
<Insert Picture Here>

Supporting Time-Constrained SQL Queries in Oracle

Ying Hu, Seema Sundara, Jagannathan Srinivasan
Oracle New England Development Center

One Oracle Drive, Nashua, NH 03062

VLDB 2007 2

Talk Outline

• The Problem and Our Approach

• Time-constrained SQL Queries

• Supporting Time-constrained SQL Queries

• Performance Study

• Conclusions

VLDB 2007 3

<Insert Picture Here>

The Problem and
Our Approach

VLDB 2007 4

The Problem

• Databases are growing

• Giga Bytes � Tera Bytes � Peta Bytes

• Arbitrarily complex queries

• Using SQL (JOINs, GROUP BY, ORDER BY, etc.)

Resulting in

�Long running SQL Queries

�Unpredictable Query Response Time

VLDB 2007 5

The Problem

• Thus, the current scheme of issuing a SQL query and
letting it take whatever time (and resources) to

complete is unsatisfactory especially when the user is
constrained by time.

TIME IS MONEY

VLDB 2007 6

Prior Approaches for Time Constraints

• Return first few (or top-k) rows
[SIGMOD 1997] M. Carey, D. Kossmann:

On saying “enough already!” in SQL.

• Augment the query with a range predicate

[VLDB 1999] S. Chaudhuri, L. Gravano:
Evaluating Top-k Selection Queries.

[VLDB 1999] D. Donjerkovic, R. Ramakrishnan:
Probabilistic Optimization of Top N Queries.

• For joins, generate results ordered on a rank function

[VLDB J. 2004] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid:
Supporting Top-k Join Queries in Relational Databases.

• In Oracle,

• ROWNUM clause to express top-k queries

• The hint /*+ FIRST_ROWS */ to indicate that query be
optimized for first few rows

VLDB 2007 7

Prior Approaches for Time Constraints

• Compute Approximate Results

• return approximate results by use of sampling,

histograms etc.

• employed for online aggregation, includes estimating

errors in reported results (e.g. confidence intervals)

[SIGMOD 1997] J. M. Hellerstein, P. J. Haas, H. J. Wang:

Online Aggregation.

[DMKD 2000] J. M. Hellerstein, R. Avnur, V. Raman:

Informix under CONTROL: Online Query Processing.

• In Oracle, SAMPLE clause to indicate only portion of a table be
used

VLDB 2007 8

The Problem Remains

• The onus is on user to employ these

approaches intelligently!

Not easy to translate a time constraint to equivalent

• a first-few (top-k) rows query

or

• an approximate query

VLDB 2007 9

Our Approach

• Introduce a time-constraint clause to SQL

SELECT Query that specifies

• Type of constraint: Soft or Hard

• Time limit: in seconds

• Acceptable Nature of results: partial or approximate

• Let the Database System do the needed

transformation to execute the query in

specified time limit

VLDB 2007 10

Our Approach

• The transformed query returns either

• first-few (top-k) rows, or

• approximate results

• Both of which are expected (guaranteed) to

complete in the specified time limit for soft

(hard) time constraint

VLDB 2007 11

<Insert Picture Here>

Time-constrained
SQL Queries

VLDB 2007 12

A New Time Constraint Clause

SELECT … FROM …

WHERE …

GROUP BY … HAVING …

ORDER BY …

[[SOFT |HARD] TIME CONSTRAINT (T)
[WITH { APPROXIMATE | PARTIAL} RESULT]

];

VLDB 2007 13

An Example

• A time constrained SQL query

SELECT AVG(salary)

FROM employees

SOFT TIME CONSTRAINT (50)
WITH APPROXIMATE RESULT;

• Query after rewrite may be transformed into

SELECT AVG(salary)

FROM employees SAMPLE BLOCK (10);

VLDB 2007 14

Soft Time Constraint Definition

Definition:

