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Scope and Purpose of This Tutorial

Motivate and enable students and young scientists
to pursue research on the auto-tuning aspect
of autonomic computing

Complementary to
• SIGMOD 02 and VLDB 02 tutorials (Shasha/Bonnet) 
on tuning techniques for DBAs

• VLDB 04 tutorial (Chaudhuri/Dageville/Lohman) 
on self-management features of DBMS products
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Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up
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Part I: What Is It All About

Part I: What Is It All About

• The Need for and Nature of Auto-Tuning
• State of the Art

• Product Features
• Scientific Principles

• Auto-Tuning Paradigms
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Part I: What Is It All About

Need for Auto-Tuning
• Total cost of ownership (TCO) for DBMS-based IT solution

dominated by staff for system admin, management, and tuning

• Increasing complexity of multi-tier application services
call for automated management

• DBMS offers hundreds of tuning kobs
(system config-time, DB-load-time, startup-time, run-time parameters)

→ DBMS (and multi-tier IT systems) should be autonomic (self-*):
self-managing, self-monitoring, self-healing, self-tuning
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Part I: What Is It All About

Easy Solutions

• Throw more hardware (KIWI method)
• Use this with caution
• Where do you throw hardware?

• Rules of Thumb approach
• Finding them is harder than you think
• May simply not exist – oversimplified wrong 

solutions are not helpful
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Nature of Auto-Tuning
Part I: What Is It All About

ability to predict
workload × config → performance

!!!           !!! ???
is key to finding the right knob setting

workload × config → performance goal
!!!  ???                !!!

Many difficult ramifications:
• workloads at different levels and time scales

• app-level vs. internal, long-term steady-state vs. next hour or minute
• variety of performance metrics

• resource usage, response time, throughput
• mean values vs. distributions
• single-class vs. multi-class

• unknown, fluctuating, and evolving parameters
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Part I: What Is It All About

State of the Art: Product Features
Oracle 10g Self-Managing Database:

automatic database diagnostic monitor, automatic memory pool management, 
automatic workload repository, automatic routine administration,
drill-down root-cause analysis, etc.

IBM DB2 Autonomic Technology:
index advisor, configuration advisor, health monitoring,
learning query optimizer, etc.

Microsoft SQL Server Self-Tuning Features:
physical design wizard, continuous monitoring, statistics management,
memory pressure analysis & heuristic resolution, etc.

Storage systems: AutoRAID etc.

+ great online profiling & analysis infrastructure
+ viable solutions for specific tuning issues
− progress exaggerated by marketing
? fundamental principles
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Part I: What Is It All About

State of the Art: Scientific Principles

this page is left blank necessarily
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Part I: What Is It All About

Call for Scientific Principles

Integration into DBMS

Product Features

Results on
Specific
Tuning Issues

Marketing
Hype

Auto-Tuning Paradigms

Mathematical Foundations
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Part I: What Is It All About

Foundations, Paradigms, Tuning Issues

physical design, QP statistics management,
memory management, MPL tuning, storage configuration, 
application tricks, middleware caching, ...

tradeoff elimination, online optimization,
feedback loop, diagnostics, what-if analysis, ...

combinatorial optimization, queueing theory
control theory, statistical learning, ...
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Part I: What Is It All About

Auto-Tuning Paradigms
Aim: generalize from good approaches to specific tuning problems

Auto-tuning as: 
• tradeoff elimination (ex. cache replacement)
• static optimization (ex. index selection)
• stochastic prediction (ex. capacity planning)
• online optimization (ex. memory governing)
• feedback control loop (ex. MPL tuning)
• what-if analysis (ex. bottleneck identification)
• statistical learning (ex. root-cause analysis)
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Part I: What Is It All About

General Literature
• D. Shasha, P. Bonnet: Database Tuning – Principles, Experiments, and

Troubleshooting Techniques, Morgan Kaufmann, 2003 
(see also tutorials at SIGMOD 2002 and VLDB 2002)

