
T. J. Watson Research Center

© 2007 IBM Corporation

Unifying Data and Domain Knowledge Using
Virtual Views

Lipyeow Lim, Haixun Wang & Min Wang

T. J. Watson Research Center

© 2007 IBM Corporation

Background

� DBMS originally designed for transaction data

� Many extensions for richer queries attempted

– OO DBMS and ORDBMS

– OLAP (1990s)

– Data Cube (ICDE 1996)

– Data Mining (CACM 1996)

� An unending quest

– Database or Knowledge-base?

– New applications: the Semantic web, etc.

� Move from simple transactional or analytical processing to
semantics understanding and knowledge inferencing

T. J. Watson Research Center

© 2007 IBM Corporation

A motivating example

� RDBMS allows us to query wines through attributes ID, Type,
Origin, Maker, Price.

� Expressive power: relational complete (quite limited).

� Human intelligence operates in a quite different way.

15ElyseEdnaValleyZinfandel3

20CorbansNewZealandRiesling2

30ClosDeVougeotCotesDOrBurgundy1

PriceMakerOriginTypeID

A base table : Wine

T. J. Watson Research Center

© 2007 IBM Corporation

Query 1:

� Which wine originates from the
US?

– Answer: Zinfandel

– Zinfandel’s Origin EdnaValley is

located in California.

– Domain knowledge used:

EdnaValley is in California, and

California is in the US.

15ElyseEdnaValleyZinfandel3

20CorbansNewZealandRiesling2

30ClosDeVougeotCotesDOrBurgundy1

PriceMakerOriginTypeID

SELECT ID

FROM Wine

WHERE Origin = ‘US’;

� We could issue:

Nice! Except nothing will be
returned

T. J. Watson Research Center

© 2007 IBM Corporation

Query 2:

� Which wine is a red wine?

– Answer: Zinfandel & Burgundy

– Domain knowledge used:

• Zinfandel is red;

• Burgundy can be either red or

white, but Burgundy from

CotesDor is always red

15ElyseEdnaValleyZinfandel3

20CorbansNewZealandRiesling2

30ClosDeVougeotCotesDOrBurgundy1

PriceMakerOriginTypeID

SELECT ID

FROM Wine

WHERE hasColor = ‘red’;

� We could issue:

But “hasColor” is not a

column in the table

T. J. Watson Research Center

© 2007 IBM Corporation

Domain Knowledge from
OWL Ontology

� Eg. Wine Ontology from the web
ontology language OWL (W3C)

� Extract class hierarchies,
(transitive) properties,
implications, etc from OWL

French

World

US

CaliforniaBourgogne

CotesDor

Bordeaux

EdnaValley

…

Transitve Property locatedIn

OWL:Thing

Wine

Burgundy Riesling

DryRiesling SweetRiesling

…

… …

WineSugar

WineBody

WineColor

Winery

WineGrape

Region
locatedIn

hasSugar

hasBody

hasColor

hasMaker

madeFromGrape

Class

Hierarchy

Implications
(Type=CotesDor)↔(type=RedBurgundy) & (origin=CotesDorRegion)

(Type=Zinfandel) → (hasColor=Red)

(Type=Zinfandel) → (hasSugar=dry)

(Type=RedWine) → (hasColor=Red)

T. J. Watson Research Center

© 2007 IBM Corporation

Challenges

� How to incorporate domain knowledge
(ontology) into a RDBMS?

� How to integrate relational data with
domain knowledge ?

� How to query relational data with
meaning ?

� How to process such queries ?
Relational data Ontology

DBMS

id type originpriceDisclaimer
• Not re-inventing

• Expert Systems
• Datalog Systems
• OWL/RDF & SparQL Systems

Put a little semantics into relational SQL systems

T. J. Watson Research Center

© 2007 IBM Corporation

Overview of our solution

� Provide user with a unified view of
the data and the domain knowledge.

� Through the virtual view, we offer a
rich set of functionalities for
knowledge inferencing out of the
Spartan simplicity of SQL.

� Leverage hybrid relational-XML
storage for managing domain
knowledge

� Rewrite query on virtual view

� Leverage hybrid relational-XML
query engine to process re-written
query.