A query Q with a soft time constraint of t sec

⇒Testimated_by_optimizer (Q’) BETWEEN t-d AND t,

where d is a small time unit and

Q’ is the transformed query

VLDB 2007 15

Hard Time Constraint Definition

Definition:

A query Q with a hard time constraint of t sec

⇒Telapsed (Q’) <= t, ,

where Q’ is the transformed query

VLDB 2007 16

Functions for Estimating Aggregates and

Corresponding Confidence Interval Values

• For queries returning approximate results
• Provide functions for estimating aggregates over the entire

table

• estimatedSum, estimatedCount, estimatedAvg

• Provide ancillary functions to return the confidence interval
associated with each aggregate function

• sumConfidence, countConfidence, avgConfidence

The confidence interval functions are based on Central
Limit Theorem or Hoeffding’s inequality

[SSDBM 1997] P. J. Haas:
Large-Sample and Deterministic Confidence Intervals for
Online Aggregation

VLDB 2007 17

Functions for Estimating Aggregates and

Corresponding Confidence Interval Values

Example

SELECT COUNT(*) SAMPLECOUNT,

estimatedCount(*) ESTIMATEDCOUNT,
countConfidence(*, 95) COUNTCONFIDENCE

FROM employees SOFT TIME CONSTRAINT(5)
WITH APPROXIMATE RESULTS;

Result

SAMPLECOUNT ESTIMATEDCOUNT COUNTCONFIDENCE

207000 1200900 14000

VLDB 2007 18

<Insert Picture Here>

Supporting
Time Constrained
SQL Queries

VLDB 2007 19

Scheme for Supporting Soft-Time
Constraint Queries

• Basic Idea:
• Transform the input query by augmenting either with

• ROWNUM clause that reduces the result set size, OR

• SAMPLE clause that reduces the data blocks scanned OR
the intermediate result size returned from the referenced
table(s)

• The resulting query is executed, which is expected to finish
sooner

• The challenge:

• If ROWNUM clause used - estimating result set cardinality

• If SAMPLE clause used - estimating table sample size, as
well as deciding the list of tables for which sampling should
be done (in case of multi-table queries)

• Ensuring that the estimated time for resulting query satisfies
the time-constraint

VLDB 2007 20

Query Transformation: Sampling
Referenced Tables

IF original query is

SELECT … FROM T
WHERE …

THEN the transformed query becomes

SELECT … FROM T SAMPLE BLOCK(n)
WHERE …

VLDB 2007 21

Estimating Sample Size

• The function fQ, which represents time to execute
query Q depends on sample size s.

• Thus, fQ(s) = t, where t is the specified time-
constraint.

• The desired s is a root of equation

fQ(s) – t = 0

and is obtained using a root finding algorithm

• Note: Oracle’s cost-based optimizer’ EXPLAIN PLAN
facility is used to estimate fQ(s) for a given s.

VLDB 2007 22

Estimating Sample Size: Details

1. Obtain estimated query time (by consulting
optimizer) say TQ for original query Q

2. If TQ < t then STOP. No transformation needed

3. If TQ > t then obtain estimated query time TQ’ , where

Q’ is augmented query with minimum sample size

4. If TQ’ > t then return ‘ERROR: NEED MORE TIME’.

5. Iterate (using root-finding algorithm)

till the estimated time is BETWEEN t-d AND t

5. Return the current s

VLDB 2007 23

Sampling Based Query Transformation
for Multi-table Joins w/ Foreign Keys

• For table joined via foreign key add sampling clause
only to the largest fact table (Aqua System from Bell Labs)

• It is because a uniform random sample over foreign-
key joins of tables can be achieved through a uniform

random sampling over the largest fact table and then
joining with other dimension tables

[SIGMOD 1999] S. Acharya, et al :

Join Synopses for Approximate Query Answering.

