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Motivation

» Random testing techniques have been proved to be
useful for testing large, complex software systems

» The use of random testing in SQL Server has been
valuable for several product releases

» Particularly the use of the RAGS system: S/uetz, D.

Massive Stochastic Testing of SQL, In Proceedings of the 24th VLDB
Conference, (New York USA 1998), 618-622




Challenges

» Query processor testing challenges:
> Practically infinite input space
> Dynamic code paths
- Difficult to test in isolation

» Random testing challenges:
> Ensuring that random tests hit desired targets
> Directing the generation process towards desired targets

» RAGS limitations:

- Generated queries often contain logical contradictions
> Most complex queries don’t return results
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Random testing in SQL Server

» An integral part of our testing process
» Used in parallel with other testing methods

» Random testing has been invaluable:

- Particularly useful during big code restructuring
efforts

- Non-trivial defects are found earlier in the test
development cycle

> Inexpensive way to build very complex test cases




History of Random testing in SQL
Server

» Query compiler architecture changed during
the 2000 release
- Used the RAGS tool developed by Microsoft Research
- Made several extensions since the original version
- Uncovered a large number of defects

» SQL server 2005 included significant changes
in the query processor and many new features

- Used the method presented in the paper in parallel
with RAGS

- The new method discovered 10 times more defects




Example defect in SQL 2005

| SELECT soundex(_s4_) _sO_, atan(_n5_) _nl1_,

i dbo.ufnGetProductStandardCost(_n5_, _d6_) _o2_

1 from

I select [JobCandidatelD] _o8_, [Edu.StartDate] _d7_,

| Edu.EndDate] _d6_, [Edu.Major] _s9_, [Edu.Minor] _s4_,

| Edu.GPA] _s10_, [Edu.GPAScale] _s11_, [Edu.School] _s12_,
: Edu.Loc.CountryRegion] _s13_, [Edu.Loc.State] _s14_,

: Edu.Loc.City] _s15_, Edu.Major] _n16_ ,[ContactlID] n5_ ,
i HumanResources [_viobCandldateEducatlon === ===-

:

|

|

|

TVF1) tO —————
| option (loop join) \

2. XML
» All thxee elements had been tested |%qa?ﬁﬂently

» The s c crgl %pbn of all thiree was not

» The défect'was oun y a cu]stocgllgreZ \%cmléhs later
function
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Method

» A simple genetic algorithm produces SQL queries by
combining or mutating existing ones

» The genetic process is guided by feedback from
query execution against the server under test

» Execution feedback is represented as guery genes

» The algorithm tries to produce new queries with
unique gene combinations

» Defects are found by the self-checking mechanisms
of the server (asserts) and by comparing results with
a trusted/previous version of the server




Test generation process
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SQL Query reproduction

» New queries are produced by mutating or
combining one or more queries from the best

query pool

» Query synthesis techniques are enabled by
the composability of SQL language

» The paper describes a variety of synthesis
techniques; here we present only some basic

examples




Query synthesis using JOIN

SELECT _s12__s13_,_n14_+ _nl14_ _nl15_
FROM
(
SELECT [L_ORDERKEY] _n16_, [L_PARTKEY]
_n17_, [L_LEXTENDEDPRICE] _n18_, [L_DISCOUNT]
_n19_, [L_LTAX] _n20_, [L_LRETURNFLAG] _s21_
FROM tpch100m.dbo.[LINEITEM]
) t0 RIGHT OUTER JOIN (
SELECT [O_TOTALPRICE] _n14_, [O_COMMENT]
_s12_
FROM tpch100m.dbo.[ORDERS]
)t1 ON _s12_> _s21_and _n14_ = _nl6_

o Anew query is created as a JOIN of two basic queries




Query mutation

SELECT max(tt._s12_)
FROM
(
SELECT [O_TOTALPRICE] _n14_,
[O_COMMENT] _s12_
FROM tpch100m.dbo.[ORDERS]
) tt

» A basic query is mutated as a derived table with an
aggregate




Query synthesis using sub-query

SELECT _s12_ _s13_,_n14_+ _n14_ _n15_
FROM
(
SELECT [L_ORDERKEY] _n16_, [L_PARTKEY] [...]
FROM tpch100m.dbo.[LINEITEM]
) tO RIGHT OUTER JOIN (
SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] _s12_
FROM tpch100m.dbo.[ORDERS]
)t1 ON _s12_> _s21_and _nl14_ = _nl6_
WHERE _s12_in
(
SELECT max(tt._s12_)
FROM (
SELECT [O_TOTALPRICE] _n14_, [O_COMMENT] _s12_
FROM tpch100m.dbo.[ORDERS]) tt
WHERE tt._n14_ =t1._nl14_

» Combination of the two previous queries as
sub-query with correlation



Feedback and query genes

» Genes are based on execution feedback
- Execution plan
- Trace information provided by the server

» Query genes describe code coverage:
> Interesting code paths exercised
- The context under which those code paths are exercised

» Examples of genes:

- “exercised the [Left Outer Join to Nested Loops]
optimization rule”

- “exercised hash join operator” + ‘parallel query plan”
o “fine 555 in source file [hash.cpp]’.




Example: iterator coverage feedback

jr=m —

<Iterator PhysicalOp="Sort" LogicalOp= rt" fLob="1">
<NewChange Old="Dormant" New=\Scan rt" Method="Open" />
</Iterator>

<Iterator PhysicalOp="Sort" LogicalOp="®ort" fLob="1
<NewChange 0Old="Scan" New="EOS" Nethod="GetRow"

</Iterator>
[
[terator state Itilraté)r_kt)yge
transitions  &Nd attributes
» Execution feedback provided by the server in the form
of XML trace

e Describes iterator types and their state transitions




Example: Optimization rules

coverage feedback

Rule Succeeded
Join to Nested Loops 3
Left Outer Join to Nested Loops 2
Left Semi-Join to Nested Loops 1
Left Anti-Semi-Join to Nested Loops 0
Join to Hash Join 1
Full Outer Join to Hash Join 0

» Execution feedback is provided by the server via a

system table.

B It describes the set of optimization rules exercised




Query fitness

» The genetic process remembers the set of genes
of each query and its frequency

» During the reproduction process queries with
rare genes are preferred

» New queries with genes seen for the first time
are added to the best guery poo/

» New queries with genes that were seen before,
are still added to the pool
- If they are more readable
- Execute faster
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Evaluation

» We present results from three different experiments:
- With feedback describing optimization rule coverage
- With feedback describing iterator coverage
- Without special feedback

» We also compare results with RAGS

» Experiments were done:
> on a pre-release version of SQL Server 2008
> using a database from TPC-H
- over a period of 48 hours

» Code cc_)vera%e was measured in unique function
invocations (

unction, function-caller pairs)




Overall Function Coverage

Different feedback strategies
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Overall Function Coverage

Genetic method vs. RAGS
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Summary

» We discussed how random testing is used in
SQL Server

» We presented a new practical technique for
random test case generation, which
outperforms previous methods

» We showed that the use of different types of
execution feedback improves the
effectiveness of random testing




Questions?




