EOURGRGNS @
AlUtematedspatanase TuRing

Surajit Chaudhuri Microsoft Research

Gerhard Welkum Max Planck Institute
for Informatics

i

Scope and Purpose of This Tutorial

Motivate and enable students and young scientists
to pursue research on the auto-tuning aspect
of autonomic computing

Complementary to
 SIGMOD 02 and VLDB 02 tutorials (Shasha/Bonnet)

on tuning techniques for DBAS
* VLDB 04 tutorial (Chaudhuri/Dageville/Lohman)
on self-management features of DBMS products

L Surajit Chaudhuri and Gerhard Weikum

Outline

e Part I: What Is It All About
 Part Il: Five Auto-Tuning Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
e Part Ill: Wrap-up

L Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Part I: What Is It All About

 The Need for and Nature of Auto-Tuning
 State of the Art

e Product Features

« Scientific Principles
e Auto-Tuning Paradigms

Surajit Chaudhuri and Gerhard Weikum

Need for Auto-Tuning

e Total cost of ownership (TCO) for DBMS-based IT solution
dominated by staff for system admin, management, and tuning

e Increasing complexity of multi-tier application services
call for automated management

 DBMS offers hundreds of tuning kobs
(system config-time, DB-load-time, startup-time, run-time parameters)

— DBMS (and multi-tier IT systems) should be autonomic (self-*):
self-managing, self-monitoring, self-healing, self-tuning

B Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About .'

Easy Solutions

Throw more hardware (KIWI method)
. Use this with caution

- Where do you throw hardware?
Rules of Thumb approach

. Finding them is harder than you think

- May simply not exist — oversimplified wrong
solutions are not helpful

Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About fl

Nature of Auto-Tuning

ability to predict
workload x config — performance
1] 11 27?7
IS key to finding the right knob setting

workload x config - performance goal
1] 27?7 1]

Many difficult ramifications:
» workloads at different levels and time scales
® app-level vs. internal, long-term steady-state vs. next hour or minute

e variety of performance metrics
* resource usage, response time, throughput
* mean values vs. distributions
* single-class vs. multi-class

* unknown, fluctuating, and evolving parameters

B Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About il

State of the Art: Product Features
Oracle 10g Self-Managing Database:

automatic database diagnostic monitor, automatic memory pool management,
automatic workload repository, automatic routine administration,
drill-down root-cause analysis, etc.
IBM DB2 Autonomic Technology:
index advisor, configuration advisor, health monitoring,
learning query optimizer, etc.
Microsoft SQL Server Self-Tuning Features:
physical design wizard, continuous monitoring, statistics management,
memory pressure analysis & heuristic resolution, etc.

Storage systems: AutoRAID etc.

+ great online profiling & analysis infrastructure
+ viable solutions for specific tuning issues

— progress exaggerated by marketing

? fundamental principles

. Surajit Chaudhuri and Gerhard Weikum

State of the Art: Scientific Principles

this page is left blank necessarily

Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Call for Scientific Principles

Marketing
Hype

Product Features

Integration into DBMS

Results on
Specific
” Tunmg Issues

Auto-Tuning Paradigms

Mathematical Foundations

10 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Foundations, Paradigms, Tuning Issues

physical design, QP statistics management,
memory management, MPL tuning, storage configuration,
application tricks, middleware caching, ...

tradeoff elimination, online optimization,
feedback loop, diagnostics, what-if analysis, ...

combinatorial optimization, queueing theory
control theory, statistical learning, ...

11 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About :

Auto-Tuning Paradigms

Aim: generalize from good approaches to specific tuning problems

Auto-tuning as:

o tradeoff elimination (ex. cache replacement)
o static optimization (ex. index selection)

o stochastic prediction (ex. capacity planning)
e online optimization (ex. memory governing)
» feedback control loop (ex. MPL tuning)

« what-if analysis (ex. bottleneck identification)
o statistical learning (ex. root-cause analysis)

Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

General Literature

 D. Shasha, P. Bonnet: Database Tuning — Principles, Experiments, and
Troubleshooting Technigues, Morgan Kaufmann, 2003
(see also tutorials at SIGMOD 2002 and VLDB 2002)

 S. Chaudhuri, B. Dageville, G. Lohman: Self-Managing Technology in Database,
Management Systems, Tutorial Slides, VLDB 2004

 IBM Systems Journal 42(1), 2003, Special Issue on Autonomic Computing

* G. Weikum, A. Monkeberg, C. Hasse, P. Zabback: Self-Tuning Database Technology

and Information Services: from Wishful Thinking to Viable Engineering, VLDB 2002

» G. Weikum, C. Hasse, A. Monkeberg, P. Zabback: The COMFORT Automatic
Tuning Project, Information Systems 19(5), 1994

e S. Chaudhuri (Editor): IEEE CS Data Engineering Bulletin 22(2), 1999,
Special Issue on Self-Tuning Databases and Application Tuning

» G. Candea, A.B. Brown, A. Fox, D. Patterson: Recovery-Oriented Computing:
Building Multitier Dependability. IEEE Computer 37(11), 2004

» David S. Reiner, T.B. Pinkerton: A Method for Adaptive Performance Improvement
of Operating Systems, SIGMETRICS 1981

 R. Jain: The Art of Computer Systems Performance Analysis, Wiley 1991

 A. Ailamaki (Editor), IEEE Data Engineering Bulleting Vol.29 No.3, Special Issue

on Self-Managing Database Systems, September 2006

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms Feedback Control Loop

Call for Papers

International Workshop on
Self-Managing Database Systems (SMDB 2007)

on April 16, 2007, in Istanbul, Turkey
In conjunction with ICDE 2007

Workshop chair: Guy Lohman
Submission deadline: November 20, 2006

for more details see
http://db.uwaterloo.ca/tcde-smdb/SMDB2007 CFP.html

Surajit Chaudhuri and Gerhard Weikum

Outline

e Part I: What Is It All About
e Part Il: Five Auto-Tuning Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
e Part lll: Wrap-up

L Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Part 2. Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination

2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

4 Auto-Tuning as Online Optimization

5 Auto-Tuning as Feedback Control Loop

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Auto-Tuning ﬁTradeoff Elimination

1 Auto-Tuning as Tradeoff Elimination

Tuning parameters handle tradeoffs

If you can find a parameter setting that yields

universally close-to-optimal performance
(across a wide spectrum of workloads and for several technology generations)

then the tuning knob can be eliminated !