• S. Chaudhuri, B. Dageville, G. Lohman: Self-Managing Technology in Database, 
Management Systems, Tutorial Slides, VLDB 2004

• IBM Systems Journal 42(1), 2003, Special Issue on Autonomic Computing
• G. Weikum, A. Mönkeberg, C. Hasse, P. Zabback: Self-Tuning Database Technology
and Information Services: from Wishful Thinking to Viable Engineering, VLDB 2002

• G. Weikum, C. Hasse, A. Mönkeberg, P. Zabback: The COMFORT Automatic 
Tuning Project, Information Systems 19(5), 1994

• S. Chaudhuri (Editor): IEEE CS Data Engineering Bulletin 22(2), 1999,
Special Issue on Self-Tuning Databases and Application Tuning

• G. Candea, A.B. Brown, A. Fox, D. Patterson: Recovery-Oriented Computing: 
Building Multitier Dependability. IEEE Computer 37(11), 2004

• David S. Reiner, T.B. Pinkerton: A Method for Adaptive Performance Improvement
of Operating Systems, SIGMETRICS 1981

• R. Jain: The Art of Computer Systems Performance Analysis, Wiley 1991
• A. Ailamaki (Editor), IEEE Data Engineering Bulleting Vol.29 No.3, Special Issue
on Self-Managing Database Systems, September 2006
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Call for Papers
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

International Workshop on 
Self-Managing Database Systems (SMDB 2007)

on April 16, 2007, in Istanbul, Turkey
in conjunction with ICDE 2007

Workshop chair: Guy Lohman
Submission deadline: November 20, 2006

for more details see
http://db.uwaterloo.ca/tcde-smdb/SMDB2007_CFP.html
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Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up
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Part II: Five Auto-Tuning Paradigms

Part 2: Five Auto-Tuning 
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop



17 Surajit Chaudhuri and   Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

1 Auto-Tuning as Tradeoff Elimination
Tuning parameters handle tradeoffs

If you can find a parameter setting that yields
universally close-to-optimal performance

(across a wide spectrum of workloads and for several technology generations)
then the tuning knob can be eliminated !

Examples:
• B+-tree (vs. hash index): scan vs. random-lookup performance
• Page size: disk IO efficiency vs. memory efficiency
• Striping unit: IO parallelism vs. disk throughput
• LRU-k-style caching: recency (LRU) vs. frequency (LFU)
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Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Example: Caching Strategies
LRU: drop page that has been least recently used
LFU: drop page that has been least frequently used

LFU: optimal for static access probabilities, but has no aging
LRU: optimal if last access is indicative for next future access

Tradeoff recency vs. frequency:

LRU degrades for sequential only-once access
and is suboptimal for multiple page pools (e.g., index pages)

time

A B C D
X Y X Y

A B C D
X Y X Y

A B C D
X Y X Y

1 2 3 4 5 10 15 20 24 now

Example:

Hybrid LRU/LFU strategies have weights that are critical to tune
Using multiple page-pool caches (each with LRU) is a tuning nightmare
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Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Example: LRU-k Caching Strategy
LRU-k: drop page with the oldest k-th last reference

estimates heat (p) =
)( ptnow

k
k−

extensions and variations for variable-size
objects, non-uniform storage, etc.

optimal for IRM

But cache bookkeeping has time and space overhead:
• O(log M) time for priority queue maintenance
• M* > M entries in cache directory
to remember k last accesses to M* pages

+ overhead acceptable for improved cache hit rate
+ add‘l bookkeeping memory is small and uncritical to tune

→ improved implementations: 2Q, ARC

Lesson: substitute critical tuning param by robust 2nd-order params
and accept small overhead
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Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Lessons and Problems
Lessons:
find „sweet spot“ for tuning param by mathematical analyis and/or
substitute „difficult“ param by „well-tempered“ param,
and accept some overhead for making better run-time decisions

