ti = 0 i≠1

� Always jump to p1 when bored

� We can place a lowerbound on being
within L of P1

� NL(p1)=pages reachable from p1 in L
links

11 shuri@shuri.org © http://www.shuri.org

Single Trusted Page

12 shuri@shuri.org © http://www.shuri.org

Lower bound guarantee:
Single Trusted

� Theorem 1:
� Assuming the trust vector T(1), the
sum of the PageRank values of all L-
neighbors of p1 is at least dL+1 close
to 1.. That is:

∑
∈

+
−≥

)(

1

1

1
pNp

L

i

Li

dr

13 shuri@shuri.org © http://www.shuri.org

Lower bound guarantee:
General Case

� The RankMass of the L-neighbors
of the group of all trusted pages G,
NL(G), is at least d

L+1 close to 1.
That is:

∑
∈

+
−≥

)(

1
1

GNp

L

i

Li

dr

14 shuri@shuri.org © http://www.shuri.org

The L-Neighbor Crawler

1. L := 0
2. N[0] = {pi|ti > 0} // Start with the

trusted pages
3. While (� < dL+1)

1. Download all uncrawled pages in
N[L]

2. N[L + 1] = {all pages linked to by a
page in N[L]}

3. L = L + 1

15 shuri@shuri.org © http://www.shuri.org

But what about efficency?

� L-Neighbor similar to BFS

� L-Neighbor simple and efficient

� May wish to prioritize further
certain neighborhoods first

� Page level prioritization.

t0=0.99 t1=0.01

16 shuri@shuri.org © http://www.shuri.org

Page Level Prioritizing

� We want a more fine-grained page-level
priority

� The idea:
� Estimate PageRank on a page basis

� High priority for pages with a high
estimate of PageRank

� We cannot calculate exact PageRank

� Calculate PageRank lower bound of
undownloaded pages

17 shuri@shuri.org © http://www.shuri.org

Probability of being at
Page P

Interrupted

Page

Random Surfer

Click Link

Trusted Page

18 shuri@shuri.org © http://www.shuri.org

Calculating PageRank Lower Bound

� PageRank(p) = Probability Random
Surfer in p

� Breakdown path by “interrupts”,
jumps to a trusted page

� Sum up all paths that start with an
interrupt and end with p

Interrupt Pj P1 P2 P3 P4 P5 Pi

(1-d) (tj)
(d*1/3) (d*1/5) (d*1/3) (d*1/4) (d*1/3) (d*1/3)

19 shuri@shuri.org © http://www.shuri.org

RankMass Basic Idea

p1

0.99

p2

0.01

p3

0.25

p4

0.25

p5

0.25

p1

0.99

p1

0.99

p6

0.09

p7

0.09
p3

0.25
p1

0.99

20 shuri@shuri.org © http://www.shuri.org

RankMass Crawler: High
Level

� But that sounds complicated?!

� Luckily we don’t need all that

� Based on this idea:
� Dynamically update lower bound on
PageRank

� Update total RankMass

� Download page with highest lower
bound

21 shuri@shuri.org © http://www.shuri.org

RankMass Crawler
(Shorter)
� Variables:

� CRM: RankMass lower bound of crawled pages
� rmi: Lower bound of PageRank of pi.

� RankMassCrawl()
� CRM = 0
� rmi = (1 − d)ti for each ti > 0
� While (CRM < 1 − �):

• Pick pi with the largest rmi.
• Download pi if not downloaded yet
• CRM = CRM + rmi
• Foreach pj linked to by pi:

• rmj = rmj + d/ci rmi

• rmi = 0

22 shuri@shuri.org © http://www.shuri.org

Experimental Setup

� HTML files only
� Algorithms simulated over web
graph

� Crawled between Dec’ 2003 and Jan’
2004

� 141 millon URLs span over 6.9 million
host names

� 233 top level domains.

