Efficient Skyline Computation over Low-Cardinality Domains

Michael Morse¹ Jignesh M. Patel² H.V. Jagadish² ¹MITRE Corporation ²University of Michigan

Overview

Skyline Example and Definition.
Discuss Low-Cardinality Attributes.
Present the Lattice Skyline (LS) Algorithm.
Discuss Experimental Results.
Conclusions.

- Hotels that are more expensive than others and no higher rated are uninteresting.
 - e.g. The H. Astoria is more expensive than the Boltzmann,with the same rating.
- Such data points are said to be 'dominated.'

Number of Stars

3

4

2

Skyline Definition

- Skylines are an elegant summarization method for multidimensional datasets.
- Def: The skyline is the set of all points *p* in a dataset that are not dominated by some other point in that dataset.
- Equivalent to the Pareto Set or Maximal Vectors.

Overview

Skyline Example and Definition.
Discuss Low-Cardinality Attributes.
Present the Lattice Skyline (LS) Algorithm.
Discuss Experimental Results.
Conclusions.

Low-Cardinality Domain: the domain of possible values for attribute a_i is a small number.

- Low-Cardinality Domain: the domain of possible values for attribute a_i is a small number.
- We will consider datasets with d low-cardinality domains and optionally 1 unrestricted domain.

- Low-Cardinality Domain: the domain of possible values for attribute a_i is a small number.
- We will consider datasets with d low-cardinality domains and optionally 1 unrestricted domain.
- Example: We are interested in finding a highly rated hotel according to two different rating measures that is inexpensive.

- Low-Cardinality Domain: the domain of possible values for attribute a_i is a small number.
- We will consider datasets with d low-cardinality domains and optionally 1 unrestricted domain.
- Example: We are interested in finding a highly rated hotel according to two different rating measures that is inexpensive.

Hotel	Stars	Survey	Price
Slumber Well	*	Medium	120
Soporific Inn	* *	Low	65
Drowsy Hotel	* *	High	110
Celestial Sleep	* * *	Medium	101
Nap Motel	* *	Low	101

Related Algorithms

Methods requiring indexing/preprocessing.

- Nearest Neighbor [Kossman et al., VLDB 2002].
- BBS [Papadias et al., SIGMOD 2003].
- Bitmap, Index [Tan et al., VLDB 2001].

Methods that require no preprocessing.

- BNL [Borzsonyi et al., ICDE 2001].
- SFS [Chomicki et al., ICDE 2003].
- LESS [Godfrey et al., VLDB 2005].

Many other related problems cited in the paper.

- Probabilistic Skylines [Pei et al., VLDB 2007].
- ZBtree [Lee et al., VLDB 2007].
- Reverse Skylines [Dellis et al., VLDB 2007].

Related Algorithms

Best Alternative: LESS

[Godfrey et al. "Maximal Vector Computation in Large Datasets" VLDB 05]

- 1. Preprocessing.
- 2. Sorts data.
- 3. Pairwise comparison of remaining tuples.
- Cost: between O(n) and $O(n^2)$.
- One downside, can be sensitive to the dataset distribution and the tuple ordering.

Our Contribution

- We develop a new algorithm called the Lattice Skyline (LS) algorithm for skyline evaluation for datasets with low-cardinality domains.
- What we show in the experiments is that while LESS is more general, it is less efficient than LS.

Overview

Skyline Example and Definition.
Discuss Low-Cardinality Attributes.
Present the Lattice Skyline (LS) Algorithm.
Discuss Experimental Results.
Conclusions.

The skyline operator imposes a partial order on a dataset through the 'dominance' relationship '> '.

The skyline operator imposes a partial order on a dataset through the 'dominance' relationship '> '.
Hotels in Vienna

Boltzmann > H. Astoria Boltzmann ≯ Mariahilf Mariahilf ≯ Boltzmann

- The skyline operator imposes a partial order on a dataset through the 'dominance' relationship '> '.
- This dataset and the skyline operator are not a lattice since there isn't an upper or lower bound.