Problems:
• caching for multi-class workload with per-class goals
• extend 2Q / ARC methods to hierarchical & distributed caching
• combine caching & prefetching with response time guarantees
• systematic study & characterization of tuning-parameter sensitivities



21 Surajit Chaudhuri and   Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Literature on Tradeoff Elimination:
• E.J. O‘Neil, P. O‘Neil, G. Weikum: The LRU-k Page Replacement Algorithm
for Database Disk Buffering, SIGMOD 1993

• T. Johnson, D. Shasha: 2Q: A Low Overhead High Performance Buffer 
Management Replacement Algorithm, VLDB 1994

• J. Gray, G. Graefe: The Five-Minute Rule Ten Years Later, and Other Computer 
Storage Rules of Thumb, SIGMOD Record 26(4), 1997

• D. Lomet: B-Tree Page Size When Caching is Considered, 
SIGMOD Record 27(3), 1998

• N. Megiddo, D.S. Modha: Outperforming LRU with an Adaptive Replacement
Cache Algorithm, IEEE Computer 37(4), 2004

• HP / Oracle White Paper: Auto-SAME, 
http://www.oracle.com/technology/tech/hp/storage.pdf

• P.A. Boncz, S. Manegold, M.L. Kersten: Database Architecture Optimized for the
New Bottleneck: Memory Access, VLDB 1999

• J. Schindler, A. Ailamaki, G.R. Granger: Lachesis: Robust Database Storage
Management Based on Device-specific Performance Characteristics, VLDB 2003

• A. Ailamaki: Database Architecture for New Hardware, Tutorial Slides, VLDB 2004
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Part II: Five Auto-Tuning Paradigms

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Auto-Tuning as Static Optimization
with Deterministic Input

Physical Database Design
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Physical Database Design
Performance of a query depends on 
execution plan
Execution plan picked by optimizer 
depends on 

Statistics created by the optimizer
Physical design: Objects that exist

Choice of statistics and physical design 
objects amortized 
Physical Design Configuration 

Clustered Indexes + Non-clustered indexes + 
Materialized Views
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Is this a hard problem?
SELECT A,B,C
FROM R
WHERE 10 < A < 20

AND 20 < B < 100

SELECT B,C,D
FROM R
WHERE 50 < B < 100

AND 60 < 2*D < 80
Storage for (A,B,C) + (D,B,C)

is too large!

UPDATE R
SET B=B+1
WHERE 10 < C < 20

We started fine, but progressively:

•Used statistical information

•Guessed how the optimizer would use 
statistics

•Guessed how the optimizer would use 
proposed indexes

•Gave up

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

And that was just indexes!
SELECT A,B,C
FROM V
WHERE 20 < B < 100

Views and Indexes on Views

CREATE VIEW V AS
SELECT A,B,C FROM R
WHERE 10 < A < 20

+
INDEX on IV(B,A,C)

SELECT A,B,C
FROM R
WHERE 10 < A < 20

AND 20 < B < 100

||

Partitions on Indexes (on views)

CREATE INDEX ON R(A,B,C)
PARTITIONED ON B [20, 100]

Access only this partition
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Real Life Queries are Complex!

SELECT CNTRYCODE, count(*) as NUMCUST, sum(C_ACCTBAL) as TOTACCTBAL
FROM (

SELECT substring(C_PHONE,1,2) as CNTRYCODE, C_ACCTBAL
FROM CUSTOMER
WHERE substring(C_PHONE,1,2) in ('31', '17', '30', '24', '26', '34', '10', '')

AND C_ACCTBAL > (
SELECT avg(C_ACCTBAL)
FROM CUSTOMER
WHERE C_ACCTBAL > 0.00

AND substring(C_PHONE,1,2) in
('31', '17', '30', '24', '26', '34', '10', '')

)
AND NOT EXISTS (

SELECT *
FROM ORDERS
WHERE O_CUSTKEY = C_CUSTKEY
)

