
IBM Research

© 2006 IBM Corporation

Model Management and Schema Mappings:
Theory and Practice (Part II)

Howard Ho

IBM Almaden Research Center
For VLDB07 Tutorial with Phil Bernstein, Microsoft Research

11

The Integration Challenge
Complex and heterogeneous environments
–Many different types of systems
–Many inter-related applications

Escalating needs
–Variety, velocity, volume

People are expensive

22

Outline
Clio: Basic Features of a Schema Mapping System

– Schema Matching
– Schema Mapping
– Query Generation
– IBM Rational Data Architect Product
MAUI: Advanced Features of a Schema Mapping System

– Nested Mapping Model
– Mapping-Based XML Transformation Engine
– Schema Integration
– Schema Evolution
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
– Web-Service Composition: Mapping for web-service data sources
– Mashups: “Mapping → Mashup” Generation
– Reuse: Mapping Polymorphism
Conclusions and Future Directions

33

Source
schema S

Target
schema T

•Wants data from S
•Understands T
•May not understand S User mapping

“conforms to”

data

Xformation
Query
Generation

Low-level mapping
(SQL, SQL/XML, XQuery,

XSLT and Java code)

“conforms to”

•XML Schema
•DTD
•Relational Mapping

Generation

Logical mapping
(internal)

Clio: A Schema Mapping System

Logical mappings can be used for both target materialization or query rewriting

44

Major Features (and Challenges)
Schemas can be arbitrarily
different
Element correspondences

– Human friendly
– Automatic discovery

Support Nested Structures
– Nested Relational Model
– Nested Constraints

Produce Correct Grouping
Preserve data meaning

– Discover associations
– Use constraints & schema

Create New Target Values
and …

55

Generate Transformation Queries (XQuery)
<?xml version="1.0" encoding="UTF-8"?>
<statisticsDB>

<cityStatistics>
<city/>,
distinct (
FOR
$x0 IN $doc/expenseDB/grant,
$x1 IN $doc/expenseDB/company

WHERE
$x1/cid/text() = $x0/cid/text()

RETURN
<organization>

<orgid> $x0/cid/text() </orgid>,
<oname> $x1/cname/text() </oname>,
distinct (
FOR
$x0L1 IN $doc/expenseDB/grant,
$x1L1 IN $doc/expenseDB/company
WHERE

$x1L1/cid/text() = $x0L1/cid/text() AND
$x1/cname/text() = $x1L1/cname/text() AND
$x0/cid/text() = $x0L1/cid/text()

RETURN
<funding>

<fid> "Sk35(", $x0L1/amount/text(), ", ", $x1L1/cname/text(), ", ", $x0L1/cid/text(), ")" </fid>,
<proj> "Sk36(", $x0L1/amount/text(), ", ", $x1L1/cname/text(), ", ", $x0L1/cid/text(), ")" </proj>,
<aid> "Sk32(", $x0L1/amount/text(), ", ", $x1L1/cname/text(), ", ", $x0L1/cid/text(), ")" </aid>

</funding>)
</organization>),

distinct (
FOR
$x0 IN $doc/expenseDB/grant,
$x1 IN $doc/expenseDB/company

WHERE
$x1/cid/text() = $x0/cid/text()

RETURN
<financial>

<aid> "Sk32(", $x0/amount/text(), ", ", $x1/cname/text(), ", ", $x0/cid/text(), ")" </aid>,
<amount> $x0/amount/text() </amount>

</financial>)
</cityStatistics>

</statisticsDB>

66

Generate Transformation Scripts (XSLT)
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:template match="/">

<result>
<xsl:call-template name="q0"/>

</result>
</xsl:template>
<xsl:template name="q0">

<xsl:element name="statisticsDB">
<xsl:attribute name="isRoot">true</xsl:attribute>
<xsl:element name="ClioSet">

<xsl:attribute name="id">Sk_statisticsDB()</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:for-each select="/expenseDB/grant"> <xsl:variable name="x0" select="."/>
<xsl:for-each select="/expenseDB/company"> <xsl:variable name="x1" select="."/>
<xsl:if test="$x1/cid=$x0/cid">

