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Summary of Results

Designed and implemented CellSort
– A high performance sorting algorithm for Cell

– Based on distributed bitonic merge with SIMDized bitonic sorting kernel

Our results reported in this paper show that:

1. SIMDized bitonic sort kernels are superior to quick sort kernels on Cell. The 
same does not hold for SSE-enhanced bitonic sort on Intel Xeons.

2. Distributed in-core sort is highly scalable (SPEs). 16SPEs can sort floats up to 
10 x faster, compared to quick sort on dual-core 3.2Ghz Intel Xeon.

3. CellSort becomes memory I/O bound as we go out-of-core. Yet, 16 SPEs can 
sort 0.5GB of floats up to 4 x faster compared to dual-core 3.2Ghz Intel Xeon. 

– Can sort 0.5GB of ints/floats in ~4 seconds
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The Sony-Toshiba-IBM CELL Processor

Heterogeneous multi-core 
architecture
– 1 Power Processor Element (PPE) 

for control tasks
– 8 Synergistic Processor Elements 

(SPE) for data intensive 
processing

– High-bandwidth Bus

Each SPE has
– Synergistic Processor Unit (SPU)
– Synergistic Memory Flow (SMF)
– 256 KB Local Memory Store

Lots of parallelism!
– 128-bit SIMD per SPE
– Two-way ILP per SPE
– Combination of short-vector 

SIMD, shared and distributed 
memory parallel processing
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Issues in Application Development on Cell

Every cell program potentially a parallel out-of-core application
(here “core” refers to main-memory, not disk)
– Parallelize over multiple SPEs

– Vectorize using SIMD instructions

– Asynchronous DMAs to hide latencies

Weak front-end processor
– An ideal Cell application runs only on SPEs

Other restrictions
– No recursive functions

– No branch prediction hardware

– Everything must be 128-bit aligned

Applications should
– Minimize function calls 

– Unroll loops wherever possible

– Avoid comparison-based codes as they
cannot fully exploit instruction-level parallelism
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Sorting on the Cell: The Basics
Aim: Out-of-core Distributed SIMD sort-merge algorithm

CellSort follows a three-tiered approach
1. Single-SPE Local Sort: An efficient per-SPE sorting kernel 

– We pick bitonic sort: no unpredictable branches, effectively SIMDizable

2. Distributed In-core Sort: Inter-SPE distributed merge after local sorts
– Use shared-address space + async. DMA capabilities, exploit high inter-SPE bandwidth

3. Distributed Out-of-core Sort: Memory-based distributed merge after in-core sorts
– Similar to in-core sort, but uses main memory and different communication patterns
– Less bandwidth available to memory, compared to inter-SPE bandwidth

Three levels of strip-mining
1. Need to work with DMA access limits (16 KB per access) 

2. Need to work with small local stores (can hold up to 128 KB of data)

3. Need to work with small collective local stores (can hold up to P *128 KB of data)

We employ bitonic sort in all three tiers, SIMDized at all levels
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Out-of-core Distributed SIMD Merge-Sort 

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs
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An  Θ(n lg2 n) sorting algorithm
– Best-case complexity is the same as the worst-case complexity

Advantages
– Fixed computation pattern irrespective of the input data values

• Easy to unroll loops, avoid branches, make use of ILP

– Accesses contiguous memory locations, good for SIMDization

– Ideal for SIMDization using vector shuffle and compare operators

– Fully parallelizable 

complexity with P  processors

Disadvantages
– Sub-optimal asymptotic complexity for the sequential case

Periodic Bitonic Sort Network (PBSN)

)lg( 2 N
P
N

Θ
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Example of sorting 8 integers

lgN phases, i th phase is called k-merge (k=2i ), produces a k-sorted list
k-sorted list = every k-item block is sorted, in alternating directions
A k-merge phase has lgk steps, i th step is called j-k-swap ( j=k/2i ) 
In a j-k-swap, consecutive j-item blocks are compare and swapped, the compare-and-
swap order is switched after each k-item block
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SIMDizing the compare-and-swaps

SIMD comparison instruction t = cmpgt(a, b) used to create a mask t

SIMD select instruction a’ = select(a, b, t) used to yield the smaller of the 
corresponding items of the two vectors (lower half of the compare-and-swap)

SIMD select instruction b’ = select(b, a, t) used to yield the larger of the 
corresponding items of the two vectors (upper half of the compare-and-swap)

In total, the SIMD implementation requires 1 comparison and 2 select 
instructions to complete the compare-and-swap. Total of 3 SIMD instructions.