Examples:

e B*-tree (vs. hash index): scan vs. random-lookup performance
° Page Size: disk 10 efficiency vs. memory efficiency

e Striping unit: 10 parallelism vs. disk throughput

* LRU-k-style caching: recency (LRU) vs. frequency (LFU)

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Example: Caching Strategies

LRU: drop page that has been least recently used
LFU: drop page that has been least frequently used

Tradeoff recency vs. frequency:
LFU: optimal for static access probabilities, but has no aging

LRU: optimal if last access is indicative for next future access

LRU degrades for sequential only-once access
and is suboptimal for multiple page pools (e.g., index pages)

Example: A A A

y Xy

T time
12345 10 15 20 24 now

Hybrid LRU/LFU strategies have weights that are critical to tune

Using multiple page-pool caches (each with LRU) is a tuning nightmare

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms Auto-Tuning- radeoff Elimination

Example: LRU-k Caching Strategy

LRU-k: drop page with the oldest k-th last reference

k
estimates heat = timal for IRM
(p) o) optimal for

extensions and variations for variable-size
objects, non-uniform storage, etc.

But cache bookkeeping has time and space overhead:
* O(log M) time for priority queue maintenance
« M* > M entries in cache directory

to remember k last accesses to M* pages

+ overhead acceptable for improved cache hit rate
+ add‘l bookkeeping memory is small and uncritical to tune
— Improved implementations: 2Q, ARC

|_esson: substitute critical tuning param by robust 2"d-order params
and accept small overhead

_‘ Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Auto-Tuninglﬁ' radeoff Elimination

| essons and Problems

Lessons:
find ,,sweet spot* for tuning param by mathematical analyis and/or

substitute ,,difficult* param by ,,well-tempered* param,
and accept some overhead for making better run-time decisions

Problems:
e caching for multi-class workload with per-class goals

o extend 2Q / ARC methods to hierarchical & distributed caching
e combine caching & prefetching with response time guarantees
o systematic study & characterization of tuning-parameter sensitivities

s 2 Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms Auto-Tunin‘ radeoff Elimination

| 1terature on Tradeoff Elimination:

e E.J. O*Neil, P. O*Neil, G. Weikum: The LRU-k Page Replacement Algorithm
for Database Disk Buffering, SIGMOD 1993

 T. Johnson, D. Shasha: 2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm, VLDB 1994

« J. Gray, G. Graefe: The Five-Minute Rule Ten Years Later, and Other Computer
Storage Rules of Thumb, SIGMOD Record 26(4), 1997

* D. Lomet: B-Tree Page Size When Caching is Considered,
SIGMOD Record 27(3), 1998

* N. Megiddo, D.S. Modha: Outperforming LRU with an Adaptive Replacement
Cache Algorithm, IEEE Computer 37(4), 2004

e HP / Oracle White Paper: Auto-SAME,
http://www.oracle.com/technology/tech/hp/storage.pdf

* P.A. Boncz, S. Manegold, M.L. Kersten: Database Architecture Optimized for the
New Bottleneck: Memory Access, VLDB 1999

o J. Schindler, A. Ailamaki, G.R. Granger: Lachesis: Robust Database Storage
Management Based on Device-specific Performance Characteristics, VLDB 2003

 A. Ailamaki: Database Architecture for New Hardware, Tutorial Slides, VLDB 2004

.- Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Outline

e Part I: What Is It All About
e Part Il: Five Auto-Tuning Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
e Part Ill: Wrap-up

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Auto-Tuning as Static Optimization
with Deterministic Input

Physical Database Design

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization !h Deterministic Input

Physical Database Design

Performance of a query depends on
execution plan

Execution plan picked by optimizer
depends on

Statistics created by the optimizer

Physical design: Objects that exist

Choice of statistics and physical design
objects amortized

Physical Design Configuration

Clustered Indexes + Non-clustered indexes +
Materialized Views

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization w!ih Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Is this a hard problem?

SELECT A,B,C

FROM R We started fine, but progressively:
WHERE 10 < A < 20

AND 20 < B < 100 *Used statistical information

*Guessed how the optimizer would use

SELECT B,C,D statistics
FROM R *Guessed how the optimizer would use
WHERE 50 < B < 100/ proposed indexes

AND 60 < 2*D < 80 *Gave up

Storage for (A,B,C) + (D,B,C)
is too large!

UPDATE R
SET B=B+1
WHERE 10 < C < 20

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

And that was just indexes!

SELECT A,B,C
FROM V

s

WHERE 20 < B < 100
I
SELECT A,B,C
FROM R
WHERE 10 < A < 20
AND 20 < B < 100
Indexed Indexed Indexed
A,an,C A,an,C A,an,C
B=<20 20<B=<100 100<B

Static Optimization with Deterministic Input

’ Access only this partition

Surajit Chaudhuri

and Gerhard Weikum

Static Optimization with Deterministic Input

Part 11: Five Auto-Tuning Paradigms

Real Life Queries are Complex!

SELECT CNTRYCODE, count(*) as NUMCUST, sum(C_ACCTBAL) as TOTACCTBAL

FROM (
SELECT substring(C_PHONE,1,2) as CNTRYCODE, C_ACCTBAL

FROM CUSTOMER
WHERE substring(C_PHONE,1,2) in ("31°, "17", "30", "24", "26", "347, "10", ")

AND C_ACCTBAL > (
SELECT avg(C_ACCTBAL)

FROM CUSTOMER

WHERE C_ACCTBAL > 0.00
AND substring(C_PHONE,1,2) in

(-317, *=17%, "30%, "24°, "267, "347, "10°, "%)
)

AND NOT EXISTS (
SELECT *

FROM ORDERS
WHERE O_CUSTKEY = C_CUSTKEY
)
) as CUSTSALE
GROUP BY CNTRYCODE
ORDER BY CNTRYCODE

TPC-H SAMPLE QUERY

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization wjih Deterministic Input

Real Life Queries are Complex!