<xsl:element name="cityStatistics">
<xsl:attribute name="inSet">Sk_statisticsDB()</xsl:attribute>
<xsl:element name="city"/>
<xsl:element name="ClioSet">

<xsl:attribute name="id">Sk_statisticsDB_0_1(Sk_statisticsDB())</xsl:attribute>
</xsl:element>
<xsl:element name="ClioSet">

<xsl:attribute name="id">Sk_statisticsDB_0_2(Sk_statisticsDB())</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:element name="organization">

<xsl:attribute name="inSet">Sk_statisticsDB_0_1(Sk_statisticsDB())</xsl:attribute>
<xsl:element name="orgid"><xsl:value-of select="$x0/cid"/></xsl:element>
<xsl:element name="oname"><xsl:value-of select="$x1/cname"/></xsl:element>
<xsl:element name="ClioSet">

<xsl:attribute name="id">Sk_statisticsDB_0_1_0_2(<xsl:value-of select="$x0/cid"/>,
<xsl:value-of select="$x1/cname"/>,
Sk_statisticsDB_0_1(Sk_statisticsDB()))

</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:element name="funding">

<xsl:attribute name="inSet">Sk_statisticsDB_0_1_0_2(<xsl:value-of select="$x0/cid"/>,
<xsl:value-of select="$x1/cname"/>,
Sk_statisticsDB_0_1(Sk_statisticsDB()))

</xsl:attribute>
<xsl:element name="fid">

Sk35(<xsl:value-of select="$x0/amount"/>, <xsl:value-of select="$x1/cname"/>,
<xsl:value-of select="$x0/cid"/>)

</xsl:element>
.

77

(Flat) Mapping Generation

Step 1. Extraction of “concepts” (in each schema).
– Concept = one category of data that can exist in the schema

Step 2. Mapping generation
– Enumerate all non-redundant maps between pairs of concepts

[Popa, Velegrakis, Miller, Hernandez, Fagin. VLDB02]
[Fagin, Kolatios, Miller, Popa. ICDT 03]
[Haas, Hernandez, Ho, Popa, Roth. SIGMOD 05]

Source
schema S

Target
schema T

Schema Correspondences

Source Concepts
(relational views)

Target Concepts
(relational views)

Mappings

88

deptdept: Set [
dname
budget
empsemps: Set [

ename
salary
worksOnworksOn: Set [

pid
]

]
projectsprojects: Set [

pid
pname

]]

m1:
∀(p0 in proj)

∃(d in dept) ∃(p in d.projects)
p0.dname = d.dname

∧ p0.pname = p.pname

m2:
∀(p0 in proj) ∀(e0 in p0.emps)

∃(d in dept) ∃(p in d.projects)
∃(e in d.emps) ∃(w in e.worksOn)

w.pid = p.pid
∧ p0.dname = d.dname
∧ p0.pname = p.pname
∧ e0.ename = e.ename
∧ e0.salary = e.salary

projproj: Set [
dname
pname
empsemps: Set [

ename
salary

]
]

Two ‘basic’ mappings (or source-to-target tgds or GLAV formulas)

m1
m2

m2 maps proj-emps to
dept-emps-worksOn-projects

(Flat) Mapping Example

expression for
dept-emps-
worksOn-
projects

The concept of
“project of a
department”

The concept of
“project of an
employee of a
department”

m1 maps proj to dept-projects

99

IBM Rational Data Architect Product

1010

IBM Rational Data Architect Product
Schema Matching, Schema Mapping and Query Generation Technologies
from Clio
Value Correspondences in the GUI

– Blue Lines: Confirmed by the users
– Gray Lines: Suggested by the schema matching algorithms

Schema Matching
– Five different algorithms: two name-based (including thesaurus lookup) and three

instance-based
– Users can choose

• Any weighted combination of the 5 schema matching algorithms
• Source or target
• One element (element/attribute or column) or a group of elements (subtree or table)
• The value k (for the top-k matches)

– The system returns the top-k matches for each element
Current Release

– Source is relational (other IBM products support XML sources)
– Target can be relational (generates SQL) or XML (generates SQL/XML)
– Mapping is standardized within IBM, as an EMF in-memory object and as a

serialized XML document

1111

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System

– Nested Mapping Model
• [Fuxman, Hernandez, Ho, Miller, Papotti, Popa. VLDB 06]

