Request Window:

an Approach to Improve Throughput of
RDBMS-based Data Integration System by Utilizing Data
Sharing Across Concurrent Distributed Queries

Rubao Lee, Minghong Zhou, Huaming Liao
lirubao@software.ict.ac.cn

Institute of Computing Technology
Chinese Academy of Sciences

VLDB 2007 éﬁ'&'f} FOBIEATRLFLA

Outline

Motivation: To Improve DQP Throughput

Solution: Request Window

Evaluation: Distributed TPC-H Queries

Classification: Data Sharing Mechanisms

Conclusion: Summary and Future Work

Typical Data Integration Service

J 3

From DBMS to Data Integration System

The Key: Distributed Query Processing (DQP)

New Leaf Node in Query Plan Tree

TableScan RemoteScan
Interacting with - Interacting with
storage devices data source wrappers

SegScan,IndexScan,BitmapScan Issuing data requests / fetching results

Leaf Node Data Source

RemoteScan g Wrapper

IBM DB2 Information Integrator/ MS SQL Server 2005/ IGNITE

GOAL: Increase Overall DQP Throughput

* Only Consider how to execute a single query faster
— Distributed Query Optimizer
— New Join Algorithms

— Adaptive Query Processing NOT ENOUGH l

The key problem

How to execute multiple concurrent queries more

efficiently ?

Data Sharing Is Important for DQP

Utilizing data sharing across concurrent queries to
hide unnecessary 1/0O operations

Two factors of Distributed Query Processing

Network Speed, Source Burden

- Reducing unnecessary network transfers

- Reducing burdens of data sources

Data Sharing inside DBMS

« DBMS’s query execution model:
— One connection, one process
— Execute each query in an independent process

— Use a global buffer pool manager

 Foundation: Memory-Disk

— Concurrent query processes can share disk pages!
— Page Replacement Algorithm (LRU, ARC, 2Q, LIRS,...)

But, No Mem/Disk Hierarchy for DQP

 DQP inherits the underlying execution model
— Independently executing each distributed query

* But, no available buffer pool manager

e Data sources are not for random-access!

— Issue a SQL and fetch a resultset (DBMS)
— Issue a HTTP request and get a response (WebPage)
— Issue a SOAP message and get a SOAP message (SOA)

No data sharing for DQP

* Each query execution process has to interact with
data sources independently!

Redundant data requests issued to data sources
Redundant result data transferred over network Y

The total throughput is limited
by network speed and computing power of sources!

Outline

Motivation: To Improve DQP Throughput

Solution: Request Window

Evaluation: Distributed TPC-H Queries

Classification: Data Sharing Mechanisms

Conclusion: Summary and Future Work

10

Overview of Request Window

 Request Window: a batch-processing approach

— Combining multiple data requests and dispatching results

Queryl Query2 Query3

i

- Wrapper y.

Start-Fetch Wrapper

Foundation of Request Window

 Main idea: Decouple wrappers from query engine
— A wrapper is in an independent process
— Use IPC to connect wrappers and query engine

 Two Phases: by iterator model
— Start: engine sends data request to wrapper (open)
— Fetch: engine fetches result tuples from wrapper (next)

12

Two Benefits of Start-Fetch

e Parallelized query execution:

— Wrappers can prefetch next tuples while query engine is
consuming old tuples.

 The independent wrapper process can be a
common place for multiple query engine processes.

— The global buffer pool manager in DBMS!

— Data sharing of multiple query processes can be
possible!

13

What’s A Request Window?

* Each data request will be inserted into a corresponding
waiting queue (a request window):

* The data request will not be issued immediately

e At a time, the wmdow will be issued:

1: Combining all a common request:
» Select (e (predict);
* Gene
2: Sendin rce and receiving
resultse

3: Dispatchin
process

articipating query engine

14

Window Size

Window Size: from window-creating to window-issuing!

How to determine the window size?

A large window size:
More data requests can be collected.