--- Galaxy target selection with spectroscopic redshifts

SELECT top 15 str(gal.ra,9,4) AS ra, str(gal.dec,8,4) AS dec,
cast(spec.objTypeName AS CHAR(9)) AS type,
str(spec.z,7,4) AS Z,
TSpecZStatusN(spec.zStatus) AS status,
TGetUrlSpeclmg(spec.specObjID) AS Spectra
FROM
@database. .PhotoPrimary AS gal,
@database. .specObj AS spec
WHERE
gal .objID = spec.bestObjID AND
-— Our star-galaxy separation AND target selection
pstMag r - modelMag_r >= @delta pst model AND
petroMag_r - extinction_r <= @maglim AND
petroMag r - 2.5*10gl0(2*@pi*petroR50_r*petroR50 r) < @SBIim AND
-- Check flags
(flags & @bad_flags)
(((flags & @BLENDED)
-— Check spectro flags
NOT spec.zStatus IN (@QFAILED, @NOT_MEASURED)

SKYSERVER SAMPLE QUERY

n,

0 AND
0) OR ((Flags & @NODEBLEND) != 0)) AND

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization w!ih Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Physical Database Design
as Static Optimization

Workload
gueries and updates
Configuration

A set of indexes, materialized views and partitions from
a search space

Constraints
Upper bound on storage space for indexes

Search: Pick a configuration with lowest cost for the given
database and workload.

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization Y!h Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation

Measuring Goodness of a design
What-if Physical Design

Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization !h Deterministic Input

What 1s “cost” ?

Execution cost of the query
Requires physical design changes — too disruptive

Optimizer Estimated Cost
Used to compare alternative plans for the query

We choose optimizer estimated cost
Better than designing a new cost model

Estimate quantitatively the impact of physical
design on workload (queries and updates)

e.g., if we add an index on T.c, which queries benefit and
by how much?

Never meant to compare across physical
designs/Queries

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Estimating Cost of a
configuration for Search

Without making actual changes to physical
design

What-If Indexes!

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization .f Deterministic Input

“What-If” Indexes

Query Optimizer decides which plan to
choose given a physical design

Query optimizer does not require
physical design to be materialized

Relies on statistics to choose right plan
Sampling based techniques for building statistic

Sufficient to fake existence of physical
design

Build approximate statistics
Change “meta-data” entry

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Using What-If Analysis

Create Hypothetical
Object

l

Create Statistics

l

Physical Design Relational Query
Component Define Configuration C Engine

l

Optimizer Query Q for
Configuration C

l

ShowPlan

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

“What-If” Architecture
Overview

Application
Workload
Query
S —— - o
Search _ Optimizer
Algorlthm “What—lf" (Extended)

A 4

_ Database Engine
Recommendation

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization w!ih Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization Y!h Deterministic Input

Balancing Requirements of
Multiple Queries

Simple divide and conquer not enough

Because, union of “best” configurations
for each query may not be feasible
Violate storage constraints
Maintenance costs for update queries may rule
out “ideal” indexes/MV
Use locally suboptimal alternatives -
need for “merging”

B Surajit Chaudhuri and Gerhard Weikum

Static Optimization with Deterministic Input

Part 11: Five Auto-Tuning Paradigms

Example: Database Tuning
Advisor

Y
Parse and Compress
Queries
! Query
Database Candidate Selection Optimizer
. S ————
Tun!ng l (Extended)
Advisor “What-If”
Merging
(DTA) |
: : Database Server
Configuration A
Enumeration

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Static Optimization wjih Deterministic Input

Characteristics of Merged
Candidates

A derived configuration from one or more seed
configurations
My, Is a “merged” candidate from parents P,, P,
If Q was using P4, it can have a plan using M,
New plans using My, is not “much” more expensive
Merging can

Introduce new logical objects (materialized views)
Introduce new physical structures (indexes)

n,

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Static Optimization with Deterministic Input

Sample Algorithm:
MV Merging Candidates

V, and V, be on same set of tables and same join
conditions

Merged MV V,, contains

Union of projection columns of V, , V,
Union of Group-By columns of V, and V,
Selection conditions common to V, and V,

Columns in different selection conditions
pushed into Group-By

Reject the merge if size of V, Is too large

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Sample Algorithm:
Index Merging Candidates

Union of columns in I; and [,
Index scan benefits preserved
Preserve seek benefits to at least one

A common prefix of two indexes
Partial seek benefits

Multiple thinner indexes

Replace covering indexes with Intersection/Union
plans (A,B|C,F) [S] (B,E[F) = (B|F) + (A[C) + (E)

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization w!ih Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

L Surajit Chaudhuri and Gerhard Weikum

Static Optimization with Deterministic Input

Part 11: Five Auto-Tuning Paradigms

Example: Database Tuning
Advisor

Y
Parse and Compress
Queries
! Query
Database Candidate Selection Optimizer
. S ————
Tun!ng l (Extended)
Advisor “What-If”
Merging
(DTA) |
: : Database Server
Configuration A
Enumeration

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization Y!h Deterministic Input

Search Algorithm

Search Space = “Locally Best” U “Merged”
Indexes and Indexed Views need to be
considered together

Cannot “break” into two sequential selection
steps

Search driven by reduction in optimizer
estimated costs

Top-Down: Get an optimal structure and then
modify it
Bottom-up: Grow by picking the next k-structures

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization wjih Deterministic Input

Quality: Incremental
Cost/Benefit of a structure

Benefit of an index/MV Is relative to a
given configuration

Example

Two clustering indexes together can
reduce cost of a join significantly

Example Metric

Incremental penalty for removing a
structure: (increase in cost)/(reduction of
space)

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Efficiency: Reducing
Optimizer Invocations

Each physical design can potentially
resulO 88 -31otent

Surajit Chaudhuri and Gerhard Weikum

Static Optimization with Deterministic Input

Part 11: Five Auto-Tuning Paradigms

Example: Database Tuning
Advisor

y
Parse and Compress
Queries
A\ 4 Query
Database Candidate Selection Optimizer
I S ————
Tun!ng l (Extended)
Advisor “\What-If"
Merging
(DTA) 1
)) Database Server
Configuration R
Enumeration

