
Inverse Functions in the AquaLogic
Data Services Platform

Nicola Onose (UCSD)
joint work with

Vinayak Borkar and Michael Carey (BEA Systems)

2

Outline

• Background on AquaLogic Data Services Platform

• Motivating Example

• Using Inverse Functions

• Implementation

• Experiments

• Conclusions

3

Intro

• Legacy applications: relational DB + business objects
implementing application logic

• Web applications need to integrate data

• A first solution: Web services.

• Disadvantage: black boxes, no information regarding the
semantics underneath

• A second step: data services

• AquaLogic Data Services Platform (ALDSP) uses data
services to integrate data coming from various sources

4

Data Services

• Modeling data with data services:
service = schema + set of XQuery functions (methods)

– read methods

– navigation methods

• Data service ≈ view (in the classical DB world)

• Data service methods typically contain data
transformations (function calls).

• Generic functions vs. optimizations ⇒ in this talk

DataService

getA()

getB()

DB

File

WebService

5

Query Processing: The Big Picture

• start from the data sources

DB File WebService

DB

DB

XQuery Query Plan

SQL Query Plan

• build a hierarchy of services

• query plan ⇐⇐⇐⇐ function inlining / view unfolding

6

Our Problems and Approach

• Services can use external functions when building
views over the physical data. (examples later)

• Query plan may contain selections or joins over views.

• If functions not supported by the DB

– conditions cannot be pushed to the DB engine

– mediator needs to do all the work (kills most of ALDSP
optimizations)

• Also, such views are non-updatable.

• Use inverse functions and other function properties to
enable optimizations and updates.

• How: explained in this talk.

7

Step 1: mapping the source data into XML

• West Customers example: accessing the data
(job placement firm)

CREATE TABLE WESTCUSTOMER (
CUSTID VARCHAR(10) NOT NULL,
FNAME VARCHAR(20),
LNAME VARCHAR(20),
MONTHLYSAL INTEGER,
HIRED INTEGER);

data stored in a
relational table

XML view
(using default mapping)
= a physical service in

ALDSP terminology

8

Step 2: design and implement the data service

• West Customers example: adding application logic

Dashed arrows: the target element is created by a transformation
(described later)

9

Step 2: design and implement the data service

• West Customers example: adding application logic

10

Read method example

• West Customers example

• Read method implemented as a selection over the view

declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)* {
for $WestCustomerView0 in ns1:getWestCustomers()

where $WestCustomerView/dateHired lt $beforedate
return $WestCustomerView0

};

11

View Unfolding

• Inline XQuery functions

declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)* {
for $WestCustomerView0 in ns1:getWestCustomers()

where $WestCustomerView/dateHired lt $beforedate
return $WestCustomerView0

};

ns1:getWestCustomers()

12

After View Unfolding

• a call to getOldWestCustomers expands into …

declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)* {
for $WestCustomerView0 in
(for $WESTCUSTOMER in ns2:WESTCUSTOMER()

return
<ns0:WestCustomerView>
…………..
<dateHired>

{ns4:y2kdate($WESTCUSTOMER/HIRED)}
</dateHired>

</ns0:WestCustomerView>)
where $WestCustomerView0/dateHired lt $beforedate
return $WestCustomerView0

};

(for $WESTCUSTOMER in ns2:WESTCUSTOMER()
return

<ns0:WestCustomerView>
…………..

<dateHired>
{ns4:y2kdate($WESTCUSTOMER/HIRED)}

</dateHired>
</ns0:WestCustomerView>)

13

External Function Calls Preclude Optimizations

declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)* {
for $WestCustomerView0 in
(for $WESTCUSTOMER in ns2:WESTCUSTOMER()

return
<ns0:WestCustomerView>
…………..

<dateHired>
{ns4:y2kdate($WESTCUSTOMER/HIRED)}

</dateHired>
</ns0:WestCustomerView>)

where ns4:y2kdate($WESTCUSTOMER/HIRED) lt $beforedate

return $WestCustomerView0
};

for $WestCustomerView0 in

where ns4:y2kdate($WESTCUSTOMER/HIRED) lt $beforedate

SELECT * FROM
WESTCUSTOMER

Full scan of the DB!

WESTCUSTOMER
DB

14

The Problem

• Some transformations are implemented by external
functions (e.g. written in Java)

• Consequence:

– bottleneck in pushing the queries to the underlying sources

– no declarative way of updating the views

• But if functions are invertible and their inverses are
declared as such, it is often possible to rewrite into an
equivalent condition that can be pushed to the source.

• e.g. y2kdate($WESTCUSTOMER/HIRED) lt $beforedate

≡

$WESTCUSTOMER/HIRED lt y2kdays($beforedate)

15

Optimized Query Plan

declare function ns1:getOldWestCustomers
($beforedate as xs:dateTime)

as element(ns0:WestCustomerView)* {
for $WestCustomerView0 in
(for $WESTCUSTOMER in ns2:WESTCUSTOMER()

return
<ns0:WestCustomerView>
…………..

