| T. J. Watson Research Center

Unifying Data and Domairi !
Virtual Views

© 2007 IBM Corporation

T. J. Watson Research Center

Background

= DBMS originally designed for transaction data

= Many extensions for richer queries attempted
— OO DBMS and ORDBMS
— OLAP (1990s)
— Data Cube (ICDE 1996)
— Data Mining (CACM 1996)

= An unending quest
— Database or Knowledge-base?
— New applications: the Semantic web, etc.

= Move from simple transactional or analytical processing to
semantics understanding and knowledge inferencing

| © 2007 IBM Corporation

T. J. Watson Research Center

A motivating example

= RDBMS allows us to query wines through attributes ID, Type,
Origin, Maker, Price.

= Expressive power: relational complete (quite limited).

= Human intelligence operates in a quite different way.

A base table : Wine

| © 2007 IBM Corporation

T. J. Watson Research Center

Query 1:

= Which wine originates from the

us?
— Answer: Zinfandel

— Zinfandel’'s Origin EdnaValley is

located in California.

— Domain knowledge used:
EdnaValley is in California, and
California is in the US.

= We could issue:

SELECT ID
FROM Wine
WHERE Origin = ‘US’;

ID Type Origin Maker Price
Burgundy CotesDOr ClosDeVougeot 30
2 Riesling NewZealand Corbans 20

| © 2007 IBM Corporation

T. J. Watson Research Center

Query 2:

= Which wine is a red wine? = We could issue:

— Answer: Zinfandel & Burgundy
SELECTID

— Domain knowledge used:
FROM Wine

» Zinfandel is red;

- Burgundy can be eitherred or | WHERE hasColor =‘red’;
white, but Burgundy from
CotesDor is always red

Type Origin Maker Price
Riesling NewZealand Corbans

© 2007 IBM Corporation

T. J. Watson Research Center

Domain Knowledge from

OWL Ontology

= Eg. Wine Ontology from the web
ontology language OWL (W3C)

= Extract class hierarchies,

(transitive) properties,

implications, etc from OWL

Transitve Property locatedin

Class

Hierarchy

hasSugar

hasBod
hasColor
qasMaker

madelxamGrape

Implications

(Type=CotesDor)—(type=RedBurgundy) & (origin=CotesDorRegion)

(Type=Zinfandel) — (hasColor=Red)

(Type=Zinfandel) — (hasSugar=dry)
(Type=RedWine) — (hasColor=Red)

| © 2007 IBM Corporation

T. J. Watson Research Center

Challenges

= How to incorporate domain knowledge
(ontology) into a RDBMS?

= How to integrate relational data with
domain knowledge ?

= How to query relational data with
meaning ?

= How to process such queries ?

‘ Put a little semantics into relational SQL systems

| © 2007 IBM Corporation

T. J. Watson Research Center

Overview of our solution

= Provide user with a unified view of
the data and the domain knowledge.

= Through the virtual view, we offer a
rich set of functionalities for
knowledge inferencing out of the
Spartan simplicity of SQL.

= Leverage hybrid relational-XML
storage for managing domain +

knowledge
= Rewrite query on virtual view I

= Leverage hybrid relational-XML
query engine to process re-written

query.

© 2007 IBM Corporation

T. J. Watson Research Center

Virtual View Unifies Data & Ontology

= Users create virtual views over the relational data
and the ontology

= Virtual columns/attributes not in original data

= Virtual columns not materialized -- inferred from
the ontology

locatedIn(origin) hasColor

{Bourgogne, France} | red
{} white
{California, US} red

© 2007 IBM Corporation

T. J. Watson Research Center

The virtual view

LocatedIn hasColor
{Burgundy,France} red
{} white
{California,US} red

= Wine Burgundy is originated from
CotesDOr, which is a sub-region of
Burgundy, which in turn, is a sub- |
region of France.

= (type = Zinfandel) — (hasColor = red)
= (type = Riesling) — (hasColor = white)

© 2007 IBM Corporation

T. J. Watson Research Center

Creating the Virtual View

CREATE VIRTUAL VIEW WineView(Id, Wine Ontology
Type, Origin, Maker, Price, LocatedIn, : .
HasColor) AS

SELECT W.*, O.locatedIn, O.hasColor,
FROM Wine AS W, WineOntology AS O

WHERE O.type = W.type AND
(O.type isA ‘Wine’) AND
O.locatedIn = W.origin AND
O.hasMaker = W.maker

locatedIn

Class hasSugar

Hierarchy hasBod

hasCoIor
qasMaker

madelamGrape
Wine Table
| 2
1 Burgundy CotesDOr ClosDeVougeot 30
2 Riesli:g\wwl Corbans 20 A
3 Zinfandel EdnaValley Elyse 15

© 2007 IBM Corporation

T. J. Watson Research Center

Now we can write the semantic queries

= Which wine originates from = Which wine is a red
the US? wine?

