
Request Window:

an Approach to Improve Throughput of

RDBMS-based Data Integration System by Utilizing Data

Sharing Across Concurrent Distributed Queries

Rubao Lee, Minghong Zhou, Huaming Liao

lirubao@software.ict.ac.cn

Institute of Computing Technology

Chinese Academy of Sciences

VLDB 2007 1

Outline

• Motivation: To Improve DQP Throughput

• Solution: Request Window

• Evaluation: Distributed TPC-H Queries

• Classification: Data Sharing Mechanisms

• Conclusion: Summary and Future Work

2

3

Typical Data Integration Service

Middleware? Virtual DBMS? InfoGrid?Middleware? Virtual DBMS? InfoGrid?

From DBMS to Data Integration System

The Key: Distributed Query Processing (DQP)

4

TableScan
Interacting with

storage devices
SeqScan,IndexScan,BitmapScan

RemoteScan
Interacting with

data source wrappers
Issuing data requests / fetching results

New Leaf Node in Query Plan TreeNew Leaf Node in Query Plan Tree

Data Source

Wrapper

Data Source

Wrapper
Data

Source

Data

Source
Leaf Node

RemoteScan

Leaf Node

RemoteScan

IBM DB2 Information Integrator/ MS SQL Server 2005/ IGNITE

• Only Consider how to execute a single query faster

– Distributed Query Optimizer

– New Join Algorithms

– Adaptive Query Processing

5

GOAL: Increase Overall DQP Throughput

How to execute multiple concurrent queries more

efficiently ?

The key problem

Utilizing data sharing across concurrent queries to

hide unnecessary I/O operations

Two factors of Distributed Query Processing

Network Speed, Source Burden

� Reducing unnecessary network transfers

� Reducing burdens of data sources

6

Data Sharing Is Important for DQP

• DBMS’s query execution model:

– One connection, one process

– Execute each query in an independent process

– Use a global buffer pool manager

• Foundation: Memory-Disk

– Concurrent query processes can share disk pages!

– Page Replacement Algorithm (LRU, ARC, 2Q, LIRS,…)

7

Data Sharing inside DBMS

• DQP inherits the underlying execution model

– Independently executing each distributed query

• But, no available buffer pool manager

• Data sources are not for random-access!

– Issue a SQL and fetch a resultset (DBMS)

– Issue a HTTP request and get a response (WebPage)

– Issue a SOAP message and get a SOAP message (SOA)

8

But, No Mem/Disk Hierarchy for DQP

9

No data sharing for DQP

• Each query execution process has to interact with

data sources independently!

Redundant data requests issued to data sources

Redundant result data transferred over network

The total throughput is limited

by network speed and computing power of sources!

Outline

• Motivation: To Improve DQP Throughput

• Solution: Request Window

• Evaluation: Distributed TPC-H Queries

• Classification: Data Sharing Mechanisms

• Conclusion: Summary and Future Work

10

• Request Window: a batch-processing approach

– Combining multiple data requests and dispatching results

11

Overview of Request Window

Foundation of Request Window

• Main idea: Decouple wrappers from query engine

– A wrapper is in an independent process

– Use IPC to connect wrappers and query engine

• Two Phases: by iterator model

– Start: engine sends data request to wrapper (open)

– Fetch: engine fetches result tuples from wrapper (next)

12

Start-Fetch Wrapper

• Parallelized query execution:

– Wrappers can prefetch next tuples while query engine is

consuming old tuples.

• The independent wrapper process can be a

common place for multiple query engine processes.

– The global buffer pool manager in DBMS!

– Data sharing of multiple query processes can be

possible!

13

Two Benefits of Start-Fetch

• Each data request will be inserted into a corresponding
waiting queue (a request window):

• The data request will not be issued immediately

• At a time, the window will be issued:

1: Combining all requests into a common request:

• Select (columns) from a_table where (predict);

• Generating a synthesized where clause.

2: Sending the request to the data source and receiving
resultset

3: Dispatching resultset to each participating query engine
process

14

What’s A Request Window?

When?

15

Window Size

Window Size: from window-creating to window-issuing!

How to determine the window size?

A large window size:

More data requests can be collected.

