
The End of an Architectural Era
(It’s time for a complete rewrite)

by

Michael Stonebraker

Who We AreWho We Are

�Dan Abadi, Stavros Harizopoulos

�H-Store implementation

�Nabil Hachem

�TPC-C benchmarking

�Mike Stonebraker, Sam Madden, Pat Helland

�Kibitzers

OutlineOutline

�The current state of the world

�Why current architecture is “long in the tooth”

�How to beat it by a factor of 50 in every market I

can think of

�Implications for the research community

Current DBMS Gold StandardCurrent DBMS Gold Standard

�Store fields in one record contiguously on disk

�Use B-tree indexing

�Use small (e.g. 4K) disk blocks

�Align fields on byte or word boundaries

�Conventional (row-oriented) query optimizer

and executor

Terminology -- “Row Store”

Record 2

Record 4

Record 1

Record 3

E.g. DB2, Oracle, Sybase, SQLServer, …

Row StoresRow Stores

�Can insert and delete a record in one physical

write

�Good for business data processing (the IMS

market of the 1970s)

�And that was what System R and Ingres were

gunning for

Extensions to Row Stores Over the YearsExtensions to Row Stores Over the Years

�Architectural stuff (Shared nothing, shared

disk)

�Object relational stuff (user-defined types and

functions)

�XML stuff

�Warehouse stuff (materialized views, bit map

indexes)

�….

At This Point, RDBMS is At This Point, RDBMS is
““long in the toothlong in the tooth””

�There are at least 4 (non trivial) markets where

a row store can be clobbered by a specialized

architecture (CIDR 07 paper)

�Warehouses (Vertica, SybaseIQ, KX, …)

�Text (Google, Yahoo, …)

�Scientific data (MatLab, ASAP prototype)

�Streaming data (StreamBase Coral8, …)

At This Point, RDBMS is At This Point, RDBMS is
““long in the toothlong in the tooth””

�Leaving RDBMS with only the OLTP market

�But they are no good at that either!!!!!!

Alternate OLTP ProposalAlternate OLTP Proposal

�First part

�Main memory

�Grid orientation

�Threading

�Redo Recovery

�Second part

�Concurrency control

�Undo

�2 phase commit

OLTP Has ChangedOLTP Has Changed

�1970’s: disk

�Now: main memory

TPC-C is 100 Mbytes per warehouse; 1000 warehouses
is a HUGE operation;

i.e. 100 Gbytes;

i.e. main memory

OLTP Has ChangedOLTP Has Changed

�1970’s: terminal operator

�Now: unknown client over the web

Cannot allow user stalls inside a transaction!!!!!

Hence, there are no user stalls or disk stalls!!!!!

Result: No MultiResult: No Multi--threading!!!threading!!!

�Heaviest TPC-C Xact reads/writes 200 records

�Less than 1 msec!!

�Run all commands to completion; single

threaded

�Dramatically simplifies DBMS

�No B-tree latch crabbing

�No pool of file handles, buffers, threads, ..

Multiple cores can be handled by multiple logical
sites per physical site

Grid Computing Grid Computing

�Obviously cheaper

�Obvious wave of the forseeable future

(replacing shared disk)

�Horizontally partition data

�Shared nothing query optimizer and

executor

�Add/delete sites on the fly required

High end OLTP has to “scale out” not “scale up”

OLTP Has ChangedOLTP Has Changed

�1970’s: disaster recovery was “tape shipping”

�Now: 7 x 24 x 365 no matter what

Tandem-style HA over a LAN and/or WAN is
now required!!!

BuiltBuilt--in HA in HA

�Redundancy (at the table level) in the grid

�If grid has a WAN, then get disaster recovery

�Optimizer chooses which instance of a table to

read, writes all instances (transactionally)

Recovery in a KRecovery in a K--safe Environment safe Environment

�Restore dead site

�Query up sites for live data

�When up to speed, join the grid

�Stop if you lose K+1 sites

�No redo log!!!!

�No slower than log recovery (Lau paper –

SIGMOD 06)

Vertica has shown this to be perfectly workable – albeit
sometimes outside customer’s comfort zone….