Base table Ontology

DBMS

Virtual view query processor

Hybrid Relational-XML Query Engine

queryresult

Virtual View

T. J. Watson Research Center

© 2007 IBM Corporation

Virtual View Unifies Data & Ontology

� Users create virtual views over the relational data
and the ontology

� Virtual columns/attributes not in original data

� Virtual columns not materialized -- inferred from
the ontology

15ElyseEdnaValleyZinfandel3

20CorbansNewZealandRiesling2

30ClosDeVougeotCotesDOrBurgundy1

pricemakerorigintypeid

Relational data Ontology

DBMS

15

20

30

price

{California, US}

{}

{Bourgogne, France}

locatedIn(origin)

red

white

red

hasColor

ElyseEdnaValleyZinfandel3

CorbansNewZealandRiesling2

ClosDeVougeotCotesDOrBurgundy1

makerorigintypeid

T. J. Watson Research Center

© 2007 IBM Corporation

The virtual view

15

20

30

Price

ElyseEdnaValleyZinfandel3

CorbansNewZealandRiesling2

ClosDeVougeotCotesDOrBurgundy1

MakerOriginTypeID

� Wine Burgundy is originated from
CotesDOr, which is a sub-region of
Burgundy, which in turn, is a sub-
region of France.

� (type = Zinfandel) →→→→ (hasColor = red)

� (type = Riesling) →→→→ (hasColor = white)

{California,US}

{}

{Burgundy,France}

LocatedIn

red

white

red

hasColor

T. J. Watson Research Center

© 2007 IBM Corporation

Creating the Virtual View

OWL:Thing

Wine

Burgundy Riesling

DryRiesling SweetRiesling

…

… …

WineSugar

WineBody

WineColor

Winery

WineGrape

Region
locatedIn

hasSugar

hasBody

hasColor

hasMaker

madeFromGrape

Class

Hierarchy

15ElyseEdnaValleyZinfandel3

20CorbansNewZealandRiesling2

30ClosDeVougeotCotesDOrBurgundy1

pricemakerorigintypeid

CREATE VIRTUAL VIEW WineView(Id,
Type, Origin, Maker, Price, LocatedIn,
HasColor) AS

SELECT W.*, O.locatedIn, O.hasColor,

FROM Wine AS W, WineOntology AS O

WHERE O.type = W.type AND
(O.type isA ‘Wine’) AND
O.locatedIn = W.origin AND
O.hasMaker = W.maker

Wine Table

Wine Ontology

T. J. Watson Research Center

© 2007 IBM Corporation

Now we can write the semantic queries

� Which wine originates from
the US?

SELECT Id

FROM WineView

WHERE ‘US’ IN LocatedIn;

� Which wine is a red
wine?

SELECT Id

FROM WineView

WHERE hasColor = ‘red’;

15

20

30

price

{California, US}

{}

{Bourgogne, French}

locatedIn(origin)

red

white

red

hasColor

ElyseEdnaValleyZinfandel3

CorbansNewZealandRiesling2

ClosDeVougeotCotesDOrBurgundy1

makerorigintypeid

T. J. Watson Research Center

© 2007 IBM Corporation

Physical Level Support

register extract

Ontology files

Implication
Graph

Class Hierarchy

Transitive
Properties

� Leverage Hybrid relational-XML DBMSs for storing
domain knowledge

– indices for XML

– a hybrid query compiler supports XQuery and SQL/X

Ontology Repository

T. J. Watson Research Center

© 2007 IBM Corporation

Hybrid Relational-XML DBMS

� CREATE TABLE ClassHierarchy(
id INTEGER, name VARCHAR(27), hierarchy XML);

� INSERT INTO ClassHierarchy VALUES(1, ’Wine’,

XMLParse(’<?xml version=’1.0’>

<wine>
<WhiteWine><WhiteBurgundy>...</WhiteBurgundy>...

</WhiteWine>

<DessertWine><SweetRiesling/>...

</DessertWine>...

</wine>’)

);

� Example: find class ids and class names of all class hierarchies that contain the
XPath /Wine/DessertWine/SweetRiesling:

SELECT id, name
FROM ClassHierarchy AS C
WHERE XMLExists(‘$t/Wine/DessertWine/SweetRiesling’

PASSING BY REF C.order AS "t")

T. J. Watson Research Center

© 2007 IBM Corporation

Query Re-writing

� Query expansion on virtual columns
using implications.