But, early requests have to wait! (unfair)

• DIOP: Delay Indicated by OPtimizer

– Let the query optimizer indicate a tolerable delay

time for each data request

• DAW: Dynamically Adjusting Window

– Adjust the window size when a new data request

arrives

16

To Determine Window Size

The iterator model : tuple fetching on demand!The iterator model : tuple fetching on demand!

17

DIOP: Why a request can be delayed?

Hash

Join 1

Hash

Join 1

Hash Join

2

Hash Join

2

Hash 1

Hash 2R_Scan 1:

ORDERS

R_Scan 2:

PARTSUPP

R_Scan 3:

LINEITEM

ORDERS⋈ LINEITEM ⋈ PARTSUPP

time
R_Scan 1

R_Scan 2

R_Scan 3

I am waiting for Hash

1.

I am waiting for

Hash 2.

The execution can be divided into several phases

pipelined data fetch

Be ready for your tuples when I need them!

18

DIOP: How long a request can be delayed?

ID: Initial Delay WO: Wait Opportunity

Maximized Delay Time of a request R generated by a leaf node N

• “Wait Opportunity” of a node N

– For non-root node:

• ARD: Algorithm Related Delay

• Different relational operators have different ARDs

– Hashjoin/Mergejoin

– Union/intersection/difference

19

DIOP: Algorithm-Related-Delay

Fetch Parent node’s tuples Fetch this node’s tuples

time

20

DIOP: Estimation for Hash-Join Tree

Leaf deep hash-join tree Right deep hash-join tree

Only consider time for data transfers over network

wait opportunity?
Finishing all these requests

• Remember the goal: to determine window size

• DIOP is just the first step:

– Each data request has an annotation of its maximized

delay time

• A coordinator is required to determine the window

size on the basis of delay times of all participating

requests

Adjust window size when a new request arrives

21

DAW: Dynamically Adjust Window

• A background working-thread (wakes up : 1 second)

– Resetting window size (if not ready)

– Issuing window (if time out)

• Window Adjusting Policy (when a new request arrives)

– Emergency-oriented policy

WS = MDT if MDT < WS

– Throughput-oriented policy (DSS Queries)

22

DAW: Mechanism and Policy

The window size will never be increased!

WS: Window Size

MDT: Maximized Delay

Time of the new request

RC: number of requests

in the current window

Outline

• Motivation: To Improve DQP Throughput

• Solution: Request Window

• Evaluation: Distributed TPC-H Queries

• Classification: Data Sharing Mechanisms

• Conclusion: Summary and Future Work

23

• IGNITE: on top of PostgreSQL

• TPC-H: 100MB (scale 0.1)

• IGNITE Machine:

– Intel P4 Xeon 2.4GHz x4, 2GB Mem, Linux 2.4.18 SMP

• Data source Machines:

– Intel P4 2.8GHz, 512MB Mem, Freebsd 5.4

– PostgreSQL

– Each TPC-H table is provided by a data source

• 100M LAN

24

Experiments Setup

25

Improvement of Overall Throughput

0

100

200

300

400

500

600

0 2 4 6 8 10 12

Number of Clients

T
h
r
o
u
g
h
p
u
t(

q
u
e
r
ie

s/
h
o
u
r
)

SIGMODXYZ with Request Window

SIGMODXYZ

DBMS X

Up to a 1.7x speedup

Outline

• Motivation: To Improve DQP Throughput

• Solution: Request Window

• Evaluation: Distributed TPC-H Queries

• Classification: Data Sharing Mechanisms

• Conclusion: Summary and Future Work

26

• Two Correlated Factors:

– Restriction on interarrival times (deadline for sharing)

– Amount of shared data (We can share data, but how much?)

27

Related Data Sharing Techniques

Restriction on Interarrival Times

Amount of
Shared Data

Request

WindowTable Scan

Piggybacking

Multi Query

Optimization
All queries must arrive simultaneously!

This is a rough comparison!

Page

caching

No restriction!

• In a word:

Improve total throughput without sacrificing the response

time of individual query execution

• Request Window is suitable for running concurrent DSS queries

28

Discussions and Future Work

• It is hard to make exactly estimation for delay opportunities

• Add Window Notification Mechanism

• Monitoring query execution progress

• Notifying wrapper to issue window

29

Thank You