- The skyline operator imposes a partial order on a dataset through the 'dominance' relationship '> '.
- This dataset and the skyline operator are not a lattice since there isn't an upper or lower bound.
- Dataspaces with attributes drawn from lowcardinality domains and the skyline operator are a lattice.

Lattice Structure

 If we consider the low-cardinality attribute space (Stars, Survey), we obtain a lattice:

Hotel	Position
Slumber Well	(* ,Med)
Soporific Inn	(* *,Low)
Drowsy Hotel	(* *,High)
Celestial Sleep	$(\star \star \star, Med)$
Nap Motel	(* *,Low)

Determining Dominance

Elements that are reachable from others in the lattice-graph structure are dominated.

Hotel	Position
Slumber Well	(* ,Med)
Soporific Inn	(* *,Low)
Drowsy Hotel	(* *,High)
Celestial Sleep	(* * *,Med)
Nap Motel	$(\star \star, Low)$

Determining Dominance

- Elements that are reachable from others in the lattice-graph structure are dominated.
- Ex: (**,Low) –Soporific Inn- is reachable from (***,Med) –Celestial Sleep. (***, High)

Hotel	Position
Slumber Well	(* ,Med)
Soporific Inn	(* *,Low)
Drowsy Hotel	(* *,High)
Celestial Sleep	(* * *,Med)
Nap Motel	(* *,Low)

- For each lattice entry, maintain 2 pieces of information:
 - 1. Whether an element is present or not present in the data.
 - 2. The best value of the unrestricted attribute.

Hotel	Position
Slumber Well	(*,Med)
Soporific Inn	(* *,Low)
Drowsy Hotel	(* *,High)
Celestial Sleep	$(\star \star \star, Med)$
Nap Motel	(* *,Low)

- For each lattice entry, maintain 2 pieces of information:
 - 1. Whether an element is present or not present in the data.
 - 2. The best value of the unrestricted attribute.

Hotel	Position
Slumber Well	(* ,Med)
Soporific Inn	(* *,Low)
Drowsy Hotel	(* *,High)
Celestial Sleep	$(\star \star \star, Med)$
Nap Motel	(* *,Low)

Iterate through the dataset.

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(* *,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Iterate through the dataset.

Hotel	Position	Price
Slumber Well	(*,Med)	120
Soporific Inn	(* *,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

- Iterate through the dataset.
- Modify the lattice position corresponding to the data point.

	Hotel	Position	Price
•	Slumber Well	(*,Med)	120
	Soporific Inn	(* *,Low)	65
	Drowsy Hotel	(* *,High)	110
	Celestial Sleep	$(\star \star \star, Med)$	101
	Nap Motel	(* *,Low)	101

- Iterate through the dataset.
- Modify the lattice position corresponding to the data point.

	Hotel	Position	Price
•	Slumber Well	(*,Med)	120
	Soporific Inn	(**,Low)	65
	Drowsy Hotel	(* *,High)	110
	Celestial Sleep	$(\star \star \star, Med)$	101
	Nap Motel	(* *,Low)	101

- Iterate through the dataset.
- Modify the lattice position corresponding to the data point.

	Hotel	Position	Price
	Slumber Well	(* ,Med)	120
•	Soporific Inn	(* *,Low)	65
	Drowsy Hotel	(* *,High)	110
	Celestial Sleep	$(\star \star \star, Med)$	101
	Nap Motel	(* *,Low)	101

- Iterate through the dataset.
- Modify the lattice position corresponding to the data point.

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(* *,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

- Iterate through the dataset.
- Modify the lattice position corresponding to the data point.

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(* *,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

- Compare each Lattice Element with Immediate Dominators in previous level.
- At this point, we know the skyline values present in the dataset.
 [np.-]

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(**,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Iterate through the data.

Output hotels matching the skyline values.