– Mapping-Based XML Transformation Engine
– Schema Integration
– Schema Evolution
Clio2010: Mapping-Based Authoring of Data Flows
Conclusions and Future Directions

1212

New Nested-Mapping Engine for Clio

Existing Clio engine is based on a flat mapping model
– Pros: easier to implement
– Cons:

• Fragmentation into many overlapping mappings
• Inefficiency in execution
• Redundancy in the output data
• No user-defined grouping semantics

New Clio engine is based on a nested-mapping model
– Cons: more challenging to design and implement
– Pros: overcomes the above problems in the flat

mapping model

1313

deptdept: Set [
dname
budget
empsemps: Set [

ename
salary
worksOnworksOn: Set [

pid
]

]
projectsprojects: Set [

pid
pname

]]

m1:
∀(p0 in proj)

∃(d in dept) ∃(p in d.projects)
p0.dname = d.dname

∧ p0.pname = p.pname

m2:
∀(p0 in proj) ∀(e0 in p0.emps)

∃(d in dept) ∃(p in d.projects)
∃(e in d.emps) ∃(w in e.worksOn)

w.pid = p.pid
∧ p0.dname = d.dname
∧ p0.pname = p.pname
∧ e0.ename = e.ename
∧ e0.salary = e.salary

projproj: Set [
dname
pname
empsemps: Set [

ename
salary

]
]

Two ‘basic’ mappings (or source-to-target tgds or GLAV formulas)

m1
m2

m2 maps proj-emps to
dept-emps-worksOn-projects

(Flat) Mapping Example

expression for
dept-emps-
worksOn-
projects

The concept of
“project of a
department”

The concept of
“project of an
employee of a
department”

m1 maps proj to dept-projects

1414

Correlating Mapping Formulas
m1: ∀(p0 in proj)

∃(d in dept) ∃(p in d.projects)
p0.dname = d.dname ∧ p0.pname = p.pname

m2: ∀(p0 in proj) ∀(e0 in p0.emps)
∃(d in dept) ∃(p in d.projects) ∃(e in d.emps) ∃(w in e.worksOn)

w.pid=p.pid
∧ p0.dname = d.dname ∧ p0.pname = p.pname
∧ e0.ename = e.ename ∧ e0.salary = e.salary

n: ∀(p0 in proj)
∃(d in dept) ∃(p in d.projects)

p0.dname = d.dname ∧ p0.pname = p.pname
∧ [∀(e0 in p0.emps)

∃(e in d.emps) ∃(w in e.worksOn)
w.pid=p.pid

∧ e0.ename = e.ename ∧ e0.salary = e.salary
]

Submapping,
correlated to the
parent mapping

Replace with

This is a nested mapping

For every proj tuple,
we map all employees,
as a group.

(Source grouping is
preserved)

proj tuples
mapped only once

1515

1.0

10.0

100.0

1 2 3 4

Nesting Level

Fl
at

 q
ue

ry
 o

ut
pu

t s
iz

e
/

N
es

te
d

qu
er

y
ou

tp
ut

 si
ze

2111 KB

514 KB

312 KB

Execution time for flat:
22mins
Execution time for
nested: 1.1s

• Size of generated data (flat)
– including duplicates: 45MB
• Size of generated data
(nested): 552KB

1

10

100

1000

10000

1 2 3 4

Nesting Level

Fl
at

 q
ue

ry
 e

xe
cu

tio
n

tim
e

 /
N

es
te

d
qu

er
y

ex
ec

ut
io

n
tim

e

1020 KB

514 KB

312 KB

The nested mapping generates much more efficient execution and less
redundant data

Performance

1616

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System

– Nested Mapping Model
– Mapping-Based XML Transformation Engine

• [Jiang, Ho, Popa, Han. WWW 07]

– Schema Integration
– Schema Evolution
Clio2010: Mapping-Based Authoring of Data Flows
Conclusions and Future Directions

1717

Source
schema S

Target
schema T

“conforms to”

data

Query
Generation

Low-level mapping
(SQL/XQuery/XSLT)

“conforms to”

Logical mapping
(internal)

Performance in Executing Mappings

Mappings are translated into general purpose query languages
– E.g., SQL, XQuery, XSLT

Query optimization issues are left to the runtime engine of each
of these languages to decide
– i.e., Q.O. decisions are not encoded in the queries.

