Continuous Queries In Oracle

A. Witkowski, S. Bellamkonda, H. Li, V. Liang, L. Sheng, Q. Smith,
S. Subramanian, J. Terry, T. Yu

Oracle Corporation

ORACLE

Continuous Query — Problem Statement

» Continuous Query — what is needed in RDBMS
User’s queries define interesting states (negative
balance)

Monitor the change of state (alert if balance goes
negative)
Sources are the changes to the relational tables
State change, Query Delta, fundamental to CQ
. doesn’t exist in RDBMS. Users have to poll data.
+ Polling mode is inconvenient and non performant
— Involves executing queries over all data.
— Returns the same answers if no state change

— There can be thousands CQ and RDBMS can
optimize

Static Query — Example Problem Statement
Get people whose sum of transactions drops below 0

Query Q:

SELECT account, sum(amt)
FROM t

GROUP BY account
TRANSACTION T HAVING sum(amt) < O

11-15-05

11-16-05 sum (amt)
— - 1]

11-17-05
11-18-05

20-08 £
11-20-05 ccoun sum (amt)

-200
— -200

Today users have to run the query periodically on all data.
Query may return the same data.

Continuous Query — Has Query Delta Semantics
Get people whose sum of transactions drops below 0

TRANSACTION T
Acct
11-15-05
11-16-05
11-17-05
11-18-05

Continuous Query — Has Query Delta Semantics
Get people whose sum of transactions drops below 0

TRANSACTION T

Acct
11-15-05
11-16-05
11-17-05
11-18-05
11-19-05
11-20-05

Continuous Query — Has Query Delta Semantics

Get people whose sum of transactions drops below 0

TRANSACTION T

Acct
11-15-05
11-16-05
11-17-05
11-18-05
11-19-05
11-20-05
11-21-05
11-22-05

Continuous Query — Has Query Delta Semantics
Get people whose sum of transactions drops below 0

TRANSACTION T

Acct
11-15-05
11-16-05
11-17-05
11-18-05
11-19-05
11-20-05
11-21-05
11-22-05
11-23-05
11-23-05

Continuous Query — Has Query Delta Semantics

Get people whose sum of transactions drops below 0

TRANSACTION T

Acct
11-15-05
11-16-05
11-17-05
11-18-05
11-19-05
11-20-05
11-21-05
11-22-05
11-23-05
11-23-05
11-25-05
11-26-05
11-27-05

—~ OB =100

9

Continuous Query — Has Query Delta Semantics
Get people whose sum of transactions drops below 0

TRANSACTION T

Acct
11-15-05
11-16-05
11-17-05
11-18-05
11-19-05
11-20-05
11-21-05
11-22-05
11-23-05
11-23-05
11-25-05
11-26-05
11-27-05
11-27-05

Continuous Query — Has Query Delta Semantics

Get people whose sum of transactions drops below 0

CREATE CQ AS DESTIN AQ

SELECT account, sum(amt)
11-15-05 FROM t
11-16-05 GROUP BY account
11-17-05 HAVING sum(amt) < O
11-18-05
11-19-05
11-20-05 [Andy [-200[1]
11-21-05
11-22-05
11-23-05
11-23-05

Joe -100

oo os | 100
11-26-05
11-27-05

(BIIT =107 1

TRANSACTION T
Acct

Continuous Query — Has Query Delta Semantics

Get people whose sum of transactions drops below 0

CREATE CQ AS DESTIN AQ
SELECT account, sum(amt)
FROM t

GROUP BY account

HAVING sum(amt) < O

[Andy [-200
DELTA 1

when data appears in query result
DELETE DELTA

when data disappears from it Joe | -100])]
UPDATE DELTA

when data changes in query result

[BI1 [=100]

Query Delta —Language Bindings

—— Inform if balance goes below 0
CREATE CONTINUOUS QUERY negative_balance_cqg
PRIMARY KEY (acct)
COMPUTE TRANSACTIONAL Type of Delta
INSERT DELETE DELTA Part of Delta
ON COMMIT
DESTINATION dest_table
AS
SELECT acct, sum(amt) bal, delta_marker () Delta Marker
FORM transaction
GROUP BY acct
HAVING sum(amt) < O

Primary Key

Frequency of computation
Destination

Defining query

Transactional and Compressed Delta

CREATE CONTINUOUS QUERY negative_balance_cqg

PRIMARY KEY (acct)

COMPUTE COMPRESSED DELTA EVERY INTERVAL ‘7’ DAYS
SELECT acct, sum(amt) bal, delta_marker () mark
FORM transaction_tbl
GROUP BY acct
HAVING sum(amt) < 0)