Hotel	Position	Price
Slumber Well	(* ,Med)	120
Soporific Inn	(* *,Low)	65
Drowsy Hotel	(* *,High)	110
Celestial Sleep	$(\star \star \star, Med)$	101
Nap Motel	(* *,Low)	101

Cost Analysis

LS has 2 stages:

Complexity Analysis

LS has 2 stages:

- Iterating through the data and marking elements of the lattice [O(dn) cost].
 - d is the number of low cardinality dimensions

 \blacksquare n is the number of tuples.

Complexity Analysis

LS has 2 stages:

- Iterating through the data and marking elements of the lattice [O(dn) cost].
 - d is the number of low cardinality dimensions
 - n is the number of tuples.
- Finding skyline values in the lattice by examining the immediate dominators of each lattice position [O(dV) cost].

■V is the domain cardinality product.

This produces O(dn+dV) complexity.

Additional advantages

- The operation of LS does not vary with the input.
 - 1. Data ordering.
 - 2. Data distribution.
 - Additional advantage: Estimating running time is easy for an optimizer.

Overview

Skyline Example and Definition.
Discuss Low-Cardinality Attributes.
Present the Lattice Skyline (LS) Algorithm.
Discuss Experimental Results.
Conclusions.

Experiments

- We tested LS against the best alternative technique LESS¹.
- We implemented LS and LESS with a 4KB page size and 500 buffer pool pages.
- 1.7 GHz Intel Xeon processor running Linux.
- Each tuple is a constant 100 bytes (includes some padding which models selection attributes such as a text attribute).
- We have run experiments on both synthetic and real datasets. Several of these results I will highlight here.

¹[Godfrey et al. "Maximal Vector Computation in Large Datasets" VLDB 05]

Synthetic Datasets

- Three synthetic datasets are commonly used in the evaluation of skyline techniques:
 - Correlated
 - Independent
 - Anti-correlated
- The anti-correlated dataset usually requires the most processing of the three.
- We vary the
 - 1. number of data tuples.
 - 2. Number of dimensions.
 - 3. Size of the low-cardinality domains.

Independent

Anti-Correlated

Real Dataset

- Zillow Housing Dataset: zillow.com lists information about real estate.
- We obtained a regional dataset with more than 160K entries with the below attributes.
- Low cardinality attributes include # of bedrooms, bathrooms, floors, and total rooms, and the garage capacity, with the estimated price as the unrestricted attribute.

Results: Varying Domain Card.

Results: Varying Dimensionality

Results: Varying Tuple Card.

Correlated

Independent

Anti-Correlated

Note: Graph Scales are not uniform.

Real Dataset

- Zillow Housing Dataset: zillow.com lists information about real estate.
- We obtained a regional dataset with more than 160K entries with the below attributes.
- Low cardinality attributes include # of bedrooms, bathrooms, floors, and total rooms, and the garage capacity, with the estimated price as the unrestricted attribute.
- Each tuple is a constant 100 bytes (usually includes some padding which models selection attributes such as a text attribute).

Results for Zillow Housing Dataset

Overview

Skyline Example and Definition.
Discuss Low-Cardinality Attributes.
Present the Lattice Skyline (LS) Algorithm.
Discuss Experimental Results.
Conclusions.

Conclusions

- We have proposed the Lattice Skyline Algorithm for skyline evaluation in the presence of datasets with low-cardinality attribute domains.
- The performance of the algorithm has been shown to be independent of dataset distribution and tuple ordering, both highly desirable properties for skyline evaluation.
- LS was shown to perform better than its nearest competitor, the LESS algorithm, in a number of synthetic and real dataset experiments.

Thank You!

Questions?

Back Up Slides

Real Dataset

- Zillow Housing Dataset: zillow.com lists information about real estate.
- We obtained a regional dataset with more than 160K entries with the below attributes.

Description	Values	Domain Cardinality
# of Bedrooms	Integer	7
# of Bathrooms	1/2 Increments	4
# of Floors	Integer	3
# of Rooms	Integer	10
Garage Capacity	Integer no. of cars	7
Asphalt Roof	Yes or No	2
Colonial Arch	Yes or No	2
Estimated Price	Dollar Value	Nearly 80K values