VLDB 2007 24

Sampling Based Query Transformation
for Multi-table Joins w/o Foreign Keys

• The goal is to have as many resulting rows as
possible, or have as many rows as possible in the

resultant joins for aggregate queries

• Thus, maximize f1 * f2, where f1 and f2 are the sample

sizes for the two tables

• Case 1: Nested Loop Join:

It can be proved that the sample clause should be put into only

the outermost relation, i.e. f2 = 1, no sampling over the inner
relations

VLDB 2007 25

Sampling Based Query Transformation
for Multi-table Joins w/o Foreign Keys

• Case 2: Hash Join:

• Compute sampling size f1 and f2 such that

f1*T1 = f2*T2 ,

where T1 and T2 are times used to process the two tables
being joined because this will maximize f1*f2

• Case 3: Sort-Merge Join:

• Since sort has a time complexity of O(nlogn), there is no easy
solution for sort-merge join. We adapt the above technique of
making f1*T1 = f2*T2

VLDB 2007 26

Sub-query Processing

• SELECT *

FROM employees outer

WHERE outer.salary >

(SELECT AVG(inner.salary)

FROM tax_return inner)

SOFT TIME CONSTRAINT (10);

• Try not to push sample clause into the sub-query,
because it can cause an approximate predicate

• Otherwise, the time allocated to each stage is
determined through linear interpolation

VLDB 2007 27

Scheme for Supporting Hard-Time
Constraint Queries

• Basic Idea:

• Transform the input query by treating the specified time limit as
soft-constraint

• The estimated time for the transformed query meets the
specified time limit

• Generate execution plan and use the estimated time information
for various operations to associate timers as follows:

• A timer for top-level operation with time set to specified time
limit

• A timer for every blocking sub-operation with time set to
estimated time for corresponding operation in execution plan

VLDB 2007 28

Scheme for Supporting Hard-Time
Constraint Queries: Example

• TPC-H Q14: Promotion effect query

SELECT 100.00 * sum (CASE WHEN p_type LIKE
‘PROMO%’ THEN l_extendedprice * (1 - l_discount)
ELSE 0 END) / sum(l_extendedprice * (1 -
l_discount)) AS promo_revenue

FROM lineitem, part

WHERE l_partkey = p_partkey AND

l_shipdate >= date ‘1995-09-01’ AND

l_shipdate < date ‘1995-09-01’ + interval ‘1’ month

HARD TIME CONSTRAINT (300);

VLDB 2007 29

Scheme for Supporting Hard-Time
Constraint Queries: Example

10

270

300

300

300

Estimated

Time

PARTTABLE ACCESS FULL4

LINEITEMTABLE ACCESS FULL3

HASH JOIN2

SORT AGGREGATE1

SELECT STATEMENT0

…NameOperationId

• Timers

• Id 0: Top level time set to 300 seconds

• Id 1: Blocking sub-operation timer set to 300 seconds

• Id 3: Blocking sub-operation timer set to 270 seconds

VLDB 2007 30

Leveraging Oracle’s Cost-based
Optimizer

• Object Statistics:
• Number of blocks, number of rows for tables

• Height of a B-tree indexes, etc.

• System Statistics:
• Average number of CPU cycles/sec

• Average time to read a single block (random read)

• Average time to read multi-blocks (sequential read), etc.

• EXPLAIN PLAN
• Utilizes Statistics collected to calculate CPU and I/O costs for

each access method in a SQL query

• It returns optimal execution plan as well as estimated time for
query execution

VLDB 2007 31

<Insert Picture Here>

Performance Study

VLDB 2007 32

Experiments: TPC-H

• Platform:
• Intel P4 3.0Ghz with Hyper-Threading,

2GB main memory, and 80GB hard disk

• Redhat Enterprise Linux 3 and Oracle Database 10g Release
2 Enterprise Edition

• Key Database Parameters:
• db_block_size=8192, db_cache_size=160M

• Data Set
• TPC-H database size of about 10GB, consisting of 8 tables

• LINEITEM table is the biggest and has ~60 million rows

• ORDERS table is the second largest with 15 million rows

VLDB 2007 33

Single Table Query with Aggregates

• TPC-H Q6: This query considers all the line items

shipped in a given year with discounts between a ±
0.01 of DISCOUNT=0.06

SELECT SUM(l_extendedprice * l_discount) AS revenue

FROM lineitem

WHERE l_shipdate >= date ‘1994-01-01’

