| IBM T. J. Watson Research

Accelerating Stream Joins
using the Cell Processor

Bugra Gedik
Philip S. Yu
Rajesh Bordawekar

© 2006 IBM Corporation — All Rights Reserved

IBM T. J. Watson Research

Outline

= Motivation

= Cell overview

= Stream joins overview = SPE-side operation

= Design choices — Optimal basic window size
— Join program structure — Taking advantage of SIMD
— Column oriented memory — Optimizing the join code
— Unit blocks and SIMD = Hash-based Equi-joins and

M-way joins

PPE-side operation

— Dynamic window partitioning
— Batch tuple processing = Conclusions
— Asynchronous result handling

= Experimental Results

2 | © 2006 IBM Corporation

IBM T. J. Watson Research

Motivation

Key requirements of DSMSs
— Low-latency and high-throughput processing

Multi-core processor architectures
— Provide high aggregate processing capacity
— Perfect match for executing costly DSMS operators

STI Cell processor
— Heterogeneous multi-core architectures, plenty of parallelism

Windowed stream joins

— Fundamental and costly operations in DSMSs
* Need low latency and high-throughput processing

— Representative of a broader class of stream applications
« Search / correlate dynamic views on streams

Iy
-1
I

© 2006 IBM Corporation

IBM T. J. Watson Research

Cell Processor Overview

= Heterogeneous multi-core architecture
— 1 Power Processing Element (PPE) for control tasks
— 8 Synergistic Processing Elements (SPE) for data intensive processing
— High-bandwidth Element Interconnect Bus (EIB)

= Each SPE has
— Synergistic Processor Unit

No branch prediction hardware on the SPUs

- 256 KB Local Store (S)::Egigtic SPE 1 SPE 2 SPE 3 Dual-XDR
Processing memory
El t) 3
— Memory Flow Controller et e 0 25 6GBs
. | I}::JEEE?:;TPC seams f aseams b 2secms f 2seoBis f . ﬁem@fﬁ‘;"l&f{f;lgs
o s — »| Controller
- L Ots Of p ar al I el I S m) E}EJT)SSQVM\(‘%S-GGBIi Element Interconnect Bus (EIB) 25 6GB/s
L1 L2 |« :75 [0 Interface
o Asyn Ch ronous D MAS = e [zs.mwsﬂ‘ zs_ﬁGB;s,u‘ zs.ﬁGst,ﬁ‘ 25.663;;@ 25 6GBIS O
. 35GB/s J{T 25GB/s
- 128'b|t SIMD pel’ SPE ! SPES SPE6 SPE7 B & 10
— Two-way ILP per SPE SPEA

4 | © 2006 IBM Corporation

IBM T. J. Watson Research

[
Iy
-1
I

Stream Join Overview

= User-defined windows over expired
unbounded streams tiﬁ;’e"er;tv
— VW9
— Time-based windows — e,
— Count-based windows
= Tuple insertion/expiration
W

= Variable stream rates
= S, X<IW, and S,><IW,
= Different join conditions

current
. time
— Ex: Band joins
© X <S,.A-S,B<X,
= NLJ processing,
extensions to hash-joins

5 | © 2006 IBM Corporation

IBM T. J. Watson Research

Outline
= Motivation = SPE-side operation
= Cell overview — Optimal basic window size

— Taking advantage of SIMD
— Optimizing the join code

Stream joins overview

Design choices

— Join program structure

— Column oriented memory
— Unit blocks and SIMD

PPE-side operation

— Dynamic window partitioning
— Batch tuple processing

— Asynchronous result handling

= Hash-based Equi-joins and
M-way joins

= Experimental Results
= Conclusions

6 | © 2006 IBM Corporation

IBM T. J. Watson Research

Parallelizing the join

= Storejoin windows in main
memory, not in local stores

— Arbitrary join window sizes
— Transparent to # of SPEs

= Replication vs. Distribution
— Replicate tuples, distribute window
— Distribute tuples, replicate window

= Disadvantages of Option 1

— ~8 x memory bw. consumption

* At maximum throughput, we
consume 3.35 GB/sec

« 3.35*8 =26.8 GB/sec vs. 25.6
GB/sec available

— Average tuple delay

SPE1

SPES8

Option 1: replicate window, distribute tuples

sy,] _
\ \

:

\

o NSl

T
SPE8

Option 2: replicate tuple, distribute window

© 2006 IBM Corporation

—
-
i
=
-

—

IBM T. J. Watson Research

[
Iy
-1
I

Column-oriented memory

= Memory organization for storing tuples in the join windows
— row-oriented (tuple-oriented) / array of structures
— column-oriented (attribute-oriented) / structure of arrays

RO
= With column-oriented

— Easily transfer only the
join attributes \\
— No need for shuffling to

E SPE side
take advantage of SIMD / I

— No need for
scatter/gather transfers
(DMA-list commands) v

© 2006 IBM Corporation

IBM T. J. Watson Research

Column-oriented memory

—
-
i
=
-

—

I
Iy
-1
I

= Memory organization for storing tuples in the join windows

— row-oriented (tuple-oriented)

— column-oriented (attribute-oriented)

= With column-oriented

— Easily transfer only the
join attributes

— No need for shuffling to
take advantage of SIMD

— No need for
scatter/gather transfers
(DMA-list commands)

/ array of structures

/ structure of arrays

CO

address g g+x a+2x a+3x

SPE
side

© 2006 IBM Corporation

IBM T. J. Watson Research

Outline
= Motivation = SPE-side operation
= Cell overview — Optimal basic window size

— Taking advantage of SIMD
— Optimizing the join code

Stream joins overview

Design choices

— Join program structure

— Column oriented memory
— Unit blocks and SIMD

PPE-side operation

— Dynamic window partitioning
— Batch tuple processing

— Asynchronous result handling

= Hash-based Equi-joins and
M-way joins

= Experimental Results
= Conclusions

10 | © 2006 IBM Corporation

IBM T. J. Watson Research

Join Window Organization

o = =

input batch, /=2 Y \
unit block, h=4 join window
S2 é tuple
I W

basic window, d=6

= Basic Window: Single unit of memory transfer for an SPE

= Used to hide memory transfer delays (double buffering)

N J
Y

Issue DMA Process basic window

Bring in basic window

11 | © 2006 IBM Corporation

Iy
-1
I

IBM T. J. Watson Research

Dynamic window partitioning

= Since join windows are sliding we need to maintain a dynamic
partitioning over the join windows

= Assign consecutive basic windows to each SPE

Time t3 Variable number of fixed size basic windows expired
A
emPy 4 4 : 4 |

SPE 1 SPE 2 SPE 2 SPE n

= Use pointer shifting to update the partitioning in O(# of SPES)
time, independent of the # of basic windows

= Needed only when there is a basic window to insert (this first
window is full) or remove (the last basic window is expired)

© 2006 IBM Corporation

IBM T. J. Watson Research

Iy
-1

Batch tuple processing

= Batching is effective Dynamic tuple batching
— Transfer overheads are incurred once
per batch S, —> I progess

Average tuple delay components

low-rate

— Time waited on the batch
— Time to process a batch / batch size

Batch size trade-off

— Low stream rates -> small batches s, — H" :%ess

— High stream rates -> large batches

high-rate

Our solution
— Rate-aware, dynamic tuple batching

13 | © 2006 IBM Corporation

IBM T. J. Watson Research

Result handling

= Result handling includes

— Conversion of matching tuples into output tuples

+ SPEs only know about join attributes
» PPE post-processes the results

= Do result and join processing in parallel

« SPEs accumulate results in their buffers (2 per SPE)
+ SPEs notify the PPE when their buffer is full
— continue join processing with an alternate buffer

« Upon an SPE natification, PPE dispatches the job of fetching
and processing result entries to a result thread

— main PPE thread continues to service other SPEs

14 | © 2006 IBM Corporation

IBM T. J. Watson Research

Outline
= Motivation = SPE-side operation
= Cell overview — Join processing

— Taking advantage of SIMD
— Optimizing the join code

Stream joins overview

Design choices

— Join program structure
— Column oriented memory = Hash-based Equi-joins and

~ Unit blocks and SIMD M-way joins
PPE-side operation

— Dynamic window partitioning
— Batch tuple processing

— Asynchronous result handling

= Optimal basic window size

= Experimental Results

= Conclusions

15 | © 2006 IBM Corporation

IBM T. J. Watson Research

Join processing and asynchronous DMAs

= Memory transfer delays with double buffering
— o, time to issue DMA commands
— f,(X): time to bring in a basic window of size X
+ For simplicity assume linear: g * X
— f,(X): time to process a basic window of size X
s f(X)=a,+4,*X (linear function)
— Total delay: (¢, *L+ g, *H)+L* (e, + 5, * H)
« L: # of basic windows, H: basic window size
= The optimal value of d (basic window size)

doc\/am+a" ‘AW

m

DMAs

Join processing

Issue DM Process baS|c window

Bring in basic window

16 |

Larger rates & join window
lengths require larger basic
windows: max DMA size 16KB

