Extending Q-Grams to
Estimate Selectivity of

String Matching with Low
Edit Distance

Hongrae Lee, Raymond Ng, Kyuseok Shim
(U. of British Columbia) (Seoul National U.)

Introduction

‘)
B Suppose a user wants to
List members in Vienna city
List branches where member Sylvie (?) works
Member City Country | Branch
Silvia Vancouver |Can~ —
_ , A A:ﬁ Typos In o
Silvie JVlena @ TS the database
Sylvie Vienna Austria Liesing

2. Similar names or
Different spelling usage

" A
Introduction (cont.)

m Approximate string matching queries
Find cities similar to Vienna
Find names similar to Sylvie

m Approximate string matching is important in

Data cleaning, data integration
m Pervasive errors or heterogeneity in the database

Searching
m Uncertain query formulation (query correction)
m Different spelling usages

" I
Query Optimization of
Approximate String Matching

m Optimization of approximate query processing
Join ordering, access method selection,...

IF project id

? 1 (hashjoin?)

P
N@e joi}project / \

NN
how many? \ members / \
report project
G oy
namesimilarto O _ .40,
Sylvie |
members report

m Estimating selectivity of approximate predicates
Important in making a good query execution plan

" A
How Do We Define “Similar”?

m String similarity functions
Edit distance, Hamming distance, Jaccard coefficient,...

m Edit distance

The minimum # of edit operations (Insert, Delete, Replace) to
convert one string to the other

Wiena
, a ed (Vienna, Wiena) =2
Vienna

1R 11

m Focus on low edit distance k, say k=1 ~ 3 or 4,5
Low edit distance offers a lot to database applications
m E.g., [AGKO6](data cleaning) employed k=1 ~ 3 for address

High edit distance can be error prone
m E.g., Even k=2: Vienna - Vietnam

Problem Statement

m Given a query string s, and an edit distance
threshold k, estimate the # of strings s in the
database that satisty ed(s,,s) < k.

Query = (wien, 2)

ol aQue

database

Vienng

vancouver

salzburg

yanc

Seoyy

Ou\le\\"\\

How many strings
in DB are similar to wien
within the threshold k?

|Ans(wien,2)|=?

_..__Ans (wien, 2)

wien _
wien

wiena
wienna

» I
Overview

N
m Contributions

Formulas for special cases
= Replace only case
H

H
Algorithm BasicEQ
Optimizations
Extended Q-grams
m Empirical evaluation

m Conclusion & future works

Replace Only Case

Query = (wien, 2R)
Ans (wien, 2R)

wien wine

wien

m Start with a restricted version of the problem
Only allow replace

m Want to estimate |Ans|

The # of strings in the DB that can be converted to
wien with at most 2 replaces

Representing A Replace with ?

Strings in Ans (wien, 2R) W177 0
can be acquired by w?e?
replacing up to 2 .
characters from wien N\ 71e’? > (
|||] === w??n
wlen ?17?n
?7en _J

4

5) = 6 possible cases

m The wildcard ? represents a replacement (or an insertion)
m Any string in the Ans is in at least one of the above 6 forms

E.g., wiki € wi??

teen C ?7en

m |Ans(wien, 2R)| = # of strings in any of the 6 forms

Finding |[Ans(wien, 2R)|

wiee \wbee

W F weced

m Note that there are overlaps among the sets
E.g.,wi?? N w?e? = wie?
m The desired answer is

|Ans(wien,2R)| =
| wi?? uw?e? U ?ie? uw??nu ?i?nu ??en |

10

Inclusion-Exclusion Principle

m Inclusion-
The size of union of n sets is the sum of sizes of
all possible intersections among r elements
with sign of (-1)*1,1<r<n
E.g.,|AuBuUC|

=|A|+|B|+|C| = (JAnB[+|BnC|+|CnA|)+|AnBnC|

Exclusion principle

m|Ans(wien,2R)| =

| wi?? U
wi??|

—(|wi?? 1

+(|wi?7?

Exponential # of

- computing intersections (character level)
€.J.,wi?? N w?e? = wie?
- getting frequency from the summary
structure
e.g., lwie?|= ?