23 shuri@shuri.org © http://www.shuri.org

Metrics Of Evaluation

1. How much RankMass is collected
during the crawl

2. How much RankMass is “known” to
have been collected during the
crawl

3. How much computational and
performance overhead the
algorithm introduces.

24 shuri@shuri.org © http://www.shuri.org

L-Neighbor

25 shuri@shuri.org © http://www.shuri.org

RankMass

26 shuri@shuri.org © http://www.shuri.org

Algorithm Efficiency

Algorithm Downloads

required for

above 0.98%

guaranteed

RankMass

Downloads

required

for above

0.98% actual

RankMass

L-Neighbor 7 million 65,000

RankMass 131,072 27,939

Windowed-
RankMass

217,918 30,826

Optimal 27,101 27,101
27 shuri@shuri.org © http://www.shuri.org

Algorithm Running Time

Window Hours Number of
Iterations

Number of
Documents

L-Neighbor 1:27 13 83,638,834

20%-
Windowed

4:39 44 80,622,045

10%-
Windowed

10:27 85 80,291,078

5%-
Windowed

17:52 167 80,139,289

RankMass 25:39 Not
comparable

10,350,000

28 shuri@shuri.org © http://www.shuri.org

Thank you

� Thank you

29 shuri@shuri.org © http://www.shuri.org

Greedy vs Simple

� L-Neighbor is simple
� RankMass is very greedy.
� Update expensive: random access to
web graph

� Compromise?
� Batching

� downloads together
� updates together

30 shuri@shuri.org © http://www.shuri.org

Windowed RankMass

� Variables:
� CRM: RankMass lower bound of crawled pages
� rmi: Lower bound of PageRank of pi.

� Crawl()
� rmi = (1 − d)ti for each ti > 0
� While (CRM < 1 − �):

• Download top window% pages according to rmi

• Foreach page pi � DC
• CRM = CRM + rmi
• Foreach pj linked to by pi:
• rmj = rmj + d/ci rmi

• rmi = 0

31 shuri@shuri.org © http://www.shuri.org

Windowed RankMass

32 shuri@shuri.org © http://www.shuri.org

Window Size

33 shuri@shuri.org © http://www.shuri.org

RankMass Lower Bound

� Lower bound given a single trusted
page

� That’s the basis of the crawling
algorithm with a coverage
guarantee

� Extension: Given a set of trusted
pages G

∑
∈

+
−≥

)(

1

1

1
pNp

L

i

Li

dr

∑
∈

+
−≥

)(

1
1

GNp

L

i

Li

dr
34 shuri@shuri.org © http://www.shuri.org

Power Method of
Calculating PageRank

p1

p2

p3

p4

(1-d)t1

(1-d)t2

(1-d)t3

(1-d)t4

p6

p1

p7

p2

p5

p8

p9

p10

p2

p11

p12

35 shuri@shuri.org © http://www.shuri.org

RankMass Algorithm

� Variables:
� UnexploredPaths: List of unexplored paths and their path

probabilities
� sumPathProbi: Sum of the probabilities of all unexplored paths

leading to pi
� ri: Partial sum of the probability of being in pi

� RankMassCrawl()
� // Initialize:
� ri = 0 for each i // Set initial probability sum to be zero.
� UnexploredPaths = {} // Start with empty set of paths.

� Foreach (ti > 0): // Add initial paths of jumping to a trusted
page and
� Push [path: {pi}, prob: (1 − d)ti] to UnexploredPaths // the

probability of the random jump.
� sumPathProbi = (1 − d)ti // For every trust page pi, we

currently have only one path {pi}

36 shuri@shuri.org © http://www.shuri.org

RankMass Algorithm

� While (∑iri < 1 − �):
� Pick pi with the largest sumPathProbi. // Get the page with highest sumPathProbi.
� Download pi if not downloaded yet // Crawl the page.
� // Now expand all paths that end in pi
� PathsToExpand = Pop all paths ending with pi // Get all the paths leading to pi,
� from UnexploredPaths
� Foreach pj linked to from pi // and expand them by adding pi’s children to the paths.

� Foreach [path, prob] 2 PathsToExpand
• path′ = path · pj // Add the child pj to the path,
• prob′ = d/cii prob // compute the probability of this expanded path,
• Push [path′, prob′] to UnexploredPaths // and add the expanded path to UnexploredPaths.

� sumPathProbj = sumPathProbj + d/ci sumPathProbi // Add the path probabilities of
the newly added paths to pj .

� Add the probabilities of just explored paths to ri
� ri = ri + sumPathProbi // We just explored all paths to pi. Add their probabilities
� sumPathProbi = 0 // to ri.

37 shuri@shuri.org © http://www.shuri.org