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Top-down Search

Shrink supersets rather than expanding
subsets

Mixes merging and enumeration phases

I I

Candidate selection Merging “Bottom up” greedy enumeration

@é

Top-down “relaxation”

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization !h Deterministic Input

Other Approaches

[Agrawal et. al 2000] Bottom-up search

Incrementally add “most promising”
structures

But, consider tight interactions
Initially exhaustive, degenerate into greedy

[Valentin et.al. 2000] Knapsack +
Genetic

Create a feasible solution through
knapsack (ignore interactions)

Genetic mutations and generate new
candidates

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization w!ih Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization wjfh Deterministic Input

Architecture: Knowledge
of the Optimizer

Reduce co-dependence on optimizer
by

Making only broadest assumptions
(e.g., Importance of covering indexes)

Use knowledge of key optimizer
characteristic selectively (deeper
interaction)

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Instrumenting the Query

Optimizer
Intercept index and view “requests”
Concise, no false nen005m3s/posi0O5ma3s

Obtain optimal indexes and views from

requests
|

Y \

Access Path Generation Module

| A

Find best indexes
for request

simulate

Available Indexes

(New) |
Instrumentation ! Original optimizer

Surajit Chaudhuri and Gerhard Weikum

Static Optimization with Deterministic Input

Part 11: Five Auto-Tuning Paradigms

Instrumenting the Query
Optimizer
Intercept “index and view requests”
Concise, no false negatives/positives
Obtain optimal indexes and views from requests
Inject such structures during optimization

Scalability

N
o

w
o1

S O Indexes
e B Indexed Views

w
o

N
(6]
!

[N
o1
|

[N
o

Number of Candidates
N
o

o Ol
!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TPC-H Queries

Surajit Chaudhuri and Gerhard Weikum

When to Tune?

: | A
cunies| Tﬁem lﬂ*m;”
'a | Triggering mechanism Alert! Runtaol forat | Physical Design _
DEMS lr‘:’;g}lnr:::t?g" _gge_g—.'fnrdiagnmtim Alerter p— impmuement.' Tuning Tool Recommendation
~— N~
Monitoring Diagnostics Tuning

Low-overhead diagnostics
Reliable lower-bound improvement
No false positives
“Proof” with valid configuration
Upper-bound Estimate
[Bruno, Chaudhuri 06] (this conference)

COLT [Schnaitter+ 06] does periodic “epoch-at-a-time”
polling distinguishing structure classes

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization wjih Deterministic Input

| essons and Problems

L. essons:

Precise static optimization problem
Challenges in cost definition
Complex search space — depends on server
sophistication

Problems:

How deeply to exploit optimizer

Uncertainty in cost estimation

Workload model [Agrawal+06]

Search Algorithms (combinatorial optimization)

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization !h Deterministic Input

References (1)

Surajit Chaudhuri, Benoit Dageville, and Guy M. Lohman. Self-
Managing Technology in Database Management Systems.
Tutorial presented at VLDB 2004.

Sheldon J. Finkelstein, Mario Schkolnick, Paolo Tiberio. Physical
Database Design for Relational Databases. ACM TODS 13(1):
91-128 (1988).

Steve Rozen, Dennis Shasha: A Framework for Automating
Physical Database Design. VLDB 1991: 401-411

Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server. VLDB
1997.

Surajit Chaudhuri, and Vivek R. Narasayya. AutoAdmin '‘What-if'
Index Analysis Utility. SIGMOD 1998.

Surajit Chaudhuri and Vivek R. Narasayya. Index Merging. ICDE
19909.

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization m Deterministic Input

References (2)

Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman,
and Alan Skelley. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. ICDE 2000.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya.
Automated Selection of Materialized Views and Indexes in SQL
Databases. VLDB 2000.

Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman.

Automatlng Physical Database Design in a Parallel Database.
SIGMOD 2002.

Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang.
Integrating Vertical and Horizontal Partitioning into Automated
Physical Database Design. SIGMOD 2004.

Nicolas Bruno and Surajit Chaudhuri. Automatic Physical
Database Tuning: A Relaxation-based Approach. SIGMOD 2005.

Nicolas Bruno and Surajit Chaudhuri. Physical Design
Refinement: The "Merge-Reduce" Approach, EDBT 2006.

s 2 Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization ﬂh Deterministic Input

References (3)

Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman,
and Alan Skelley. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. ICDE 2000.

Arnd Christian Konig, Shubha U. Nabar: Scalable Exploration of
Physical Database Design. ICDE 2006

Nicolas Bruno, Surajit Chaudhuri: Physical Design Refinement:
The "Merge-Reduce" Approach. EDBT 2006

Karl Schnaitter, Serge Abiteboul, Tova Milo, Neoklis Polyzotis:
COLT: Continuous On-Line Database Tuning, SIGMOD Demo
2006

Nicolas Bruno, Surajit Chaudhuri: To Tune or not to Tune? A
Lightweight Physical Design Alerter, VLDB 2006

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatit:mwith Stochastic Input

Part 2: Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
» Capacity Planning
« Example: Cache Sizing
e Queueing Theory
* Further Aspects and Lessons
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Auto-Tuning as Static Optimization
with Stochastic Input

Capacity Planning and
System Configuration

Workload varies statistically
LLoad may be unbounded
Input Is stochastic
can provide only stochastic guarantees

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizaﬁ-/ith Stochastic Input

System Capacity Planning

Key issue for long-term tuning:
how big should you configure your system resources?