locatedIn(origin) hasColor

{Bourgogne, French} | red

{} white

{California, US} red

| © 2007 IBM Corporation

T. J. Watson Research Center

Physical Level Support Class Hierarchy
= Leverage Hybrid relational-XML DBMSs for storing Q
domain knowledge

rdfs:subClassOf
rdfs:subClassOf

— indices for XML
— a hybrid query compiler supports XQuery and SQL/X

rdfs:subClassOf

example:Van

rdfs:subClassOf

example:Passengervehicle

rifs:subClassOf

\

(/‘Q\ " Ontology files o,
Ontology Repository *
OntologyDocs
ontlD docname|decc Tra nSItlve
foodwine | food o Properhes

[o
foodwine z .—'—/q-‘:'i
TransitiveProperty
/A ontlD preplD

Implication
Graph

© 2007 IBM Corporation

T. J. Watson Research Center

Hybrid Relational-XML DBMS

= CREATE TABLE ClassHierarchy(
id INTEGER, name VARCHAR(27), hierarchy XML);

= INSERT INTO ClassHierarchy VALUES(1, 'Wine’,
XMLParse(’<?xml version="1.0’>

<wine>
<WhiteWine><WhiteBurgundys...</WhiteBurgundy>...

</WhiteWine>
<DessertWine><SweetRiesling/>...
</DessertWine>...

</wine>’)

)

= Example: find class ids and class nhames of all class hierarchies that contain the
XPath /Wine/DessertWine/SweetRiesling:

| © 2007 IBM Corporation

T. J. Watson Research Center

Query Re-writing

= Query expansion on virtual columns = Subsumption checking via XPath &
using implications. XMLEXxists SQL/XML function

= Since locatedIn is a virtual column on the
transitive closure of W.origin, we rewrite the

= Since the following implications exists, we

use them to expand the query predicate query to
SELECT W.Id
(Type=WhiteWine) — (hasColor=white) FROM Wine AS W, TransitiveProperty AS T
(Type=Riesling) — (hasColor=white) WHERE T.ontID=‘wine’
AND T.proplD=‘locatedIn’
SELECT V.Id AND XMLEXxists(T.tree//USRegion//W.origin);

FROM Wine AS W
WHERE W.type=WhiteWine
OR W.type=Riesling;

| © 2007 IBM Corporation

T. J. Watson Research Center

But the expansion is not that simple

SELECT ID Virtual View V SELECT ID

FROM V FROM V

WHERE (A=v1) WHERE B=v2
AND D=v4

For details see
the Algorithm
in the paper

Implication

Graph Transitive Tree

for property C

| © 2007 IBM Corporation

T. J. Watson Research Center

Experiments

= Investigate time to rewrite the queries on virtual views

= Data Generation

— trees for transitive properties parametrized by

* Number of nodes
+ Maximum fanout

— graphs for implications parametrized by
* Number of relationships
* Number of values
Number of levels in the graph
Density : number of rules between two consecutive levels
Fanout : number of atoms in a rule body

= Measurement: rewriting time averaged over 5 randomly
generated data sets.

= Performance for baseline rewriting algorithm and optimized
rewriting algorithm (using memoization)

| © 2007 IBM Corporation

T. J. Watson Research Center

Implication Graph Density

Average Time (s)

| © 2007 IBM Corporation

—_
()]
T

o
o

0

T T T T T Basé“ne ;’7
Optimized -
X
0 200 400 600 800 1000 1200 1400

Rule Graph Density

1600

Average Time (s)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

I | ' Baseline —+— |
Optimized — N
e [T >,< “"‘”"'; ___________ l“_”“_"_—. ___________
0 200 400 600 800 1000 1200 1400 1600

Rule Graph Density

= Number of rules did not affect rewriting performance as much as density of

the implication rule graph.

= Baseline algorithm is not scalable. Memoization is much better.
= In general, the rewriting time is reasonable (< 0.5 s)

T. J. Watson Research Center

Size of transitive property trees

0-9 T T T T T T T T
Baseline —+— 140 + Baseline —+— |
0.8 r Optimized ——><¢=- . Optimized ;-
07 + 120 +
“ 06} O 100 |
Qo ©
E 0.5 E 80
o ©
g 04 B 8 60 |
))
é 03 r /_/_,/““/ b é 40 i
02 | ‘//——/X//J—/x— - 20 - _
0.1 + >< —
et 0]
/><//>< 1 1 1

0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Tree Size (number of nodes per tree) Tree Size (number of nodes per tree)

= Rewriting time scales linearly with size of trees.

| © 2007 IBM Corporation

T. J. Watson Research Center

Conclusion

= Framework for putting a little
semantics into relational SQL
systems.

= Users register ontologies in DBMS
and links them with relational data
by creating virtual views

Virtual view query processor

= Virtual columns in the virtual views
are not materialized t

= Queries on the virtual columns are
rewritten to predicates on base
table columns.

= Future work: performance issues

© 2007 IBM Corporation

T. J. Watson Research Center

Questions

| © 2007 IBM Corporation

T. J. Watson Research Center

Implication Graph 0
= A=vl «— G=v7 ° @

= A=vl «— B=v2 A C=v3

= B=v2 «— H=v8 @ @ @

= C=vb — D=v4

= C=vb «— F=v6

@ : Clause (e.g., x.hasBody=Medium)
‘ : Operator (e.g., AND)

| © 2007 IBM Corporation