Furthermore, there are no branches involved !!!

a b

a’ b’

128-bit vector
compare-and-swap

3        4        5        2        9         8        7        6

3        8        5        6 9        4        7        2
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SIMDizing the compare-and-swaps, special cases

When j is smaller than 4 in a j-k-swap, that is (j ∈{1, 2}):
– Blocks to be compare-and-swapped fall into the boundaries of a single vector

– We call these special cases, there are 5 of them
• <j =2, k =4>, <j =2, k ≥ 8>, <j =1, k =2>, <j =1, k =4>, and <j =1, k ≥8>

– These steps require different SIMDization strategies

– Why do we care about these special cases?
• For local sorts (max of 128KB of data), the fraction of j-k-swap steps with j < 4 

constitute at least 18.75% of the total
• When implemented in a scalar fashion, they easily dominate the overall cost

We developed individual SIMDization techniques for each of the five 
special cases
– These involve SIMD shuffle operations

– Two examples follow: <j =1, k ≥ 8> and <j =2, k =4>
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SIMDized compare-and-swaps: <j=1,k≥8>

Total of 7 SIMD instructions, 4 more than the regular case
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SIMDized compare-and-swaps: <j=2,k=4>

Total of 7 SIMD instructions, 4 more than the regular case

Note that the shuffle patterns do not match
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Distributed SIMD Merge-Sort 

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs
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Distributed In-core Bitonic Sort
Perform P local sorts using the bitonic sorting kernel

Use in-core bitonic merge to yield the final result

The key issue is to implement distributed j-k-swaps of the in-core 
bitonic merge, in an efficient manner
– Data transfer patterns 

• Make sure half of the processed data is always local
– Data transfer latencies

• Use double-buffering and async. DMAs to hide latencies
– Synchronization

• Most of the time small barriers are sufficient, avoid global barriers

Let’s see an example to illustrate these techniques
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Distributed in-core j-k-swap

After an in-core distributed j-k-swap, each consecutive 2*j /m
SPEs do a barrier, no global barriers are needed

Remote data (red) is brought into SPE0’s local store one DMA block at a time, using double buffering

Red denote remote data, yellow denote local data

j -k swap, j =2*m, k = 4*m, P = 8
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Distributed SIMD Merge-Sort 

N = number of items to sort

m = number of items that fit into a local store

P = number of processors

L = number of in-core runs
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Distributed Out-of-core Bitonic Sort
Perform L runs using the distributed in-core sort 

Use out-of-core bitonic merge to yield the final result

The key issue is to implement the distributed j-k-swaps of the out-of-
core bitonic merge, in an efficient manner
– Data transfer patterns 

• Different than the in-core sort case, all data is remote and in memory
• Two times the bandwidth of the in-core case is needed, whereas only ~1/8th of the 

cross-SPE bandwidth is available

– Synchronization
• Barriers are not needed between j-k-swaps, but only after k-merges

– Data transfer latencies
• Use double-buffering and async. DMAs to hide latencies (same as earlier)

Let’s see an example to illustrate these techniques



IBM T. J. Watson Research

© 2007 IBM Corporation24 VLDB 2007

Distributed out-of-core j-k-swap

j -k swap, j =4*m, k = 8*m, P = 2, L=8

SPE 0 always processes the yellow blocks, and SPE 1 red blocks

Important: The coloring is fixed over changing j values
– Thus no barriers are needed between j-k-swaps