» CPU speed, #processors in SMP, #servers in server farm
e amount of memory, cache sizes

o #disks, disk types, storage controller types

» software parameters for (static) resource limitation

— configure system so as to meet goals for

* performance: throughput, response time (mean or quantile)
o reliability and availability

reasonably understood for OLTP server, HT TP server, etc.
not so well understood for DBMS, multi-tier Web Services

— workload and complex system behavior
approximated/abstracted by stochastic models

.- Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizai-/ith Stochastic Input

System Configuration Tool (1)

M Operational System Configuration
.o = "0 & O%E M%
& = = d 1=
O — — U< T i~
W, I .
Mapping /Monitoring
/ Hypothetical

Modeling \?/ Calibration |elconfig

Evaluation \
—* Max. Throughput

Recommendation Avg. waiting time
Expected downtime

_‘ Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatit:mwith Stochastic Input

Part 2: Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
e Capacity Planning
« Example: Cache Sizing
e Queueing Theory
* Further Aspects and Lessons
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatimwith Stochastic Input

Example: DBMS Cache Sizing

Cost / throughput consideration:

Keep page in cache if Ccache < Cisk
1000% < 1000% 1

-1
1GB 100s™ = A>001s

= 100 KB

Response-time guarantee:

Minimum cache size M such that
RTloememi,e = f (hit ratio,...)=f(g(M),...) < RTgoa,

L Surajit Chaudhuri and Gerhard Weikum

B L
L RU-k Cache Hit Rate Prediction

P(W) := E[distinct pages referenced

=3 5 (4)B (-8)"

i=1 j=k

W P—]};(M[gsiiiiie(

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

LRU-k Response Time Prediction

with cache size M, page access probabilites £,.5,, ...,
disk characteristics, global load, ...

o RT =f (hit rate, disk access time)
o disk access time = service time + queueing delay

— heed disk model
— need queueing analysis

rich repertoire of math, many models around,
but care needed Iin adopting models
— need understanding of modeling & math

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatit:mwith Stochastic Input

Part 2: Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
e Capacity Planning
« Example: Cache Sizing
* Queueing Theory
* Further Aspects and Lessons
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatit:mwith Stochastic Input

Basics of Queueing Systems

prob. distr. of scheduling prob. distr. of
Interarrival time policy service time S
(e.g.: M =exp. distr.) (e.g.: FCFS) (e.g.: M =exp. distr.)
arrival rate A service rate U

O

queue
/é ((:uw service e.g., of type
: fequy station M/M/1/c0/FCFS
/g utilization p = M

arrival‘waiting time W service time S l l l ul time

departure

N /‘ N l lL

~
response time R

~
throughput X
[requests / s]

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizati.with Stochastic Input

Markov Chains

state transition prob‘s: p;;

P0=0.8p0+0.5pl+0.4p2

| p1=0.2p0+0.3p2 |
p2=05pl+ 0.3 p2 pP0=0.657,pl =0.2, p2=0.143
pPO+pl+p2=1

state prob‘s in step t: p;(= P[S(t)=i]

Markov property: P[S(t)=1| S(0), ..., S(t-1)] = P[S(t)=1 | S(t-1)]
Interested in stationary state probabilities:

p; :=lim p(t)—||mzp(t D pjzgpkpkj yp =1

{00 {00 k

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizati.gvith Stochastic Input

M/M/1 Queueing Systems
N(t): number of requests in queue (or in service)
A A: arrival

A A , rate flow rate:
0303/0 lim P [transition in A4t]
U service g I
rate

flow balance equations:
U= A and | P, A+ Pre U= P (A+)| forn=1

for ,0:=%<1: p,.=p"(1=-p) forn=0

E[N] _E[S]
A 1-p

EINT= 3 np =20 ER) =

response time distribution: Fx(t)=P[R<t]=1-¢ "/ FLF

but more complex for non-exponential service time

. Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Insights (Example):

M/G/1: VA

with 2

workload u

classes
S,=001s S,=0.1s
A =40st A, =451

E[S] = 0.01818 s
E[S?] = 0.00091 s2
Pp=0.8

E[S*]p

EIR]|=EI[S
LR L= S I S oyErsT

0.00091 0.8 S
0.4 0.01818

=(0.01818 +
=0.118 s
B,

Surajit Chaudhuri

Static Optimizatimith Stochastic Input

Variability Matters

M/D/1; A

with 1

average*

class : H
S=0.01818s
A =445

E[S] = 0.01818 s

E[S?] = 0.00033 s

Pp=0.8
E[R]=E[S]+_ LS 1P
2(1-p)E[S]
0.00033 08
0.4 001818

=0.01818 +
=0.054 s

and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Other Queueing Systems

many variations and generalizations:

* M/G/1 models with general service time distributions
« multiple request (customer) classes, with priorities

e service scheduling other than FIFO

e GI/G/1 models

e discrete-time models

e queueing networks

etc. etc.

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizati!with Stochastic Input

Mathematical Tools (1)

X, Y, continuous random variables A, B, ...: discrete random variables with
with non-negative real values non-negative integer values

Fy (X)=P[X < Xx]: prob. distribution of X
fy (X) =F'x (X): prob. density of X f,(k)=P[A=k] :prob. density of A

o () =Je ™ fx (ax=E[X] Ga(2)=3 2 Tu(1)=E[2"];
0 1=

Laplace-Stieltjes transform (LST) of X generating function of A
Examples: exponential: Erlang-k: o Poisson: o
= e~ _ak(akx)" " ok f(k)y=e @<
f (x)=ae f (X) = =T (k) "
* — a % _ ka K — pa(z-1)
P (s) ="~ fr(s)= Ga(z)=e

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Mathematical Tools (2)

Convolutlon of independent random variables:
FX+Y(z)—jfx(x)FY(z—x)dx Frig(K)= zfA(I)F(k—I)
0

F x4y (8)=f*x (s) f*y (s) Gag(2)=G,(2)Gg(2)

Chernoff tail bound: P[X 2t]<infle @' f *y (-8) | 820

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatic:ﬂiwith Stochastic Input

M/G/1 Queueing Systems

N(t) at request departure times forms embedded Markov chain

E[W] = PE[S] 1+C52 with C82 :Var[S] _ E[SZ]—E[S]Z

1-p 2 E[S]° E[S]?
E[R]=E[W]+E[S]

24 » AE[S3] 24 2 E[S?]
E[W?*] =2E[W] +3(1_p) E[R°]=E[W*]+ 5
wrpg1=_ (1-p)0 R*[A1=W=*(8) S*(6&

B Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Static Optimizatimwith Stochastic Input