Idea: Execute mappings directly in our own runtime.

1818

Source
schema S

Target
schema T

“conforms to”

data

“conforms to”

Logical mapping
(internal)

Mapping Execution Engine in Java

Motivation
– Grouping (on multiple levels) of transformed values.
– XQuery & XSLT have no specific constructs (hence algorithms) for such grouping

tasks
Scalability and efficiency

– Controllable memory resource usage
– Speed of transformation almost linear to input sizes

Mapping-based
– Model high-level mapping semantics using IBM Mapping Specification Language

(MSL) standard

Mapping
Execution
Engine

1919

Three-Phase Algorithm for Executing Mappings

Phase 1 (Extract): tuple extraction
– Streaming holistic twig join

• Streaming and stored/indexed XML

– SQL queries through ODBC
• Relational source

Phase 2 (Transform): generate an XML tree from
each tuple
Phase 3 (Merge): data merging
– A dynamic, scalable merge algorithm

• Hash-based vs. sort-based algorithms

2020

XML-to-XML Comparative Results

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.2 0.45 0.9 1.8 4 7.2 34 70 106

Data sizes (MB)

R
un

ni
ng

 ti
m

e
in

 s
ec

on
d

Galax
Quip
MonetXQ
Saxon
Ours

2121

XML-to-XML Scalability Results

Our Engine

0
200
400
600
800

1000
1200

0 200 400 600 800 1000 1200

DBLP data sizes (MB)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds

2222

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System

– Nested Mapping Model
– Mapping-Based XML Transformation Engine
– Schema Integration

• [Chiticariu, Hernandez, Popa, Kolaitis. VLDB 07 demo]

– Schema Evolution
Clio2010: Mapping-Based Authoring of Data Flows
Conclusions and Future Directions

2323

Schema Integration

…

Mappings

Applications
– Provide a standard representation of the data (for unified querying, data

warehousing, reference point, etc.)
– “Metadata chaos reduction”
Schema integration is a hard problem
– Requires a lot of human interaction/feedback
– A series of “recipes” that arrive at a single integrated schema
Related work
– [Pottinger, Bernstein. VLDB 03]
– [Chiticariu, Hernandez, Popa, Kolaitis. VLDB 07 demo]

Input
Output

Schema

Source 1

SchemaSchema

Source 1

Schema

Source 2

SchemaSchema

Source 2

Schema

Source n

SchemaSchema

Source n

SchemaSchema
Problem
– Given multiple overlapping

schemas in the same
domain, consolidate them
into one.

2424

Schema Integration [Chiticariu et al.]

Step 1. Extraction of “concepts” from a hierarchy
Step 2. Consider all possible ways of performing a hierarchical
merge of the related concepts

– Generate initial set of candidate “good” integrated schemas
– Duplication-free enumeration algorithm

• Avoids duplicates by using constraints (Horn clauses)
• Polynomial-delay algorithm for enumerating satisfying

assignments

Step 3. Browse/Search/Refine set of candidate schemas
– Combination of partial enumeration with user constraints
– Based on the schemas seen so far, users express constraints

on the “future” schemas to be generated

User
schema S1

User
schema S2

Schema Correspondences

S1 concepts S2 concepts

1
…2

Integrated
schema I1

Integrated
schema In

3
Final

schema I

B1

B3 B2

B4

⇒
⇒ ⇒

⇒

dname
budget

dname
budget
ename
sal
address

dname
budget
pid
pname

dname
budget
ename
sal
address
pid
pname

“department”

“project of a
department”

“project of an
employee of a
department”

“employee of a
department”

2525

2626

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System

– Nested Mapping Model
– Mapping-Based XML Transformation Engine
– Schema Integration
– Schema Evolution
Clio2010: Mapping-Based Authoring of Data Flows
Conclusions and Future Directions

2727

Schema Evolution

When the target schema evolves, the system can generate an
initial default mapping for T → T’ automatically
The user adds “new mapping lines” for new schema elements in
T’ to complete the mapping MTT’ (for T → T’)
The new mapping MST’ (S → T’) is a composition of MST (S →
T) and MTT’ (T → T’)