—(|wi?? frwrerTr. 1T rreny)

11

Solution: Using A Semi-Lattice

level 2
level 1

level O

mA Node represents the set of strings in DB in that form
mStart with leaf nodes of all possible 6 forms
mGenerate nodes from intersections

mlLayer nodes according to the # of wildcards (level)

mDraw edges for inclusion relationship
12

Using A Semi-Lattice (cont.)

-3+16-15+6-1 =3

B | wi??uw?e?u ?ie?uw??nu ?i?nu ??en|
= [wi??| + [w?e?| + ... +|?7en|
10 wie? | wie? *[]l\l wie? |-)
+ wie? +..)
e

T - 3|wie?|+1|wie?| - - 2|wie?|
= | wi?? nw?e?n...n?%en|

13

Using A Semi-Lattice (cont.)

m Key observations
Many intersections may result in the same node
Regularity exists in the semi-lattice structure

m Key approach
Substitute an intersection with its result

Only need to count how many times a node
participates in the |-E (inclusion-exclusion) formula

The coefficient of a node
m # of times a node participates in the |-E formula
s Minus sign if appears more in minus part in the |-E formula

14

Using A Semi-Lattice (cont.)

Original Inclusion-Exclusion process

| wi?? uw?e? U ?ie? uw??nu ?i?nu ?7en|

= |Wi??| + [w?e?| + ... + |?2%en|

— (|wi?? n w?e?| + |wi?? n ?ie?| + [w?e? n ?ie?| + ...)
+ (|wWi?? nw?e? n ?ie?| + ...)

- | wi?? nw?e? n...n ??ne|

Simplify the equation
Using the semi-lattice

= |Wi??| + [w?e?| + ... + [?7ne|
+ (-3 + 1) (lwie?| + |wi?n| + [w?en] + |?ien])
+(-3+16—-15+6-1) |wien|

3=-3+16-15+6-1

15

» I
Overview

N
m Contributions

BasicEQ Algorithm

Optimizations

Extended Q-grams
m Empirical evaluation

m Conclusion & future works

16

" SN
The BasicEQ Algorithm:
Returning to the General Problem

Query = (wien, 2)

DB
2D: g/{ % frﬂg 0\1\®\2I: +2

length=2 length=3 length=4 length=5 length=6

OJORONO. O00 0OO00O0O0 0000

00 0000 000
00 ©0 O 00
ut ut g g 1

|Ans(wien,2)| = freq,,., + freqy,.; + freqe,.s + freq..s + freqq._g

17

String Hierarchies

OO0 0O O00 0OO000O0 0000 OO0 00
O O O 000 OO0 OO
)@, OO O OO O

Do not have the formulas for all string hierarchies!
E.g.) 1I1R, 2I1D + 1I2R

An example of
general
string hierarchy

General string hierarchy: not so regular (closed form fomular is hard)

m Need a general algorithm to handle arbitrary combinations of edit
operations. e.g.)111R
18

" S
Computing Frequency from A
String Hierarchy

Answer set cardinality = sum of the frequencies of
nodes multiplied by the coefficients

Key steps
1. Build the string hierarchy
2. Compute the coefficients of nodes
3. Estimate selectivity of each node and compute
the simplified inclusion-exclusion formula

19

"
BasicEQ
Step 1: Building The String Hierarchy

m An Apriori-Style algorithm
Start from leaf nodes

Generate an intersection of r nodes by extending
Intersection of (r-1) nodes

Two observations are crucial
s Only newly formed results need to be considered at each round
m Only the nodes with af least one wildcard need to be considered

@ @ @ leaf nodes
m @ 9 new results
20

" S
BasicEQ
Step 2: Computing Coefficients of Nodes

m For each node, add the number of intersections
among r nodes that result in that node with the sign
of (-1)1

of 2-intersection results in vienna:1-> -1
of 3-intersection results in vienna:1-> +1
The coefficient of vienna 2> —1+1=0

21

» I
Overview

N
m Contributions

Optimizations
Extended Q-grams
m Empirical evaluation

m Conclusion & future works

22

" A
Three Optimizations

m BasickEQ is not scalable
Coefficient computation step is a major bottleneck

1. Node partitioning
Compute coefficients just once for each partition
2. Coefficient approximation

Use replace-only formula to approximate
coefficients

3. Fast intersection test by grouping

Avoid test of intersections that are guaranteed to
produce the empty result

23

" A
Coefficient Approximation

m Approximate coefficients using the replace-only
formula
Motivation is that we have a formula for coefficients