‘e’ (even) blocks are compare-and-swapped with ‘o’ (odd) blocks

The ‘e’ and ‘o’ labels are different for different j values
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Evaluation Setup
Distributed bitonic sort using up to P = 16 SPEs (3.2GHz) in an IBM QS20 Cell blade
– Alternate sorting kernels: • basic bitonic, • SIMDized bitonic, • shell sort, • quick sort

Single thread quick sort on the PPE (3.2GHz)

Single and dual thread (using OpenMP) quick sort on 3.2GHz Intel Xeon 

Quick sort on 3GHz Intel Pentium 4

Single-thread SSE-enhanced bitonic sort on aforementioned Intels

Sort codes for the Intels were compiled using icc compiler with optimizations on

Sort codes for the Cell were compiled using the gnu tool-chain

Maximum number of items that can be sorted
– using local sort is m = 32K (128KBs of data) 

– using in-core sort is N = P *m = 16 * 32K = 512K (2MBs of data)

– using out-of-core sort is 128M number of items (0.5GB of data), since the memory available 
to us in our test machine was 1GB

In-core and local sorts include the time to transfer items to/from the main memory
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Local Sort Performance

Single-SPE local sort performance

Local sort, integersLocal sort, floats

# items
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Local Sort Cycle Statistics
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In-core Sort Performance

In-core sort, integersIn-core sort, floats

2 2
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Normalized In-core Sort Performance (lower is better)

In-core sort, integersIn-core sort, floats
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Normalized Out-of-core Sort Performance (lower is better)
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Scalability

out-of-core

in-core
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Synchronization Cost
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Related Work

Few implementations of merge sort and shell sort that use SIMD 
compare operations

Sorting on GPUs (Purcell [2003], Govindaraju [2006], etc.)
– Map the input data on the 2-D texture memory (upto 512 MB)

• Every 32-bit float texture element (pixel) can store upto 4 values (channels)

– Use “large-scale” data-parallel programming over the entire texture 
map
• Different than the 128-bit SIMD

– Key advantages over Cell: large memory and cross-vector aggregation 
routines

– MS Research TeraSort paper, SIGMOD 2006.
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Conclusions

CellSort provides high performance at the cost of increased 
complexity in programming
– Distributed programming model, synchronization

– Asynchronous DMA transfers, memory alignment requirements

– Excessive loop unrolling and branch avoidance

Unfortunately, out-of-core sort becomes memory bound
– More SPEs with increased collective local store size

– And/Or, higher bandwidth access to main memory
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Future Plans

Extend to <key, data> pair sorts (easy)

Extend to arbitrary key sizes (alignment is an issue)

Extend to disk-based sorts (need disk arrays and InifiniBand)

Port TeraSort benchmark on the Cell and compare its 
performance against GPUs

Questions?
Contact us for the source code.
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Lessons Learned

Code optimization on Cell is non-trivial
– SIMDization is only the beginning

– Compiler support is very limited for non-numerical applications
• Developers need to think like a compiler

– Control the number of registers to limit register pressure
– Determine the precise extent of unrolling for improving the CPI

– In many cases, unrolling results in modifications to the algorithm

Better performance tools support needed
• Integration of static instruction scheduling information with runtime 

measurements and source code
– Better determination of performance hot spots
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Motivation
Sorting is a key functionality used in a wide variety of application domains
– Large-scale data intensive applications in many fields, ranging from databases to 

computer graphics to scientific computing

– Past studies have explored parallelization and vectorization for massively parallel 
supercomputers

– Few existing implementations use SIMD to accelerate key steps in the sorting function

– No known implementation on a SIMD-only processor (like Cell)

Sorting has been shown to be very effective on GPUs
– Recent work by Govindaraju, Grey et al (SIGMOD’06) on implementing the TeraSort

benchmark on NVIDIA 7800 GT GPU

Goals: 
– To understand issues in developing a scalable and high-performance sorting algorithm on 

the Cell processor

– To get in-depth experience with programming and optimizing for the Cell architecture


