
IBM T. J. Watson Research

© 2006 IBM Corporation – All Rights Reserved

Accelerating Stream Joins
using the Cell Processor

BuBuğğra Gedikra Gedik
Philip S. YuPhilip S. Yu
Rajesh Rajesh BordawekarBordawekar

IBM T. J. Watson Research

© 2006 IBM Corporation 2

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 3

Motivation

Key requirements of DSMSs
– Low-latency and high-throughput processing

Multi-core processor architectures
– Provide high aggregate processing capacity
– Perfect match for executing costly DSMS operators

STI Cell processor
– Heterogeneous multi-core architectures, plenty of parallelism

Windowed stream joins
– Fundamental and costly operations in DSMSs

• Need low latency and high-throughput processing
– Representative of a broader class of stream applications

• Search / correlate dynamic views on streams

IBM T. J. Watson Research

© 2006 IBM Corporation 4

Heterogeneous multi-core architecture
– 1 Power Processing Element (PPE) for control tasks
– 8 Synergistic Processing Elements (SPE) for data intensive processing
– High-bandwidth Element Interconnect Bus (EIB)

Each SPE has
– Synergistic Processor Unit
– 256 KB Local Store
– Memory Flow Controller

Lots of parallelism!
– Asynchronous DMAs
– 128-bit SIMD per SPE
– Two-way ILP per SPE

Cell Processor Overview

No branch prediction hardware on the SPUs

IBM T. J. Watson Research

© 2006 IBM Corporation 5

Stream Join Overview

User-defined windows over
unbounded streams
– Time-based windows
– Count-based windows

Tuple insertion/expiration
Variable stream rates
S1 W2 and S2 W1

Different join conditions
– Ex: Band joins

• Xl ≤ S1.A – S2.B ≤ Xu

NLJ processing,
extensions to hash-joins

λ1

λ3

x, a

z, a

u, a

v, a

x, u, a
x, v, a
x, z, a

W2

S1 S2

current
time

current
time – w2

current
time – w1

W1

expired

match

λ2

IBM T. J. Watson Research

© 2006 IBM Corporation 6

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 7

SPE8SPE2

……

Parallelizing the join

Store join windows in main
memory, not in local stores
– Arbitrary join window sizes
– Transparent to # of SPEs

Replication vs. Distribution
– Replicate tuples, distribute window
– Distribute tuples, replicate window

Disadvantages of Option 1
– ~8 x memory bw. consumption

• At maximum throughput, we
consume 3.35 GB/sec

• 3.35 * 8 = 26.8 GB/sec vs. 25.6
GB/sec available

– Average tuple delay

SPE1 …

Option 2: replicate tuple, distribute window

SPE1 SPE8…SPE2

Option 1: replicate window, distribute tuples

…

…

S1

S2

S1

S2

W1

W1

IBM T. J. Watson Research

© 2006 IBM Corporation 8

Column-oriented memory

Memory organization for storing tuples in the join windows
– row-oriented (tuple-oriented) / array of structures

– column-oriented (attribute-oriented) / structure of arrays

With column-oriented
– Easily transfer only the

join attributes

– No need for shuffling to
take advantage of SIMD

– No need for
scatter/gather transfers
(DMA-list commands)

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

RO

B1

B2

B3

.

.

.

Memory
grows

SPE side

IBM T. J. Watson Research

© 2006 IBM Corporation 9

A3

B3

C3

D3

A2A1

B2B1

C2C1

D2D1

Column-oriented memory

Memory organization for storing tuples in the join windows
– row-oriented (tuple-oriented) / array of structures

– column-oriented (attribute-oriented) / structure of arrays

With column-oriented
– Easily transfer only the

join attributes

– No need for shuffling to
take advantage of SIMD

– No need for
scatter/gather transfers
(DMA-list commands)

CO

B1

B2

B3

.

.

.

Memory
grows

.

.

.

.

.

.

.

.

.

.

.