<dateHired>
{ns4:y2kdate($WESTCUSTOMER/HIRED)}

</dateHired>
</ns0:WestCustomerView>)

where $WESTCUSTOMER/HIRED lt ns4:y2kdays($beforedate)
return $WestCustomerView0

};

WESTCUSTOMER
DB

where $WESTCUSTOMER/HIRED lt ns4:y2kdays($beforedate)

SELECT * FROM WESTCUSTOMER t
WHERE t.HIRED < ?

for $WestCustomerView0 in

16

Optimized Rewriting

• How are optimizations enabled?

• Solution idea: declare which functions can invert the
transformations and how they can be used.

⇔

to f(x,y,..) associate inverses fx
-1, fy

-1, …

and ways of rewriting E1(f(x,y,..)) → E2(fx
-1 (u), fy

-1(u),…)

• Inverses and transforms are, in general, registered by
the user, helped by the UI.

• Certain properties can be inferred, based on
monotonicity.

17

• To a given function, one can associate:

– an inverse

e.g.: y2kdays is the inverse of y2kdate

– a set of equivalent transforms, describing how the inverses
behave
e.g.: y2kdate(h) lt x ≡ h lt y2kdays(x)
(in this case, the inverse preserves monotonicity)

Rewrites(1:1)

18

Rewrites(1:N)

• The same thing can be done for 1:N transformations

declare function ns1:getWestCustomersByName($fullname) {
for $WestCustomerView in ns1:getWestCustomers()
where $WestCustomerView/fullname = $fullname
return

$WestCustomerView
};

• several inverses (one inverse for each input parameter)

19

Rewrites(1:N)

• After inlining and simplifications

declare function ns1:getWestCustomersByName($fullname) {
for $WESTCUSTOMER in ns2:WESTCUSTOMER()
where ns3:fullname($WESTCUSTOMER/LNAME,

$WESTCUSTOMER/FNAME)
eq $fullname

return
<ns0:WestCustomerView>
…………..
</ns0:WestCustomerView>

};

ns3:fullname($WESTCUSTOMER/LNAME,
$WESTCUSTOMER/FNAME)

eq $fullname

• We know that

fullname() has lname(), fname() as inverses and
fullname($l,$f) eq $n ≡ $l eq lname($n) and $f eq fname($n)

$WESTCUSTOMER/LNAME eq ns3:lname($fullname)
and
$WESTCUSTOMER/FNAME eq ns3:fname($fullname)

20

Updates

• Inverse functions not only permit pushing selections and
joins, but also allow updating views.

• example

• more details in [V.Borkar, M.Carey, D.Lychagin, T.Westmann,

D.Engovatov, N.Onose VLDB2006]

map to XML

dateHired � y2kdate(HIRED)

Westcustomer
DB

Westcustomer-
View

Westcustomers.
getWestCustomers()

update dateHired

follow
lineage

?

y2kdays =
y2kdate-1

21

Implementation Challenges

• Rewrites declared as equivalences of expressions
containing free variables

• Termination of the rewriting process is undecidable

• Simple restrictions (such as acyclicity) are unsatisfactory
as they disallow certain usecases.

• See paper for details.

22

Solution

• Consider each transform as a directed rule:
e.g. y2kdate(h) lt x → h lt y2kdays(x)

• Analyze graph of dependencies between pairs of
invertible functions and boolean operators
examples of nodes: (lt, y2kdate), (eq, fullname) etc
examples of edges: (lt, y2kdate) → (lt, y2kdays)

• Compute a heuristic bound on the number of rule
applications, based on

– the graph

– the total number of invertible functions

• Incomplete strategy (the problem is undecidable), but
captures a significant number of test cases.

23

Experiments

125 ms5 ms7 ms8 msYesYes

125 ms15 ms250 ms2600 msNoYes

125 ms125 ms1500 ms14400 msNoNo

compile
time

1K
customers

10K
customers

100K
customers

IndexesInverses

Times for calling getWestCustomersByName(), in various settings

• for each table size, the call returned one XML element
corresponding to one tuple in the DB

• indexed case: a composite index on (LNAME, FNAME)

• even when no index ⇒ visible improvement
(DB engine performs a scan) (less materialization, less work on mediator)

24

Related Work

• very little (surprisingly)

• OpenLink: a system that allows registering inverses for
(monotonic) SQL functions

• ADT-Ingres, Postgres: enable indexes based on abstract
data types

25

Conclusions

• External function/service calls are usually opaque to DB
optimizations

• Inverse functions together with transforms enable
optimizations in a declarative way

• Implementation

– carried out as part of a summer project

– part of the ALDSP product since version 2.5

• Future work:
– better strategies for rewriting

– a formal study of optimality of using inverse function

26

� Download: http://www.bea.com,
follow links to Products/ALDSP

� Docs. for using the feature (in dev2dev):
http://edocs.bea.com/aldsp/docs25/