But, early requests have to wait! (unfair)

15

To Determine Window Size

* DIOP: Delay Indicated by OPtimizer

— Let the query optimizer indicate a tolerable delay
time for each data request

* DAW: Dynamically Adjusting Window

— Adjust the window size when a new data request
arrives

16

DIOP: Why a request can be delayed?

The iterator model : tuple fetching on demand!

ORDERSNX LINEITEM X PARTSUPP

time
R Scan 1
ORDERS LINEITEM
v R Scan 3
R_Scan 2:
ARTSUPS | am waiting for
Hash 2. \ 4

The execution can be divided into several phases

| am waiting for Hash .

1.

DIOP: How long a request can be delayed?

pipelined data fetch

Be ready for your tuples when | need them!

ID: Initial Delay

WO: Wait Opportunity

Maximized Delay Time of a request R generated by a leaf node N

MDTY = WOy — IDj

18

DIOP: Algorithm-Related-Delay

* “Wait Opportunity” of a node N

— Fornon-root node: W, = W0, + ARDy
* ARD: Algorithm Related Delay

time

Fetch Parent node’s tuples Fetch this node’s tuples

e Different relational operators have different ARDs
— Hashjoin/Mergejoin
— Union/intersection/difference

19

DIOP: Estimation for Hash-Join Tree

Leaf deep hash-join tree M’N‘ Right deep hash-join tree

Finishing all thes ests wait opportunity?

Only consider time for data transfers over network

DAW: Dynamically Adjust Window

e Remember the goal: to determine window size
* DIOP is just the first step:

— Each data request has an annotation of its maximized
delay time

* A coordinator is required to determine the window
size on the basis of delay times of all participating
requests

Adjust window size when a new request arrives

21

DAW: Mechanism and Policy

* A background working-thread (wakes up : 1 second)
— Resetting window size (if not ready)
— Issuing window (if time out)

* Window Adjusting Policy (when a new request arrives)
— Emergency-oriented policy
WS = MDT if MDT < WS

— Throughput-oriented policy (DSS Queries)
WS X RC + MDT

WS =
RC+1

WS: Window Size

MDT: Maximized Delay
Time of the new request

if MDT < WS RC:number of requests
in the current window

The window size will never be increased!

22

Outline

Motivation: To Improve DQP Throughput

Solution: Request Window

Evaluation: Distributed TPC-H Queries

Classification: Data Sharing Mechanisms

Conclusion: Summary and Future Work

23

Experiments Setup

IGNITE: on top of PostgreSQL
TPC-H: 100MB (scale 0.1)

IGNITE Machine:
— Intel P4 Xeon 2.4GHz x4, 2GB Mem, Linux 2.4.18 SMP

Data source Machines:

— Intel P4 2.8GHz, 512MB Mem, Freebsd 5.4

— PostgreSQL

— Each TPC-H table is provided by a data source

100M LAN

Improvement of Overall Throughput

600

Throughput(queries/hour)
N
S
=

—

—

el IGNITE with Request Window
. IGNITE
—h— DBMS X
|
0 2 4 6 8 10

Number of Clients

12

Up to a 1.7x speedup

25

Outline

Motivation: To Improve DQP Throughput

Solution: Request Window

Evaluation: Distributed TPC-H Queries

Classification: Data Sharing Mechanisms

Conclusion: Summary and Future Work

26

Related Data Sharing Techniques

 Two Correlated Factors:
— Restriction on interarrival times (deadline for sharing)
— Amount of shared data (We can share data, but how much?)

Request
Table Scan Window
Piggybacking

N N restriction!

All queries must arrive simultaneous|yé=

Amount of
Shared Data

Page
caching

Restriction on Interarrival Times

27

This is a rough comparison!

Discussions and Future Work

* |naword:

Improve total throughput without sacrificing the response
time of individual query execution

 Request Window is suitable for running concurrent DSS queries

* |tis hard to make exactly estimation for delay opportunities
 Add Window Notification Mechanism

* Monitoring query execution progress

* Notifying wrapper to issue window

28

Thank You