.

address a a+x a+2x a+3x

SPE
side

IBM T. J. Watson Research

© 2006 IBM Corporation 10

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 11

Join Window Organization

Basic Window: Single unit of memory transfer for an SPE
Used to hide memory transfer delays (double buffering)

1

1

2

2 3

3 4

4

DMAs

Join processing

Issue DMA
Bring in basic window

Process basic window

IBM T. J. Watson Research

© 2006 IBM Corporation 12

Dynamic window partitioning

Since join windows are sliding we need to maintain a dynamic
partitioning over the join windows

Assign consecutive basic windows to each SPE

Use pointer shifting to update the partitioning in O(# of SPEs)
time, independent of the # of basic windows

Needed only when there is a basic window to insert (this first
window is full) or remove (the last basic window is expired)

SPE 3

…

expired

empty

SPE 1 SPE 2 SPE n

Time t1Time t2

SPE 2

Time t3Time t4 Variable number of fixed size basic windows

IBM T. J. Watson Research

© 2006 IBM Corporation 13

Batch tuple processing

Batching is effective
– Transfer overheads are incurred once

per batch

Average tuple delay components
– Time waited on the batch
– Time to process a batch / batch size

Batch size trade-off
– Low stream rates -> small batches
– High stream rates -> large batches

Our solution
– Rate-aware, dynamic tuple batching

processS1

Dynamic tuple batching

high-rate

low-rate

S1 process

IBM T. J. Watson Research

© 2006 IBM Corporation 14

Result handling

Result handling includes
– Conversion of matching tuples into output tuples

• SPEs only know about join attributes
• PPE post-processes the results

Do result and join processing in parallel
• SPEs accumulate results in their buffers (2 per SPE)
• SPEs notify the PPE when their buffer is full

– continue join processing with an alternate buffer
• Upon an SPE notification, PPE dispatches the job of fetching

and processing result entries to a result thread
– main PPE thread continues to service other SPEs

IBM T. J. Watson Research

© 2006 IBM Corporation 15

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Join processing
– Taking advantage of SIMD
– Optimizing the join code
Optimal basic window size
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 16

Memory transfer delays with double buffering
– αm: time to issue DMA commands
– fm(X): time to bring in a basic window of size X

• For simplicity assume linear: βm * X
– fn(X): time to process a basic window of size X

• fn(X) = αn + βn * X (linear function)
– Total delay: (αm * L + βm * H) + L * (αn + βn * H)

• L: # of basic windows, H: basic window size
The optimal value of d (basic window size)

Join processing and asynchronous DMAs

1

1

2

2 3

3 4

4

DMAs

Join processing

Issue DMA
Bring in basic window

Process basic window

Larger rates & join window
lengths require larger basic
windows: max DMA size 16KB

wd
m

nm ⋅⋅
+

∝ λ
β

αα

IBM T. J. Watson Research

© 2006 IBM Corporation 17

Taking advantage of SIMD

Single-instruction, multiple-data
– Can operate on 128-bits at once, either in the form of 16 bytes,

8 shorts, 4 ints/floats, or 2 doubles/longs
For a band join, we can use 5 SIMD instructions to evaluate
one join condition for 4 tuples
– Compared to 16 instructions required without SIMD

basic window
unit block

tuple
Operate unit block at a time
Unit block is an integral numbers of vectors

initially a = a1, vb = <b1, b2, b3, b4>
SIMD replicate a, va = <a1, a1, a1, a1>
SIMD subtract va from vb vd = <···, a1−bi, ···>
SIMD compare vd with Xl vl = <···, (a1−bi) ≥ Xl, ···>
SIMD compare Xu with vd vu = <···, Xu ≥ (a1−bi), ···>
SIMD and vl and vu vr = <···, Xu≥ (a1−bi) ≥ Xl,···>

IBM T. J. Watson Research

© 2006 IBM Corporation 18

Optimizing the join code

CPI: Cycles per instruction
– SPEs have dual pipelines (instruction-level parallelism)

• Independent instructions in a sequential code can be executed in
parallel using the two pipelines

• Each pipeline executes only certain types of instructions
– Best CPI that can be reached: 0.5

Do loop unrolling to operate on a larger number of vectors
within the body of the innermost NLJ loop
– Help the compiler to execute loads/stores in parallel with some

of the comparison operators in the join core

– No benefit from loop unrolling after all registers are used up
(128x 128-bit registers on the SPE side)

IBM T. J. Watson Research

© 2006 IBM Corporation 19

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 20

Hash-based equi-joins
– Use hash buckets

• Each bucked is organized like
our previous join windows

• Maintain partitioning for each
bucket

– Dynamic window partitioning
• Same time complexity
• Increased space complexity

M-way joins
– Replicate the tuple
– Partition the first join window in

the current join order
– Replicate the remaining

windows of the join order

Hash-based Equi-joins and M-way Joins

. . .