SS TT

T ’T ’

MST

Derived
MTT’

Diff. Script –
Given or discovered

Adapted MST’ = MST ◦ MTT’

T evolves

Source
Schema

Target
Schema

The
mapping

Mapping
Composition

2828

When the source schema evolves, the system can generate an
initial default mapping for S’ → S automatically
The user adds “new mapping lines” for new schema elements in
S’ to complete the mapping MS’S (for S’ → S)
The new mapping MS’T (S’ → T) is a composition of MS’S (S’ →
S) and MST (S → T)

Schema Evolution

SS TT

S’S’

MST

Derived
MS’S

Diff. Script –
Given or discovered

Adapted

MS’T = MS’S
◦ MST

S evolves

Mapping
Composition

2929

Related Theory and Algorithms
Mapping Composition
– [Madhavan, Halevy. VLDB 03]
– [Fagin, Kolaitis, Popa, Tan. PODS 04]
– [Nash, Bernstein, Melnik. PODS 05]
– [Bernstein, Green, Melnik, Nash. VLDB 06]

Mapping Inversion
– [Fagin. PODS 06]
– [Fagin, Kolaitis, Popa, Tan. PODS 07]

Schema Evolution
– [Rahm, Bernstein. SIGMOD Rec. Dec 06]

Mapping Adaptation under Evolving Schemas
– [Velegrakis, Miller, Popa. VLDB 03]
– [Yu, Popa. VLDB 05]

Query rewrite
– [Yu, Popa. SIGMOD 04]

3030

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
– Web-Service Composition: Mapping for web-service

data sources
– Mashups: “Mapping → Mashup” Generation
– Reuse: Mapping Polymorphism
Conclusions and Future Directions

3131

Mapping-Based Authoring of Data Flows
Motivation
– Schema mappings are the building blocks for larger data

transformation and integration applications
– The graph of mappings is a declarative specification of the

flow of data
• Similar to ETL & mashups
• Need to take functional (web-service) data sources

– Need to extend Clio where multiple mappings can be
defined, loaded (sharing a context), reused and managed

3232

Clio2010
Clio2010
– Automatically assemble a graph of initial, uncorrelated mappings into

larger, richer mappings
– Support more complicated

• mapping composition and
• mapping merge

– Support functional data sources (e.g., web services)
– Compile the larger mappings into a global execution plan in

• Queries (XQuery)
• transformation scripts (XSLT)
• ETL flows (e.g., IBM WebSphere DataStage)
• mashups (e.g., IBM DAMIA)

– Support mapping reuse through mapping polymorphism framework

3333

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
• [Hernandez et al. 07]

– Web-Service Composition: Mapping for web-service
data sources

– Mashups: “Mapping → Mashup” Generation
– Reuse: Mapping Polymorphism
Conclusions and Future Directions

3434

Round-tripping between ETL (Extract, Transform, Load)
scripts and declarative mappings
– Generate ETL script from mappings
– Extract mapping information from ETL scripts
– Track and propagate mapping-related modifications

Optimization of ETL scripts
– Remove redundant operations
– Push computation to other runtimes
– “Rewrite” ETL scripts

OrchidOrchid

Orchid: “Mapping ↔ ETL” Conversion

ETL FlowEII Mapping in RDA

3535

Mapping ETL Generation

The developer
inspects the
connections
between the
sources, rules, and
data warehouse
model…

…and generates
a DataStage job
to move data

3636

ETL Mapping Abstraction

The developer refines,
tests and deploys the
DataStage job to
production.

Need ETL Mapping:

•To reflect changes
made in the ETL script
back in the mapping.

•To extract mappings
out of ETL scripts.