Transactional and Compressed Delta

Aot [Time |
805

CREATE CONTINUOUS QUERY negative_balance_cqg
PRIMARY KEY (acct)
COMPUTE TRANSACTIONAL DELTA EVERY INTERVAL ‘7’ DAYS
SELECT acct, sum(amt) bal, delta_marker () mark
FORM transaction_tbl
GROUP BY acct
HAVING sum(amt) < 0)

CQ — Description (1)
Continuous Query Delta — a new SQL object with a query
— Persisted declaration analogous to familiar View syntax

Query Delta — Computes continual changes to query
— INSERT, DELETE, UPDATE deltas

— Deltas are Transaction Consistent (l.e., we see committed
changes)

— Compressed and Transactional Deltas
Sources of CQ
— DML Changes to Relational Tables

- Changes logged to mv logs. One log per base table stores before
and after images of row changes

Destination of CQ
— Tables — will record the history of all changes (auditing)
— Triggers — procedural processing of events
— Oracle Queues - APIs to de-queue asynchronously
— Callbacks — Java or C procedures called when delta produced 5

CQ — Description (2)
SQL supporting functions
— Cq_delta_maker, cq_old value
— Cq_time, cq_commit_time
CQ computation. How

— How: Asynchronous. DML commits, and then activate
CQs.

CQ computation. When

— Commit on Sources (ON COMMIT)

— Periodic (START '01-01-2007° WITH PERIOD 1 DAY)

— ON DML to sources (ON INSERT OR UPDATE TO 1)
Query Shapes for CQ

— CQJ — queries with (semi, outer, inner) joins only

— CQAJ — queries with Anti-Joins for non events

— CQA - queries with aggregation and joins

— CQW - queries with window functions

CONUNUOUS WUEres witn Joins. General
Computation

Changes to tables, A, logged in their logs (logs are
tables).

* ConsiderCQJQ=T><S,e.g., T.c=S.c

* Q image before pre (0) and after pst (Q)
pst (Q) - pre(Q)

pst(T) >< pst
(pre(T)+ A(T))><

S) — pre(T) >< pre(S)

(pre(S)+ A(S
>< pst

) — pre(T) >< pre(S)
S)
S)
S) - A(T) >< A(S)

pst(T) >< A(S
pst(T) >< A(S

 Delta expressions similar to MV refresh. N2joins
* How to obtain pre-image.
» Which form to use (1, 2, or 3)? Any other

(

)
pre(T) >< A(S) + A(T

)

)

)
) (

+ A(T) >< pre(
) (

+ A(T) >< pst

CONINUOUS QUEries witn Joins (LWJ).
Optimizations

Refresh expressions use recursive SQL
Obtaining Pre-image. SQL vs application of undo

SQL: pre(T) = SELECT * FROM T WHERE T.rowid NOT IN
(SELECT rowid FROM clog_t)

UNDO: pre(T)= SELECT * FROM T AS OF pre_image_time

Which form to use for A(Q)
(1) pre(T) >< A(S) A(T) >< pst(S)

(2) = pst(T) >< A(S) + A(T)

(3) pst(T) >< A(S) + A(T) >< pst(S) - A(T) >< A(S)
Not 3 since requires MINUS & complex for N
tables.

(1) if card(T) < card(S) and (2) otherwise

>< pre(S)

LONuNUOUS Queries witn Joins. FR-FK
optimization

Consider Q = T >< S and enforced T.tk = S.pk

A(Q) = pre(T) >< A(S) + A(T) >< pst(S)
= pst(T) >< A(S) + A(T) >< pre(S)

Inserts. A (S) does not join with pre (T)
= A(T) >< pst(9)

Deletes. Deleting joining rows from S deletes from T:
= A(T) >< pre(S) = A(T) >< (pst(S)+ A(S))

Mix DML.

A(Q) = A, (Q) + A (Q)

For CQJ with N tables reduces number for joins N2 to
2*N.