© 2006 IBM Corporation

IBM T. J. Watson Research

Taking advantage of SIMD

17

= Single-instruction, multiple-data

— Can operate on 128-bits at once, either in the form of 16 bytes,
8 shorts, 4 ints/floats, or 2 doubles/longs

= For a band join, we can use 5 SIMD instructions to evaluate
one join condition for 4 tuples

— Compared to 16 instructions required without SIMD

O tuple
|n|t|a"y a= a1, Vb = <b1’ b2’ b3’ b4> /Operate unit block at a time
SIMD replicate a, Va — <a1’ a1’ a1’ a1> Unit block is an integral numbers of vectors
SIMD subtract v, from v, Vg =<, a4-b;, >
SIMD compare v4 with X| v, =<, (a4—b) 2 X, >
SIMD compare X, withvy v, =<, X, 2 (a;=by), > Uit bog S Window
SIMD and v,and v, vV, =< X2 (a—by) 2 X,,->

| © 2006 IBM Corporation

IBM T. J. Watson Research

Optimizing the join code

= CPI: Cycles per instruction

— SPEs have dual pipelines (instruction-level parallelism)

* Independent instructions in a sequential code can be executed in
parallel using the two pipelines

« Each pipeline executes only certain types of instructions
— Best CPI that can be reached: 0.5

= Do loop unrolling to operate on a larger number of vectors
within the body of the innermost NLJ loop

— Help the compiler to execute loads/stores in parallel with some
of the comparison operators in the join core

— No benefit from loop unrolling after all registers are used up
(128x 128-bit registers on the SPE side)

18 | © 2006 IBM Corporation

IBM T. J. Watson Research

Outline
= Motivation = SPE-side operation
= Cell overview — Optimal basic window size

— Taking advantage of SIMD
— Optimizing the join code

Stream joins overview

Design choices

— Join program structure

— Column oriented memory
— Unit blocks and SIMD

PPE-side operation

— Dynamic window partitioning
— Batch tuple processing

— Asynchronous result handling

» Hash-based Equi-joins and
M-way joins

= Experimental Results
= Conclusions

19 | © 2006 IBM Corporation

IBM T. J. Watson Research

Hash-based Equi-joins and M-way Joins

20

= Hash-based equi-joins
— Use hash buckets

- Each bucked is organized like
our previous join windows

* Maintain partitioning for each
bucket

— Dynamic window partitioning
« Same time complexity
* Increased space complexity

= M-way joins
— Replicate the tuple

— Partition the first join window in
the current join order

— Replicate the remaining
windows of the join order

now

past

AV

replicate

AN

Hash buckets of a join window

spe1

spe2

spe3

sped

spe1

spe2

spe3

spe4

partition

S, D<IW, D<IW, D<IW,

© 2006 IBM Corporation

IBM T. J. Watson Research

Outline
= Motivation = SPE-side operation
= Cell overview — Optimal basic window size

— Taking advantage of SIMD
— Optimizing the join code

= Hash-based Equi-joins and
M-way joins

Stream joins overview

Design choices

— Join program structure

— Column oriented memory
— Unit blocks and SIMD

PPE-side operation

— Dynamic window partitioning
— Batch tuple processing

— Asynchronous result handling

= Experimental Results
= Conclusions

21 | © 2006 IBM Corporation

IBM T. J. Watson Research

Iy
-1

Experimental Setup

= Two platforms are used

— IBM Full-scale Cell System Simulator

+ Used to measure join performance on a single SPE
* Band join on a single int attribute
* Measures: cycles/byte, cycles/instruction

— 3.2 GHz IBM Cell Processor

+ Used to measure overall performance

* Band join on two attributes: one float, one int

« Measures: output rate, drop rate, avg. tuple processing time
= Compared approaches:

* Non-SIMD, SIMD-NoOpt, SIMD using 1-8 SPEs

+ Conventional windowed stream join on Intel Xeon 3.4Ghz (no SSE
optimizations applied)