. . .

spe1

spe2

spe3

spe4

spe1

spe2

spe3

spe4

Hash buckets of a join window
now

past

W1

W2

W3

W4

replicate partition

S1 W2 W3 W4

IBM T. J. Watson Research

© 2006 IBM Corporation 21

Outline

Motivation
Cell overview
Stream joins overview
Design choices
– Join program structure
– Column oriented memory
– Unit blocks and SIMD
PPE-side operation
– Dynamic window partitioning
– Batch tuple processing
– Asynchronous result handling

SPE-side operation
– Optimal basic window size
– Taking advantage of SIMD
– Optimizing the join code
Hash-based Equi-joins and
M-way joins
Experimental Results
Conclusions

IBM T. J. Watson Research

© 2006 IBM Corporation 22

Experimental Setup

Two platforms are used
– IBM Full-scale Cell System Simulator

• Used to measure join performance on a single SPE
• Band join on a single int attribute
• Measures: cycles/byte, cycles/instruction

– 3.2 GHz IBM Cell Processor
• Used to measure overall performance
• Band join on two attributes: one float, one int
• Measures: output rate, drop rate, avg. tuple processing time

Compared approaches:
• Non-SIMD, SIMD-NoOpt, SIMD using 1-8 SPEs
• Conventional windowed stream join on Intel Xeon 3.4Ghz (no SSE

optimizations applied)

IBM T. J. Watson Research

© 2006 IBM Corporation 23

Experimental Results I

Non-SIMD: 10 times # of cycles of SIMD
SIMD-Noopt: 1.8 times # of cycles of SIMD

Effective CPI: noops are excluded
Smaller CPI is better

Non-SIMD: 54% higher effective CPI
SIMD-Noopt: 45% higher effective CPI

Far from optimal value of 0.5
Due to branchy nature of join

IBM T. J. Watson Research

© 2006 IBM Corporation 24

Experimental Results II

SIMD: Drop starts at 500 tuples/sec
Output rate 250% higher than Non-SIMD

33% higher than Non-SIMD
SIMD-Noopt: Drop starts at 750 tuples/sec
Non-SIMD: Drop starts at 1000 tuples/sec

Drops start

15 minutes join windows, 8KB basic windows, no batching

At 1000tuples/sec, the join window processing rate is 13.4 GB/sec

Linear scalability with number of SPEs
8.6 x higher output rate compared to Xeon 3.4Ghz

IBM T. J. Watson Research

© 2006 IBM Corporation 25

Experimental Results III

Batching can cut down processing time by as
much as 50%
Increasing batch size bring diminishing returns

Using a suboptimal basic window size can cause
up to 10% increase in tuple processing time

IBM T. J. Watson Research

© 2006 IBM Corporation 26

Conclusions

Developed concepts and techniques to execute stream joins on
heterogeneous multicore processor architectures in a scalable manner
Concepts such as
– column-oriented memory organization, and
– dynamic window partitioning
enable us to better exploit multicore parallelism
Techniques such as
– delay-optimized double buffering,
– rate-aware dynamic batch processing,
– SIMD-optimized join code
together lead to high throughput and low latency processing
Experimental results show
– up to 30 times better performance compared to an Intel Xeon 3.4Ghz processor
– perfect scalability (linear) with the number of SPEs used
– zero drop rate up to combined input rate of 2000 tuples/sec with 15 minutes join

windows, resulting in a join window processing rate of 13.4 GB/sec

IBM T. J. Watson Research

© 2006 IBM Corporation 27

Questions

Thank You!