SELECT V.Id

FROM WineView AS V

WHERE V.hasColor=White;

� Since the following implications exists, we
use them to expand the query predicate

(Type=WhiteWine) → (hasColor=white)

(Type=Riesling) → (hasColor=white)

SELECT V.Id

FROM Wine AS W

WHERE W.type=WhiteWine

OR W.type=Riesling;

� Subsumption checking via XPath &
XMLExists SQL/XML function

SELECT V.Id

FROM WineView AS V

WHERE US ∈ V.locatedIn;

� Since locatedIn is a virtual column on the
transitive closure of W.origin, we rewrite the
query to

SELECT W.Id

FROM Wine AS W, TransitiveProperty AS T

WHERE T.ontID=‘wine’

AND T.propID=‘locatedIn’

AND XMLExists(T.tree//USRegion//W.origin);

T. J. Watson Research Center

© 2007 IBM Corporation

But the expansion is not that simple

SELECT ID

FROM V

WHERE (A=v1)

^

A = v 1

B = v 2

G = v 7

C = v 3

D = v 4

F = v 6

C = v 5

H = v 8

C = v 1 C = v 3 C = v 6

C = v 8 C = v 9 C = v 7

C = v 2

C = v 5

Implication
Graph

Transitive Tree
for property C

ID D AB

Virtual View V SELECT ID

FROM V

WHERE B=v2
AND D=v4

For details see
the Algorithm
in the paper

T. J. Watson Research Center

© 2007 IBM Corporation

Experiments

� Investigate time to rewrite the queries on virtual views

� Data Generation

– trees for transitive properties parametrized by

• Number of nodes
• Maximum fanout

– graphs for implications parametrized by

• Number of relationships
• Number of values

• Number of levels in the graph
• Density : number of rules between two consecutive levels

• Fanout : number of atoms in a rule body

� Measurement: rewriting time averaged over 5 randomly
generated data sets.

� Performance for baseline rewriting algorithm and optimized
rewriting algorithm (using memoization)

T. J. Watson Research Center

© 2007 IBM Corporation

Implication Graph Density

� Number of rules did not affect rewriting performance as much as density of
the implication rule graph.

� Baseline algorithm is not scalable. Memoization is much better.

� In general, the rewriting time is reasonable (< 0.5 s)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 T

im
e

 (
s
)

Rule Graph Density

Baseline
Optimized

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 T

im
e

 (
s
)

Rule Graph Density

Baseline
Optimized

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 T

im
e

 (
s
)

Rule Graph Density

Baseline
Optimized

With 16 trees With 0 trees

T. J. Watson Research Center

© 2007 IBM Corporation

Size of transitive property trees

� Rewriting time scales linearly with size of trees.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e
ra

g
e
 T

im
e
 (

s
)

Tree Size (number of nodes per tree)

Baseline
Optimized

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e
ra

g
e
 T

im
e
 (

s
)

Tree Size (number of nodes per tree)

Baseline
Optimized

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000 12000 14000

A
v
e
ra

g
e
 T

im
e
 (

s
)

Tree Size (number of nodes per tree)

Baseline
Optimized

Rule density = 800
Rule density = 100

T. J. Watson Research Center

© 2007 IBM Corporation

Conclusion

� Framework for putting a little
semantics into relational SQL
systems.

� Users register ontologies in DBMS
and links them with relational data
by creating virtual views

� Virtual columns in the virtual views
are not materialized

� Queries on the virtual columns are
rewritten to predicates on base
table columns.

� Future work: performance issues

Base table Ontology

DBMS

Virtual view query processor

Hybrid Relational-XML Query Engine

queryresult

Virtual View

T. J. Watson Research Center

© 2007 IBM Corporation

Questions

T. J. Watson Research Center

© 2007 IBM Corporation

Implication Graph

� A=v1 ← G=v7

� A=v1 ← B=v2 ^ C=v3

� B=v2 ← H=v8

� C=v5 ← D=v4

� C=v5 ← F=v6

^

A = v 1

B = v 2

G = v 7

C = v 3

D = v 4

F = v 6

C = v 5

H = v 8

A=v1

^

: Clause (e.g., x.hasBody=Medium)

: Operator (e.g., AND)