AND l_shipdate < date ‘1994-01-01’ + interval ‘1’ year

AND l_discount between 0.06 - 0.01 and 0.06 + 0.01

AND l_quantity < 24;

VLDB 2007 34

Single Table Query with Aggregates

• Time constraints chosen: 10%, 20%, ... of original query estimated time

• Transformed query uses sampling

• Elapsed time > Estimated Time (due to less than expected use of multi-
block I/O)

• Time does decrease as the user specifies smaller time-constraints

TPC-H Q6

244

55

133
178

196
228

269

27
54

81
108

135

0

50

100

150

200

250

300

q6 q6-

10%

q6-

20%

q6-

30%

q6-

40%

q6-

50%

T
im

e
 (

in
 s

e
c

o
n

d
s

)
exec.

est.

VLDB 2007 35

Sum, Estimated Sum, & Confidence Interval

N/AN/A1230113636100%

21449857122913733561711915750%

24081572122898667148954762340%

27692357122862404337009788730%

34194884123024487924304502320%

49916216122848498311389482110%

sumConfidence

(confidence interval)

estimatedSumSUM% of

time

95% Confidence Interval computing using Hoeffding-based bounds

VLDB 2007 36

Four Table Join Query with GROUP BY
and ORDER BY

• TPC-H Q10: Returned Item Reporting Query

SELECT c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) AS revenue,
c_acctbal, n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation
WHERE c_custkey = o_custkey AND

l_orderkey = o_orderkey AND
o_orderdate >= date ‘1993-10-1’ AND
o_orderdate < date ‘1993-10-1’ + interval ‘3’ month AND
l_returnflag = ‘R’ AND
c_nationkey = n_nationkey

GROUP BY c_custkey, c_name, c_acctbal, c_phone, n_name,
c_address, c_comment

ORDER By revenue DESC;

VLDB 2007 37

Four Table Join Query with GROUP BY
and ORDER BY

• Only Lineitem table sampled as it is the largest table and has a foreign
key reference to O_ORDERKEY

• Time constraint clause is effective in reducing the execution time

TPC-H Q10

636

77 86 97
143

300

699

71
140

210
280

347

0
100

200
300

400
500
600
700
800

q10 q10-

10%

q10-

20%

q10-

30%

q10-

40%

q10-

50%

T
im

e
 (

in

s
e

c
o

n
d

s
)

exec.

est.

VLDB 2007 38

Four Table Join Query with GROUP BY
and ORDER BY

• The estimated sample size to meet the time constraint for various
time-constraint queries

• In this case the maximum number of iterations required to
estimate the sample size is 10. However, the total overhead for
estimating sample size is quite small (< 0.5 sec)

0.06895 0.9396

22.03549

7.47554

2.11497

0

5

10

15

20

25

q10-10% q10-20% q10-30% q10-40% q10-50%

Tim e Constraint

S
a

m
p

le
 S

iz
e

VLDB 2007 39

Conclusions and Future Work

• Time-constrained SQL queries must be supported in database
systems. It can leverage work in the following areas:

• top-k query optimization, approximate query processing, and error

estimation

• plus, the capabilities of cost-based optimizer, namely, the optimal plan

generation, and accurate estimation of the query execution time

• Both support for soft and hard time-constraint were considered

• The experimental study conducted (on a prototype implementation
using Oracle) with the TPC-H dataset demonstrates the
effectiveness of time-constrained SQL queries

• In future, we plan to explore

• tighter integration of the proposed techniques

• the feasibility and effectiveness of supporting hard time constraints

VLDB 2007 40

Q U E S T I O N SQ U E S T I O N S

A N S W E R SA N S W E R S