22 | © 2006 IBM Corporation

IBM T. J. Watson Research

Experimental Results |

Effective CPI: noops are excluded
Smaller CPl is better

T T T 75 3.5
¢|| == Non-SIMD 165

10" | —&—sIMD-Noopt|. - — . _ . _ _._ _ _ 155 A
—4— SIMD 145 =
—— 2 c

. ‘ DMA 158§ 55l
IS 3 S
210 ¢ {252 B

e g w 2r
o o s
» 5 @

8 1158 2157
e ., 3 >
S 10°} s 2

10ae g 1f
o

0.5

1001 ‘ - I2 I I3 I ‘I”H‘d ‘ 0
10 10° 10 10 16 32 64 128 256 512 1k 2k 4k 8k 16k
basic window size (bytes) basic window size (bytes)
Non-SIMD: 10 times # of cycles of SIMD Non-SIMD: 54% higher effective CPI
SIMD-Noopt: 1.8 times # of cycles of SIMD SIMD-Noopt: 45% higher effective CPI

Far from optimal value of 0.5
Due to branchy nature of join

23 | © 2006 IBM Corporation

IBM T. J. Watson Research

Experimental Results Il

15 minutes join windows, 8KB basic windows, no batching

. . 1500 ; : . . , .
| | =»— Non-SIMD —#— PPE + 1 SPE
70007 _g— SIMD-Noopt 70001 | & PPE + 2 SPEs 1

T 6000} —+—SIMD ya 5 B s0o0 | —+— PPE + 4 SPEs B I —
s 9 2 ~ PPE + 8 SPEs : ’ 9
S 5000 110005 @ £o00| L—9— Xeon (SSE) - 3.4GHz | °
= A o =
£ 4000 2 £ i | 2
e = = 4000 1000 £
1] = -

5 %0001 ls00 & = 3000} { £
5_ 1500 g— E | g_
3 2000} © S 20007 1500 5

1000+ o]
0 0 AR e -—
1400 e A i . ’ 0
200 400 600 800 1000 1200 1400
input rate (tuples/sec)
Drops start
SIMD: Drop starts at 500 tuples/sec

Linear scalability with number of SPEs

0, 1 -
Outputrate 250% higher than Non-SIMD 8.6 x higher output rate compared to Xeon 3.4Ghz

33% higher than Non-SIMD
SIMD-Noopt: Drop starts at 750 tuples/sec
Non-SIMD: Drop starts at 1000 tuples/sec

At 1000tuples/sec, the join window processing rate is 13.4 GB/sec

24 | © 2006 IBM Corporation

IBM T. J. Watson Research

Experimental Results Il

—— window: 1 minutes - —— *
200 === window: 5 minutes || 200 1

=—f— window: 10 minutes ; .

=== window: 15 minutes T + ol —r
150 . 150 i

o
+ —x

100} . 100 (= |

== Window: 1 minute
—E&— window: 5 minutes

tuple processing delay (microseconds)

tuple processing time (microssecs)

S0 | 50 =—f— window: 10 minutes|]
=== window: 15 minutes
0 1 Il Il 1 Il | 0 1 1 1 1 1
0 20 40 60 80 100 120 140 512 1024 2048 4096 8192

maximum batch size (bytes) basic window size (bytes)

Batching can cut down processing time by as
much as 50%
Increasing batch size bring diminishing returns

Using a suboptimal basic window size can cause
up to 10% increase in tuple processing time

25 | © 2006 IBM Corporation

IBM T. J. Watson Research

Conclusions

Developed concepts and techniques to execute stream joins on
heterogeneous multicore processor architectures in a scalable manner

Concepts such as

— column-oriented memory organization, and

— dynamic window partitioning

enable us to better exploit multicore parallelism

Techniques such as

— delay-optimized double buffering,

— rate-aware dynamic batch processing,

— SIMD-optimized join code

together lead to high throughput and low latency processing

Experimental results show
— up to 30 times better performance compared to an Intel Xeon 3.4Ghz processor
— perfect scalability (linear) with the number of SPEs used

— zero drop rate up to combined input rate of 2000 tuples/sec with 15 minutes join
windows, resulting in a join window processing rate of 13.4 GB/sec

26 | © 2006 IBM Corporation

IBM T. J. Watson Research

Questions

= Thank Youl!

27 | © 2006 IBM Corporation