Continuous Queries with Joins. FK-PK units (1)

CQJ: alert if Mary buys shoes again:

orderline orders

mm
-

CREATE CONTINOUS QUERY mary_shoes
DESTINATION dest
COMPUTE ON COMMIT
SELECT item, o.oid, date
FROM orderline ol, orders O
WHERE ol.oid=o0.0id AND customer = ’'Mary’ AND item=shoes

10

Continuous Queries with Joins. FK-PK units (1)
CQJ: alert if Mary buys shoes again:

orderline

mm
Pans |50 [0
EMHHIIIIIIII
Te |15 [a0

Continuous Queries with Joins. FK-PK units (1)
CQJ: alert if Mary buys shoes again:

orderline orders

item
100

Price
100 |20
[Pants |50 |20
-
-
E-

60 40

11

Continuous Queries with Joins. FK-PK units (1)
CQJ: alert if Mary buys shoes again:

orderline

Date |

If insert transaction arrive in FK-PK units then:

= A(orderline) >< A(orders)

Continuous Queries with Joins. FK-PK units (1)
CQJ: alert if Mary buys shoes again:

orderline orders

item |

Price]
o |
EEIIIIEEIIII
Bowse (80

o |

If insert transaction arrive in FK-PK units then:

= A(orderline) >< A(orders)

What if not. A on FK (orderline) joins with pst(PK)

12

Continuous Queries with Joins. FK-PK units (2)

Discover anti-join tuples in
A(orderline) LEFT OUTER JOIN A(orders)
Store in temp_table and join them with pst(orders).
INSERT
WHEN aj_mark 1 INTO anti_join(item, oid)
WHEN aj_mark 0 INTO dest(item, o.oid, date)

SELECT item, o.oid, aj_mark
FROM A(orderline o0l)L0OJ A(orders o) ON ol.oid=o.o0id

Check if anti_join empty
SELECT COUNT (*) FROM anti_join

And if not, add anti-join tuples to dest table.
INSERT INTO dest (item, o.oid, date)

SELECT item, o.oid
FROM anti_join aj JOIN pst(orders) o ON aj.oid=o.oid

Performance Evaluation

» E-store application with
* Orderline - 10M rows
* Orders —1 Mrows
» customer - 100K rows
» Customers typically buy 10 items per order
« Experiments:
« Changed refresh times, i.e. size of the deltas
» Consider tables with and without indexes

« Consider optimizations FK-PK, FK-PK units,
undo

13

Performance of general vs FK-PK CQ computation

general vs fk-pk - no indexes

Hash Join
e e Useful 4 large A
10x faster

10000 20000 30000 40000

delta (#rows)

generalvs fk-pk with indexes

'_‘J\/ —e—general
—m— fk-pk

0 10000 20000 30000 40000

4x faster

delta (#rows)

Ferrormance or Frn-rmn vs rn-rmn units
computation (1)

fk-pk vs fk-pk-units:no indexes

. Hash Join
+1K-zk-units A =200 orders
5x faster — 20% slowe!

50 100

% of anti-join row s
fk-pk vs fk-pk-units

Indexes
—e—fkpk Nested Loop Join
—=—fpren® A =200 orders
1.5x — 2x faster

% of anti-join row s

14

Ferrormance or Frn-rmn vs rn-rmn units
computation (2)

fk-pk units percentage

—e—fk-pk
—mm— fk-pk-units

oM B OO 2N RO

1 2 3 4 5 6

% of trans. w ith anti-joins

For Transactions not in FK-PK units, anti-join rows are 50%

| (orderline) anti-join (orders)| = 0.5*| (orderline) LOJ (orders) |

If we have less than 80% with anti-join rows, FK-PK-units
optimization is better than general FK-PK.

g€ \
application

pre-image using a query vs scn: with
indexes

SELECT * FROM orders
WHERE rowid NOT IN
(SELECT rowid

—e—pre-query FROM dlt (orders))
'..,..»-"'. —@—pre-sen VS:

SELECT *
5000 10000 15000 FROM orders AS OF scn

delta (#rows)

pre-image using query vs sch. no indexes

Useful if refresh time
el SMall. Benefit up to
—=— pre-scn 1.5x faster

Overhead of hash

5000 10000 15000 JOIn

delta (#rows) kills benefit of scn

15

Frequency of Refresh

frequency of refresh vs totalrefresh time

100
80
60
40
20
0 = *> 1
1000 2000 3000

—e—frequency

transactions

» FK-PK optimized refresh expressions

+10 orders per transaction. Processed total of 7000 transactions
* Refresh varies from 10-2000 transactions

« If refresh every 10 transactions, it is 35x slower that a single
refresh

+ After some threshold, 100 transactions, frequency has little =

Conclusions and Future Work

* This work
» Formal definition of CQ based on query delta
« New algorithms for MV and CQ refresh
* New CQ shapes — window functions
» Future Work
Multi-query optimizations
Cover more query shapes in CQ

Incorporate pattern recognition in sequences of
rows (ANSI SQL work with IBM, Streambase,
Coral8)

Incorporate stream (CQL) semantics (ANSI
SQL work with IBM, Streambase, Coral8)

16