Modeling Disk Service TIMeS o mutti-zone disk

_ (Chax ~Cmin) (v-1)
Cv_Cmin+ max Zmlnl

P[dist=k|oncyl i] =
C,/Cyiy fork=0
(Cp #C,y) / g Tor 0<ksv<Z-1-k
C,/C4y fork>0andi>Z-1-k
C, i [Cy4y fork>0and v<k

v+

fye (k)= Pdist=k] =Y P[dist =k |on cyl i]

Z: #cylinders C,: track capacity
Bi = Ci / ROT :

disk transfer rate

R: request size

ROT: rotation ti’? Tirans = R/ B;

Tt rotational delay transfer time

Tgeek =tseek(z)=
clJVz+c2 ifz<ch
c3z+c4 otherwise

arm seek time

i . _ ,-SROT
. (1)= Fam((t=c2)/c1)") for t<cies+c2 ()T por f“’t(s)zlseR—OT
seek Fu ((t-c4)/c3) otherwise
CV=Cmm+(Cmax-Cmm)(V-l) B,=C,/ROT P[BsBi]=iCV/§CV
Z -1 v=1 v=1
o (r)= (Cpin! ROT +r)(r=2r+2C_. /| ROT-C__/ROT) _
(Cin #C)Z(Cri =C.)/ ROT? manageable with
Cra | ROT computer algebra tools
Prans ()= Trae (1P (1)1 like Maple or Matlab

Surajit Chaudhuri

and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizati!with Stochastic Input

Stochastic Response Time Prediction

for multi-zone disk with seek-time function t,(x), Z tracks
of capacity C;, < C; < C_,,, rotation time ROT, disk load A,

fR(t)z_éﬂi Pi chache(t)'l':Bi (1— Pi) 1:Rdisk(t)

f*R(S)=_Zl Bi(1-p)F rgg(S)
" " s(1-p) with M/G/1 queue:

Fraisk = Teer (S) L ~
AdlSk +Ad|sk fserv(s) AdiSk - Azlﬂl(l Pi)

* * * * =A _ E t
1:serv(s)= fseek(s)frot(s)ftrans(s) P disk [serv]

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Cache Sizing: Putting It All Together

We can now:
e predict the cache hit ratio and
the page-access response time (mean and quantiles)
for given cache size M
e predict transaction response times by accumulating page accesses
* solve for smallest M that satisfies response time goal

Surajit Chaudhuri and Gerhard Weikum

tatic Optimiza._'_-ith Stochastic Input
essage Flooding

neighbors,

|
¢ srhara “Veikum

tatic Optimizahith Stochastic Input

le Swarming
collecting:

|
¢ srhara “Veikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatic:ﬂiwith Stochastic Input

Part 2: Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
e Capacity Planning
« Example: Cache Sizing
e Queueing Theory
e Further Aspects and Lessons
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizatig!iwith Stochastic Input

Dependability Measures

o Failure tolerance: ability to recover from failures
e Failure masking: ability to hide failures from application program
 Reliability: time until failure (a random variable);

usually given by the expectation value
 Availability: probability of service (at random time point);

often given by #nines (e.g., 99.99 % = 1 hour downtime per year)
« Performability: performance with consideration of

service degradation due to (transient) component failures

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Avallability Example

only transient, repairable failures
availability = P[system is operational at random time point]

Single Mirrored
server: 1/MTTF server pair: 2/ MTTF 1/MTTF

1/ MTTR 1/MTTR 1/MTTR
pO/MTTR=p1l/MTTF PL/MTTR=2p2/ MTTF
pl/MTTF=p0/MTTR 2p2/ MTTF +p0/MTTR =
pO+pl=1 pl/MTTR + pl/MTTF

pl/MTTF=p0/MTTR
pO+pl+p2=1
1= MTTF _ MTTF?
MTTE + MTTR P 2
availability of server availability of server pair

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizati_ajiwith Stochastic Input

| essons and Problems

Lessons:

» stochastic models are key to predicting performance for
workloads with statistical fluctuation,
and thus key for capacity planning and system

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizaﬁmith Stochastic Input

Literature (1) on11.3: Static Optimization with Stochastic Input

 A. Allen: Probability, Statistics, and Queueing Theory with Computer Science
Applications, Academic Press, 1990

* R. Nelson: Probability, Stochastic Processes, and Queueing Theory, Springer 1995

* R.A. Sahner, K.S. Trivedi, A. Puliafito: Performance and Reliability Analysis of
Computer Systems, Kluwer, 1996

* B.R. Haverkort: Performance of Computer Communication Systems, Wiley 1998

* D.A. Menasce, V.A.F. Almeida: Capacity Planning for Web Performance —
Metrics, Models, and Methods, Prentice Hall, 1998

 C. Millsap: Optimizing Oracle Performance, O‘Reilly, 2003

« C.K. Wong: Algorithmic Studies in Mass Storage Systems,
Computer Science Press, 1983

* E.G. Coffman Jr., M. Hofri: Queueing Models of Secondary Storage Devices,
Queueing Systems 1(2), 1986

e C. Ruemmler, J. Wilkes: An Introduction to Disk Drive Modeling,
IEEE Computer 27(3), 1994

 J. Wilkes, R.A. Golding, C. Staelin, T. Sullivan: The HP AutoRAID Hierarchical
Storage System, ACM TOCS 14(1), 1996

.- Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Static Optimizaﬁmith Stochastic Input

Literature (2) on11.3: Static Optimization with Stochastic Input

*E.A.M. Shriver, A. Merchant, J. Wilkes: An Analytic Behavior Model for
Disk Drives with Readahead Caches and Request Reordering, SIGMETRICS 1998

* G.A. Alvarez et al.: Minerva: An Automated Resource Provisioning Tool for
Large-Scale Storage Systems, ACM TOCS 19(4), 2001

* A. Dan, P.S. Yu, J.-Y. Chung: Database Access Characterization for
Buffer Hit Prediction, ICDE 1993

* G. Nerjes, P. Muth, G. Weikum: Stochastic Service Guarantees for Continuous Data
on Multi-Zone Disks, PODS 1997

e M. Gillmann, G. Weikum, W. Wonner: Workflow Management with
Service Quality Guarantees, SIGMOD 2002

* A.E. Dashti, S.H. Kim, C. Shahabi, R. Zimmermann: Streaming Media Server Design,
Prentice Hall, 2003

* L. Massoulie, M. Vojnovic: Coupon Replication Systems, SIGMETRICS 2005

* Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker: Search and Replication in Unstructured
Peer-to-Peer Networks, ICS 2002

« J. Kleinberg: Complex Networks and Decentralized Search Algorithms, ICM 2006

.- Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Outline

e Part I: What Is It All About
e Part Il: Five Auto-Tuning Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
e Part lll: Wrap-up

L Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

Online Optimization

Auto-Tuning as Online
Optimization

Memory Governance
Histogram Maintenance

Surajit Chaudhuri and Gerhard Weikum

o
Online Algorithms

Characteristics:
Deal with a sequence of events
Future events are unknown to the algorithm

The algorithm has to deal with one event at each
time.