3737

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
– Web-Service Composition: Mappings for web-service

data sources
• [Alexe et al. 07]

– Mashups: “Mapping → Mashup” Generation
– Reuse: Mapping Polymorphism
Conclusions and Future Directions

3838

Flows of Mappings
getIBMHotels :

[
state,
city

]
⇒

Set [
hotel,
geo,
country,
airport

]

root: Set [
state,
city,
hotel,
ratings: Set [

rating
reviews: Set [

review
]

]

Target

getHotelReviews :
[

hotel,
state,
city

]
⇒

Set [
image
rooms
rating
reviews: Set [

review
]

]

Source 1

Source 2

M1

M2

M3

3939

Functional Data Sources
Web Service

Definition Argument Type Result Type

Mapping between functional sources

4040

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
– Web-Service Composition: Mapping for web-service

data sources
– Mashups: “Mapping → Mashup” Generation

• [Camacho et al. 07]

– Reuse: Mapping Polymorphism
Conclusions and Future Directions

4141

IBM DAMIA: A Mashup Tool

IBM DAMIA
– Produces easily

customizable flows
– Mashup fabric for data

aggregation and
transformation

– Web-based tool with user-
friendly interface

– No scripting/programming
skills required

– XQuery-like model

4242

Clio

Generate DAMIA Flows from Clio

DAMIA
flow

SQL XSLT XQuery

High level mappings

Compiler

4343

From XQuery to ETL

The XQuery has a specific flow pattern, with several phases:
• Source extraction queries (projection, navigation, join)

– Result: sets of flat tuples

• Key generation
• Union
• Duplicate elimination
• Computation of target groups
• Generate target output (hierarchy)

– Back to hierarchical data

We can visualize all this as a graph of operators
– we get the equivalent of an ETL job for XML

4444

. . .

//

Student1 Student2,
courseEval

…/Student1/*

πsid
name

sid
name
course
grade

// //
…/Student2/*

Doc 1 Doc 2

…/courseEval/*

π ûü eval_key=eval_key

π
sid
name

sid
name
cname
file

πKey
Course_2 =
F_course(sid, name)

Key
value_key

XML
relational

∪

Student_0

Key

Key

Course_2

De-dup

value_key

Key

Key

∪

Course_1

De-dup

∪

Eval_2

De-dup

Pid_0 = F_course (…)

eid =
Sk1(…)

π
Pid_0
cname
eid

Key
value_key

to
Eval_2
…

Key

Key

eid =
Sk2(…)

π

Key

Pid_0
cname
eid

value_key

to
Eval_2
…

…

Nest-joinCourse_2 = Pid_0
XML

relational

Student, Course, Eval

concatenate

Pid_0 = F_course (…)

Group-by Pid_0

value_key
value_key

value_key

4545

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows

– ETL: “Mapping ↔ ETL” Conversion
– Web-Service Composition: Mapping for web-service

data sources
– Mashups: “Mapping → Mashup” Generation
– Reuse: Mapping Polymorphism

• [Wisnesky et al. 07]

Conclusions and Future Directions

4646

Motivaion:
– Existing mapping formalisms implicitly contain information that we need to be

explicit
Example:
– A Clio nested mapping expression implicitly defines a class of schemas for

which it has an interpretation
– But in Clio mapping representation (XSML), every mapping instance requires

concrete source and target schemas
• The flexibility to re-use mappings is lost

Approach:
– We need a formal language for talking about mappings
– Require theory and tools to manipulate mappings as blocks
Solution:
– Mapping Polymorphism

Mapping Reuse

4747

Clio

Nested

Mapping

Language

Terms

of

Mapping

Type

Terms

of

Polymorphic

Mapping

Type

Terms
in MF

Instantiation
with concrete

types

Bijection

Clio Language Embedding into MF

The bijection respects mapping
semantics.

MF also includes useful terms that
manipulate mappings.

4848

Outline

Clio: Basic Features of a Schema Mapping System
MAUI: Advanced Features of a Schema Mapping
System
Clio2010: Mapping-Based Authoring of Data Flows
Conclusion and Related Work

4949

Clio Innovations Over Time

•Join-path
generation

•SQL
generation

•Attribute
matching

•XML
support

•XQuery
generation

•Data
viewer

•XSLT
generation

•Hybrid
algorithm

•Deep
union

•SQL/XML
generation

•Mapping
language

•XQuery
rewrite

•Mapping
composition

•Schema
evolution

•Java
runtime
engine

•Java code
generation

•Clio research
component

Chocolate Cinnamon
(CM 8.3)