Main Sources of Overhead in Main Main Sources of Overhead in Main
Memory DBMS Memory DBMS

�Disk I/O (gone)

�Resource control (gone)

�Synchronization (gone)

�Undo log (but in main memory and discard on

commit)

�Concurrency control

�2 phase commit (for multi-site updates and

copies)

OLTP Has ChangedOLTP Has Changed

�1970’s: conversational transactions

�Now: stored procedures;

�Can ask for all of them in advance

Structure of HStructure of H--Store Store

�Get all transaction classes in advance

�Instances differ by run-time parameters

�Construct a physical data base design

(manually now; automatically in the future)

�Table partitioning

�Table-level replication

�Create a “gamma-style” query plan for each

class

Analyze Transaction Classes for Analyze Transaction Classes for
Leverage PointsLeverage Points

�Whole bunch in the paper

�Constrained tree applications, Single site

transactions, one shots, …

�Two allow leverage in TPC-C

�Commutativity (Ants pioneered this)

�Two-phase

Two PhaseTwo Phase

�In phase one, Xact can read and abort but not

write

�In phase two, Xact can read and write but not

abort

All TPC-C Xacts can be made two phase, with

rearrangement of new_order logic

CommutativityCommutativity

�All pairs of Xacts produce the same final data

base state

�With any statement-level ordering at each

site

With this definition and a little trickery (in the paper),

all TPC-C transactions are commutative

Overhead ReductionOverhead Reduction

�Commutativity and two-phase

�No locking

�No 2 phase commit

�No undo log

Tested configuration also used selective

redundancy of read-only objects to improve

site locality

TPCTPC--C Performance on a LowC Performance on a Low--end end
MachineMachine

�Elephant

�850 TPS (1/2 the land speed record per

processor)

�H-Store

�70,416 TPS (1/2 the land speed record with

$2K of hardware)

Factor of 82!!!!!

Open Research ProblemsOpen Research Problems

�Teasing apart the factor of 82

�In process

�Automatic data base designer

�Create a physical data base design that is as

fast as possible

Open Research ProblemsOpen Research Problems

�Concurency control

�Which variation on OCC to use when

application is not “well behaved”

�Theory question

�Characterize carefully the leverage points

Implications for the ElephantsImplications for the Elephants

�They are selling “one size fits all”

�Which is 30 year old legacy technology that is

good at nothing

Pictorially:

OLTPData Warehouse

Other apps

DBMS
apps

The DBMS Landscape –
Performance Needs

OLTPData Warehouse

Other apps

low

high

high

high

One Size Does Not Fit All --
Pictorially

Open
source

Vertica/

C-Store

H-Store

Big table,

etc.

Elephants get only
“the crevices”

Other ImplicationsOther Implications

�Data model

�Query language

�Programming style

Data Model Data Model ---- Total HeresyTotal Heresy……..

�Relational model was the answer for OLTP in

1970s

�Time to rethink the “hallowed halls”

�Warehouses are ER

�Semi-structured data is RDF or XML

�OLTP usually hierarchical (true for “one site”

transactions)

�One size does not necessarily fit all!!!

Query LanguageQuery Language

�SQL is a “one-size-fits-all” language

�OLTP can be a (possibly small) subset (e.g.

no aggregates)

�Warehouses do not require fancy

consistency stuff

Programming StyleProgramming Style

�In the 1970’s there were two proposals

�Data sublanguage, e.g. SQL Quel, … with

ODBC/JDBC, …

�Extended programming language (Rigel,

Pascal R, PL/1 extension)

Data sublanguage is 20x the lines of code

But won in the marketplace

Programming Style Programming Style ---- TodayToday

�ODBC/SQL is 20x Ruby on Rails

�High time to embed DBMS stuff cleanly in the PL

Implications for the Research Implications for the Research
CommunityCommunity

�Find a problem area where there might be a

factor of 50 and study it

�Lots of good choices

�Web 2.0

�Bio (RDF?)

�Science in general

�Integration of structured and unstructured

data (Google meets DBMS)

Implications for the Research Implications for the Research
CommunityCommunity

�If you have a a good idea -- prototype it

�Ok to have a market-specific data model

�And query language

�Could make use of existing systems in novel

ways

�RDF on a column store (Abadi paper)