Goodness with respect to uncertainty
measured via competitive ratio

Compare to offline algorithm with full knowledge
of the input

Competitive ratio alone is not a sufficient
criteria

L Surajit Chaudhuri and Gerhard Weikum

mOnIine Optimization

Part 11: Five Auto-Tuning Paradigms

Memory Governance

Memory = Other Processes + DB
Query OS on the amount of free physical memory
Respond to Memory availability

DB = Shared Cache + Working Memory

No good answer on how to split across the two
Working Memory = Sum (WorkingO-
Memory)

Hope is to leverage characteristics of SQL
operators

No formal problem definition
We will look at the state of the art

B Surajit Chaudhuri and Gerhard Weikum

. e
Shared Cache

Buffer Pool

Events are page references

Minimize page fault

LRU is k-competitive (LB), LFU is unbounded
Competitiveness alone is not sufficient

Shared Cache more than Buffer Pool

Procedure cache (compiled query plans)
Split across different classes

Multi-class workload, variant of cache
replacement problem

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Working Memory Assignment

Query Operators must be adaptive
with memory assignment

May be assumed with some limitations
We will look at Hash Join

No formal study of implementations in an
online memory adaptive framework
([Barve, Vitter 1994])

n,

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ~ Online Optimization

Roadmap

Adaptive operators
Allocation problem (ROC)

Example of Memory Governance In
Products

Troubleshooting Memory Pressure

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

Making Hash Join Memory
Adaptive

In Memory:Grace Hash: Recursive Hash
Role Reversal

Memory fluctuation across “steps”
Adjust cluster size for partitioning buffers

Maximize size of write requests (e.g., flush largest
partition to give up memory)

Fluctuation during steps
+: Enlarge buffers for build as well as probe
-: Reduce partition buffer, not input buffers
-: Bit Vector Filtering

L Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)

Example of Memory Governance in
Products

Troubleshooting Memory Pressure

L Surajit Chaudhuri and Gerhard Weikum

Allocation Problem

Challenges: Characterizing each operator

Take into account memory vs. response time
profiles of each stage of adaptive operators

To estimate value of incremental memory

Challenges: Mid-flight changes
Cardinality: Optimizer estimates not reliable
Progress of an operator/stage

Challenges: Handling multiple operators

Criteria for distribution across operators
Preemption, admission control as mechanisms

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ! Online Optimization

ROC Framework for Allocation

ROC (Return on Consumption) =
benefit/cost of incremental memory

ldentify dependence on incremental
memory for the “current” phase of an
operator

Capture space-time product
ROC(M) = (T(Mg) — T(M)) / (M*T(M) —
Mo*T(Mo))

Optimization problem based on ROC

Still need to resolve multi-operator
assignment

® Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Challenges in ROC Model

Derive Aperf/ AMi for each operator

Decision to take away memory interacts with
Implied IO costs

Limited work on modeling adaptive join operators
(Davidson 1995 thesis)

Balancing across query groups in the
workload may be important

Criticality (OLTP, OLAP, DSS)

Small, Medium or Large operands

Resource Brokering framework based on ROC
(Davidson, Graefe)

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)

Example of Memory Governance in
Products (Oracle and Microsoft)

See DB2 paper in VLDBO06
Troubleshooting Memory Pressure

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ~ Online Optimization

Example: Approach in
Microsoft SQL Server

Shared cache
Procedure cache (high cost of replacement) and
data page buffers
Compile Time
For each operator phase, a min and max memory
value is assigned
Based on expected cardinalities

For multiple concurrently executing phases,
division is proportional to expected work (a
fraction is assigned)

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

SQL Server Memory
Management (2)

Run time
At least min, but give Max if available
Below a threshold of total memory

Use admission control

Queue new requests instead of preempting active
operators

Waiting operators and waiting memory

Waiting operators release memory to active
operators on-demand

Longest waiting operator first to free memory

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

Oracle Workspace Memory
Management

Adaptive operators modeled with
Max, Min setting for memory

A memory target M is provided

Active Work Area Profiles for each active
operator
At least Min
Below 5% of overall limit of working memory
Fairness: At most (max_requirement, g)

Memory M is distributed among all of them as
an optimization problem to maximize g

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

Oracle: Setting Memory
Target

Do you have to adjust Memory Target?
DBA induced change

Wrong allocation due to slow response of
operators or fragmentation

Statistical advice from simulator (Memory Target
vs. Percentage of In-Memory executions)

Global bound recomputed frequently in the
background

Active re-computation needed for severe cases
Bootstrapping from idle state

u, Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)

Example of Memory Governance in
Products

Troubleshooting Memory Pressure

LT Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ~ Online Optimization

Troubleshooting Memory
Pressure

Manifestation of memory pressure

Cache hit ratio/Page Life Expectancy/ 10
subsystem under stress

Too many recompilations
Length of Memory grant queue

Possible Solution:
Fix Physical Designs

Fix SQL statement and compilation
Set transaction isolation level carefully

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

| essons and Problems

Lessons

Cache (Buffer Pool) replacement
reasonably solved

Static optimization not a feasible approach

Memory pressure due to many different
reasons

Use of built-in simulators

Problems

Allocation problem & incremental value of
memory analysis open

u, Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

References (Memory
Management)

Weikum G., Konig C., Kraiss A., Sinnwell, M. Towards Self-
Tuning Memory Management for Data Servers, IEEE Data
Engineering Bulletin 22(2): 3-11, 1999.