SQL
Assist

Criollo
(RDA)Product

component

99

Conference

•Schema
integration

•Nested
mapping
engine

•Flow
mapping

•Web
services

00 01 02 03 04 05 06

VLDB
2000

SIGMOD
2001 &
demo

VLDB
2002

ICDE
2002
demo

SIGMOD
2005

PODS
2004

VLDB
2005

SIGMOD
2004

VLDB
2006

5050

Conclusion

Mappings define relationships between schemas of
data sources

Mappings and transformation queries are the “new”
metadata

Customers want “I” (for integration), not EAI, EII, ETL,
etc.
– Consumability for information integration

5151

Related Work: Very Small Subset

Information Integration Survey
– [Haas ICDT 07] “Beauty and the Beast: The Theory and Practice of Information Integration”
– [Kolatis PODS 05] “Schema mappings, data exchange, and metadata management”
– [Halevy, Rajaraman, Ordille VLDB 06] “Data Integration: The Teenage Years” as part of

their 10-year Best Paper Award on “Information Manifold” paper
Schema Matching

– Survey by Erhard Rahm and Philip Bernstein in VLDB J. ‘01
– Much work by Philip Bernstein, Anhai Doan, Alon Halevy, Jayant Madhavan
– Information Discovery project at IBM Almaden (Berthold Reinwald et al.)

Data cleansing, conflict resolution, data quality, duplicate detection, entity resolution, data
provenance
Orchestra project at U Penn
Schema Mapping Debugger

– [Alexe, Chiticariu, Tan. VLDB 06]
A Benchmark for Schema Mapping System

– [Alexe, Tan, Velegrakis. 07]
A new schema mapping GUI based on XQBE ideas

– [Ceri, Hernandez, Raffio et al. 07]
Deep Web, peer-to-peer, ontology, etc

5252

Acknowledgements: Clio Research Team

The Project Founders:
– Laura Haas and Renee Miller (around 1999)

Regulars:
– Clio Group: Mauricio Hernandez, Howard Ho, Lucian Popa, Ioana Stanoi
– Theory Group: Ron Fagin, Phokion Kolaitis, Alan Nash

Past Visiting scientists:
– Stefan Dessloch, Paolo Papotti, Wang-Chiew Tan, Yannis Velegrakis, Cathy

Wyss
Past Interns and Post-docs:

– Bogdan Alexe, Alfredo Camacho, Laura Chiticariu, Ariel Fuxman, Michael
Gubanov, Haifeng Jiang, Felix Naumann, Paolo Papotti, Ahmed Radwan,
Alessandro Raffio, Michael Richmond, Shivkumar Shivaji, Yannis
Velegrakis, Melanie Weis, Ryan Wisnesky, Lingling Yan, Cong Yu, Jindan
Zhou

	Model Management and Schema Mappings: Theory and Practice (Part II)
	The Integration Challenge
	Outline
	Clio: A Schema Mapping System
	Major Features (and Challenges)
	Generate Transformation Queries (XQuery)
	Generate Transformation Scripts (XSLT)
	(Flat) Mapping Generation
	(Flat) Mapping Example
	IBM Rational Data Architect Product
	IBM Rational Data Architect Product
	Outline
	New Nested-Mapping Engine for Clio
	(Flat) Mapping Example
	Correlating Mapping Formulas
	Performance
	Outline
	Performance in Executing Mappings
	Mapping Execution Engine in Java
	Three-Phase Algorithm for Executing Mappings
	XML-to-XML Comparative Results
	XML-to-XML Scalability Results
	Outline
	Schema Integration
	Schema Integration [Chiticariu et al.]
	Outline
	Schema Evolution
	Schema Evolution
	Related Theory and Algorithms
	Outline
	Mapping-Based Authoring of Data Flows
	Clio2010
	Outline
	Mapping  ETL Generation
	ETL  Mapping Abstraction
	Outline
	Flows of Mappings
	Functional Data Sources
	Outline
	IBM DAMIA: A Mashup Tool
	Generate DAMIA Flows from Clio
	From XQuery to ETL
	Outline
	Mapping Reuse
	Outline
	Clio Innovations Over Time
	Conclusion
	Related Work: Very Small Subset
	Acknowledgements: Clio Research Team

