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Motivation

Key requirements of DSMSs
– Low-latency and high-throughput processing

Multi-core processor architectures 
– Provide high aggregate processing capacity 
– Perfect match for executing costly DSMS operators

STI Cell processor
– Heterogeneous multi-core architectures, plenty of parallelism

Windowed stream joins
– Fundamental and costly operations in DSMSs

• Need low latency and high-throughput processing
– Representative of a broader class of stream applications

• Search / correlate dynamic views on streams
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Heterogeneous multi-core architecture
– 1 Power Processing Element (PPE) for control tasks
– 8 Synergistic Processing Elements (SPE) for data intensive processing
– High-bandwidth Element Interconnect Bus (EIB)

Each SPE has
– Synergistic Processor Unit
– 256 KB Local Store
– Memory Flow Controller 

Lots of parallelism!
– Asynchronous DMAs
– 128-bit SIMD per SPE
– Two-way ILP per SPE

Cell Processor Overview

No branch prediction hardware on the SPUs
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Stream Join Overview

User-defined windows over 
unbounded streams
– Time-based windows
– Count-based windows

Tuple insertion/expiration 
Variable stream rates
S1 W2 and S2 W1

Different join conditions
– Ex: Band joins

• Xl ≤ S1.A – S2.B ≤ Xu

NLJ processing, 
extensions to hash-joins
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SPE8SPE2
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Parallelizing the join

Store join windows in main 
memory, not in local stores
– Arbitrary join window sizes 
– Transparent to # of SPEs

Replication vs. Distribution
– Replicate tuples, distribute window
– Distribute tuples, replicate window

Disadvantages of Option 1
– ~8 x memory bw. consumption

• At maximum throughput, we 
consume 3.35 GB/sec 

• 3.35 * 8 = 26.8 GB/sec vs. 25.6 
GB/sec available

– Average tuple delay

SPE1 …

Option 2: replicate tuple, distribute window

SPE1 SPE8…SPE2

Option 1: replicate window, distribute tuples
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Column-oriented memory

Memory organization for storing tuples in the join windows
– row-oriented (tuple-oriented)               /  array of structures

– column-oriented (attribute-oriented)    /  structure of arrays

With column-oriented
– Easily transfer only the 

join attributes

– No need for shuffling to 
take advantage of SIMD 

– No need for 
scatter/gather transfers 
(DMA-list commands)
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Column-oriented memory

Memory organization for storing tuples in the join windows
– row-oriented (tuple-oriented)               /  array of structures

– column-oriented (attribute-oriented)    /  structure of arrays

With column-oriented
– Easily transfer only the 

join attributes

– No need for shuffling to 
take advantage of SIMD 

– No need for 
scatter/gather transfers 
(DMA-list commands)

CO

B1

B2

B3

.

.

.

Memory 
grows

.

.

.

.

.

.

.

.

.

.

.

.

address a  a+x a+2x  a+3x

SPE
side



IBM T. J. Watson Research

© 2006 IBM Corporation 10

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and 
M-way joins
Experimental Results
Conclusions



IBM T. J. Watson Research

© 2006 IBM Corporation 11

Join Window Organization

Basic Window: Single unit of memory transfer for an SPE
Used to hide memory transfer delays (double buffering)

1
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DMAs

Join processing

Issue DMA
Bring in basic window

Process basic window
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Dynamic window partitioning

Since join windows are sliding we need to maintain a dynamic 
partitioning over the join windows

Assign consecutive basic windows to each SPE

Use pointer shifting to update the partitioning in O(# of SPEs) 
time, independent of the # of basic windows

Needed only when there is a basic window to insert (this first 
window is full) or remove (the last basic window is expired)

SPE 3

…

expired

empty

SPE 1 SPE 2 SPE n

Time t1Time t2

SPE 2

Time t3Time t4 Variable number of fixed size basic windows
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Batch tuple processing

Batching is effective
– Transfer overheads are incurred once 

per batch

Average tuple delay components
– Time waited on the batch
– Time to process a batch / batch size

Batch size trade-off
– Low stream rates -> small batches
– High stream rates -> large batches

Our solution
– Rate-aware, dynamic tuple batching

processS1

Dynamic tuple batching

high-rate

low-rate

S1 process
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Result handling

Result handling includes
– Conversion of matching tuples into output tuples

• SPEs only know about join attributes
• PPE post-processes the results

Do result and join processing in parallel
• SPEs accumulate results in their buffers (2 per SPE)
• SPEs notify the PPE when their buffer is full

– continue join processing with an alternate buffer
• Upon an SPE notification, PPE dispatches the job of fetching 

and processing result entries to a result thread
– main PPE thread continues to service other SPEs
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Memory transfer delays with double buffering
– αm: time to issue DMA commands
– fm(X): time to bring in a basic window of size X