Yu P., Cornell D. Buffer Management Based on Return on

Consumption in a Multi-Query Environmentt, VLDB Journal 2(1):
1-37, 1993.

Brown K., Carey M., Livhy M., Goal-Oriented Buffer
Management Revisited, SIGMOD Conference,1996.

Surajit Chaudhuri, Eric Christensen, Goetz Graefe, Vivek R.
Narasayya, Michael J. Zwilling: Self-Tuning Technology in
Microsoft SQL Server. IEEE Data Eng. Bull. 22(2): 20-26 (1999)

Per-Ake Larson, Goetz Graefe: Memory Management During

Run Generation in External Sorting. SIGMOD Conference 1998:
472-483

B Surajit Chaudhuri and Gerhard Weikum

ﬂOnIine Optimization

Part I1: Five Auto-Tuning Paradigms il Online Optimization

References (Memory
Management)

Goetz Graefe, Ross Bunker, Shaun Cooper: Hash Joins and
Hash Teams in Microsoft SQL Server. VLDB 1998: 86-97

Diane L. Davison, Goetz Graefe: Dynamic Resource Brokering
for Multi-User Query Execution. SIGMOD Conference 1995:
281-292

Diane L. Davison, Goetz Graefe: Memory-Contention
Responsive Hash Joins. VLDB 1994: 379-390

Benoit Dageville, Mohamed Zait: SQL Memory Management in
Oracle9i. VLDB 2002: 962-973

Qi S., Dang M.: The DB2 UDB Memory Model, IBM
DeveloperWorks.

Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone,
Yixin Diao, Maheswaran Surendra: Adaptive Self-tuning Memory
in DB2, VLDB 2006

B Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Auto-Tuning as Online
Optimization

Histogram Maintenance

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms il Online Optimization

Histograms as Succinct
Data Set Summaries

Used for selectivity estimation

Data set partitioned into buckets

Each bucket consists of a bounding box and
aggregate statistics (count of tuples)

Uniformity is assumed inside buckets.

Histograms should partition data set in buckets
with uniform tuple density.

Multi-dimensional data makes partitioning
even more challenging

LT Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

Histogram Maintenance

Scenario 1: Insert/Deletes/Updates to relation
take place

How can we avoid rebuilding histogram from
scratch?

“Online incremental maintenance”
Scenario 2: No updates to relation. But, trying

to construct histograms by only looking at
guery executions

How can we modify histogram as we get
“additional evidence”?

“Online iIncremental correction”
a.k.a Self Tuning Histograms

u, Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

.‘_Online Optimization

Online Incremental Maintenance

Maintain a sample of the relation
Incrementally (Gibbons,Matias,Poosala V. VLDB 1997)

Insertion: Traditional Reservoir sampling

Modification:

Deletion: De
(also see pa

Incrementally u

In-place

ete, may trigger a re-sampling
per in VLDBO0O6)

pdate histogram by changing

frequency counts of buckets

Detect unbalanced buckets (std deviation)
If the histogram Is not “balanced”, use the

sample to rebuild histogram

. Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

Histogram Maintenance

Scenario 1: Insert/Deletes/Updates to relation
take place

How can we avoid rebuilding histogram from
scratch?

“Online incremental maintenance”
Scenario 2: No updates to relation. But, trying

to construct histograms by only looking at
guery executions

How can we modify histogram as we get
“additional evidence”?

“Online iIncremental correction”
a.k.a Self Tuning Histograms

u, Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Self-tuning Histograms

Estimated

Selectivity — Plan _ Result
1 Optimizer | Execution [—

Histogram 1
Actual
/ Selectivity
~v‘ Refinement

Databise gtart with an initial (inaccurate) histogram
and refine it based on feedback

Surajit Chaudhuri and Gerhard Weikum

!Online Optimization

Part 11: Five Auto-Tuning Paradigms

Online Incremental Correction

Does not examine actual data set

Assume uniformity and independence until
feedback shows otherwise

Uses Split and Merge techniques

Each query defines a potential new bucket if cardinality
error is above threshold

Merge victims are chosen based on adjacency and
similarity of density

Goal: Error minimized if the workload is replayed.

Contrast with online incremental maintenance
technigue..

® Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Evaluation Metric

Absolute Error:

E(D,H,W) = ﬁ Y |est(H,q) — act(D, q)]

geW

Normalized Absolute Error:

> qgew lest(H, q) — act(D, q)|

NAE(D.H,W) =
()= 5 v [estumy (D, @) — aci(D,)

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Refining STGrid
Histograms

Observe error and accumulate
iInformation about data distribution
In histogram buckets

——| Frequency
Refinement

A Better bucket boundaries
Periodic Split high frequency buckets
Restructuring | Merge buckets with similar
frequencies

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms i Online Optimization

STHoles Histograms

Tree structure among buckets.

Buckets with holes: relaxes rectangular

regions while using rectangular bucket
structures.

e

Non /

rectangular
region

u,

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ~ Online Optimization

Example STHoles
Histogram

—

Gaussian Data Set STHoles Histogram

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms ~ Online Optimization

Refining STHoles
Histograms

Initialize histogram H assuming uniformity.
For each query q in workload:

1- Gather simple statistics from query results.

2- ldentify candidate holes and drill (add) them as
new buckets in H.

3- Merge superfluous buckets in H.

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Drilling New Candidate Buckets

For each query q in workload and bucket b In
histogram:

Count how many tuples in result stream lie inside
gnb.

Drill gnb as a new bucket (child of b).

b, f(b)=400 b, f(b)=10

=
=
—
=n
-

Surajit Chaudhuri and Gerhard Weikum

Part I1: Five Auto-Tuning Paradigms Online Optimization

Parent-Child Merges

b1 b1
be, f(bc)=50
bp, f(bp)=100 b2 bn, f(bn)=150 b2

Eliminate buckets too similar to their parents.

Example: The interesting region in bc Is covered
by its child b1l.

Surajit Chaudhuri and Gerhard Weikum

Part 11: Five Auto-Tuning Paradigms

~ Online Optimization

Sibling-Sibling Merges