Part of the string hierarchy
for Ans(wie,111R)

Complete the lattice to the full replacement lattice

Scale terms in the formula assuming everything is
proportional to the possible choices

» I
Overview

N
m Contributions

Extended Q-grams
m Empirical evaluation
m Conclusion & future works

25

Estimating Selectivity of Each Node

lwi??
N

|wien|=freq(wien)=# of wien in the database

A len,2R)|
1 +...+®—2M+M+@+M+3 wien|
—" ~ — V-/

m Q-grams

Any string of length g in 2.

vienna -2 3-grams: vie, ien,

enn, nna

] Q-gram table [Chaudhuri, Ganti & Gravano 04]

N-grams of length g or less

Q-gram Frequency
wien 9
wie 12
ien 10
ein 56
ei 1,205
24,503

with their frequency

26

" A
Extended Q-Gram Table

m Extended g-grams
Extend g-gram with wildcard ? (not in)

Speed up the frequency computation of string forms

m Example using just simple g-gram tables
lwie?| = |wiea| + |wieb| + |wiec| +

Q-gram Frequency

wien 9

wiea 1

ien 10

27

Overview

m Empirical evaluation
Settings
Effectiveness of optimizations
Estimation accuracy

m Conclusion & future works

28

"
Empirical Evaluation

m Data set
392,132 IMDB actresses’ last names
699,198 DBLP Authors full names
53,365 DBLP Paper titles

m Compared technique
SEPIA [Jin & Li 05]

m Settings
SEPIA: 2000 clusters, 5% sampling
OptEQ: BasicEQ + optimizations
Coefficients are pre-computed (not data dependent)
Intel P4 3GHz PC with 1 GB Memory

29

Effectiveness of Optimizations

25 Runtime for Ans(query, 11 1R)
20 80

20 70 A
m —~ 60
& s o +OptEQ
~— (/)] 50 .
Q o BasicEQ
E g 40
S 10 S 30 |
[=

o 2o
5
10
) 0.007 o+— NN ——— = — — & I - —]
‘ 4 5 6 7 8 9 10 11 12 13 14 15
Simple Q-grams Extended Q-grams
P g g query length

Extended g-gram vs. simple g-gram BasicEQ vs. OptEQ

m Extended g-grams enable faster computation

m OptEQ’s optimizations improve the performance of
BasicEQ by orders of magnitudes

30

Estimation Accuracy

S 30.00%
2 80.00% |)
a oo% [[ESEPIA(14MB) | | 0% B BA=1~3]]
@ 60.00% |~ ' m OptEQ(9.3MB) 20.00% |
2 50.00% | O OptEQ(13.7MB)|| | **” /—\
= 40.00% | 15.00% {——— I
0 30.00% ,/\ 10.00%
o 20.00% +—
g 10.00% .ﬁi / 5.00% ~—— __/
:% 0.00% ‘ : 0.00% ‘ ‘
A=1 A=2 A=3 SEPIA (13MB) OptEQ(4.3 MB) OptEQ(5.4 MB)

DBLP Author names

DBLP Paper titles

m Relative error: |freq.y — freq,qql/freqeq
m OptEQ delivers more accurate estimation

m OptEQ is able to utilize additional space showing clear
trade-off between space and accuracy

31

" A
Other Experimental Results

m Error distribution characteristics
m Scalability

m Higher edit distance threshold with
sampling

m See the paper for details

32

" A
Related Work

m Substring selectivity estimation

Exact string match
MO [Jagadish, Ng & Srivastava 99]
CRT [Chaudhuri, Ganti & Gravano 04]

m Approximate string selectivity estimation
SEPIA [Jin & Li 05]

33

Conclusion

m Contribution
Extended g-grams with the wildcard

New lattice-based algorithm for estimating
selectivity of approximate string matching

Performance study shows that OptEQ delivers
accurate selectivity estimation

m Future work

Handling longer string with higher edit
distance threshold as in genomic applications

34

Any Questions?

Danke schon!

" A
Node Partitioning

m Coefficients only depend on the lattice structure

m We partition nodes according to the local lattice
structure to each node and compute the
coefficients just once per each partition

Approximate isomorphism test is developed

Q\ Q ; @ ; @

\ . o