• For simplicity assume linear: βm * X 
– fn(X): time to process a basic window of size X

• fn(X) = αn + βn * X (linear function)
– Total delay: (αm * L + βm * H) + L * (αn + βn * H)

• L: # of basic windows, H: basic window size
The optimal value of d (basic window size)

Join processing and asynchronous DMAs
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Taking advantage of SIMD

Single-instruction, multiple-data
– Can operate on 128-bits at once, either in the form of 16 bytes, 

8 shorts, 4 ints/floats, or 2 doubles/longs
For a band join, we can use 5 SIMD instructions to evaluate 
one join condition for 4 tuples
– Compared to 16 instructions required without SIMD

basic window
unit block

tuple
Operate unit block at a time
Unit block is an integral numbers of vectors

initially a = a1, vb = <b1, b2, b3, b4>
SIMD replicate a, va = <a1, a1, a1, a1>
SIMD subtract va from vb vd = <···, a1−bi, ···>
SIMD compare vd with Xl vl = <···, (a1−bi) ≥ Xl, ···>
SIMD compare Xu with vd vu = <···, Xu ≥ (a1−bi), ···>
SIMD and vl and vu vr = <···, Xu≥ (a1−bi) ≥ Xl,···>
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Optimizing the join code

CPI: Cycles per instruction
– SPEs have dual pipelines (instruction-level parallelism)

• Independent instructions in a sequential code can be executed in
parallel using the two pipelines

• Each pipeline executes only certain types of instructions
– Best CPI that can be reached: 0.5

Do loop unrolling to operate on a larger number of vectors 
within the body of the innermost NLJ loop
– Help the compiler to execute loads/stores in parallel with some 

of the comparison operators in the join core

– No benefit from loop unrolling after all registers are used up 
(128x 128-bit registers on the SPE side)
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Hash-based equi-joins
– Use hash buckets

• Each bucked is organized like 
our previous join windows

• Maintain partitioning for each 
bucket

– Dynamic window partitioning
• Same time complexity
• Increased space complexity

M-way joins
– Replicate the tuple
– Partition the first join window in 

the current join order
– Replicate the remaining 

windows of the join order

Hash-based Equi-joins and M-way Joins
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Experimental Setup

Two platforms are used
– IBM Full-scale Cell System Simulator

• Used to measure join performance on a single SPE
• Band join on a single int attribute
• Measures: cycles/byte, cycles/instruction

– 3.2 GHz IBM Cell Processor
• Used to measure overall performance 
• Band join on two attributes: one float, one int
• Measures: output rate, drop rate, avg. tuple processing time

Compared approaches:
• Non-SIMD, SIMD-NoOpt, SIMD using 1-8 SPEs
• Conventional windowed stream join on Intel Xeon 3.4Ghz (no SSE 

optimizations applied)
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Experimental Results I

Non-SIMD: 10 times # of cycles of SIMD
SIMD-Noopt: 1.8 times # of cycles of SIMD

Effective CPI: noops are excluded
Smaller CPI is better

Non-SIMD: 54% higher effective CPI 
SIMD-Noopt: 45% higher effective CPI 

Far from optimal value of 0.5
Due to branchy nature of join
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Experimental Results II

SIMD: Drop starts at 500 tuples/sec
Output rate 250% higher than Non-SIMD

33% higher than Non-SIMD
SIMD-Noopt: Drop starts at 750 tuples/sec
Non-SIMD: Drop starts at 1000 tuples/sec

Drops start

15 minutes join windows, 8KB basic windows, no batching

At 1000tuples/sec, the join window processing rate is 13.4 GB/sec 

Linear scalability with number of SPEs
8.6 x higher output rate compared to Xeon 3.4Ghz
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Experimental Results III

Batching can cut down processing time by as 
much as 50% 
Increasing batch size bring diminishing returns

Using a suboptimal basic window size can cause 
up to 10% increase in tuple processing time
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Conclusions

Developed concepts and techniques to execute stream joins on 
heterogeneous multicore processor architectures in a scalable manner
Concepts such as 
– column-oriented memory organization, and 
– dynamic window partitioning
enable us to better exploit multicore parallelism
Techniques such as 
– delay-optimized double buffering,
– rate-aware dynamic batch processing, 
– SIMD-optimized join code
together lead to high throughput and low latency processing
Experimental results show 
– up to 30 times better performance compared to an Intel Xeon 3.4Ghz processor
– perfect scalability (linear) with the number of SPEs used
– zero drop rate up to combined input rate of 2000 tuples/sec with 15 minutes join 

windows, resulting in a join window processing rate of 13.4 GB/sec
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Questions

Thank You!