) as CUSTSALE
GROUP BY CNTRYCODE
ORDER BY CNTRYCODE

TPC-H SAMPLE QUERY
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Real Life Queries are Complex!
---
--- Galaxy target selection with spectroscopic redshifts
---
SELECT top 15  str(gal.ra,9,4) AS ra, str(gal.dec,8,4) AS dec,

cast(spec.objTypeName AS CHAR(9)) AS type,
str(spec.z,7,4) AS Z,
fSpecZStatusN(spec.zStatus) AS status,
fGetUrlSpecImg(spec.specObjID) AS Spectra

FROM
@database..PhotoPrimary AS gal,
@database..specObj AS spec

WHERE
gal.objID = spec.bestObjID AND
-- Our star-galaxy separation AND target selection
psfMag_r - modelMag_r >= @delta_psf_model AND
petroMag_r - extinction_r <= @maglim AND
petroMag_r - 2.5*log10(2*@pi*petroR50_r*petroR50_r) < @SBlim AND
-- Check flags
(flags & @bad_flags) = 0 AND
(((flags & @BLENDED) = 0) OR ((flags & @NODEBLEND) != 0)) AND
-- Check spectro flags

NOT spec.zStatus IN (@FAILED, @NOT_MEASURED)

SKYSERVER SAMPLE QUERY
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Physical Database Design 
as Static Optimization

Workload
queries and updates

Configuration
A set of indexes, materialized views and partitions from 
a search space

Constraints
Upper bound on storage space for indexes

Search: Pick a configuration with lowest cost for the given 
database and workload.
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation 
Measuring Goodness of a design

What-if Physical Design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

What is “cost”?
Execution cost of the query

Requires physical design changes – too disruptive
Optimizer Estimated Cost

Used to compare alternative plans for the query
We choose optimizer estimated cost

Better than designing a new cost model
Estimate quantitatively the impact of physical 
design on workload (queries and updates)

e.g., if we add an index on T.c, which queries benefit and 
by how much?

Never meant to compare across physical 
designs/Queries
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Estimating Cost of a 
configuration for Search

Without making actual changes to physical 
design
What-If Indexes!
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

“What-If” Indexes
Query Optimizer decides which plan to 
choose given a physical design
Query optimizer does not require 
physical design to be materialized

Relies on statistics to choose right plan
Sampling based techniques for building statistic

Sufficient to fake existence of physical 
design

Build approximate statistics
Change “meta-data” entry
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Using What-If Analysis

Create Hypothetical 
Object

Create Statistics

Define Configuration C

Optimizer Query Q for 
Configuration C

ShowPlan

Physical Design 
Component

Relational Query 
Engine
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

“What-If” Architecture 
Overview

Query

Optimizer
(Extended)

Database Engine

Workload

Search 
Algorithm

Recommendation

“What-if”

Application
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Balancing Requirements of 
Multiple Queries 

Simple divide and conquer not enough
Because, union of “best” configurations 
for each query may not be feasible

Violate storage constraints
Maintenance costs for update queries may rule 
out “ideal” indexes/MV

Use locally suboptimal alternatives -
need for “merging”
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning 
Advisor

Workload

Database 
Tuning 
Advisor

(DTA)

Parse and Compress 
Queries

Candidate Selection

Configuration 
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Characteristics of Merged 
Candidates

A derived configuration from one or more seed 
configurations
M12 is a “merged” candidate from parents P1, P2

If Q was using P1, it can have a plan using M12
New plans using M12 is not “much” more expensive

Merging can
Introduce new logical objects (materialized views)
Introduce new physical structures (indexes)
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Sample Algorithm: 
MV Merging Candidates

V1 and V2 be on same set of tables and same join 
conditions
Merged MV V12 contains

Union of projection columns of V1 , V2
Union of Group-By columns of V1 and V2
Selection conditions common to V1 and V2
Columns in different selection conditions 
pushed into Group-By

Reject the merge if size of V12 is too large
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Sample Algorithm:
Index Merging Candidates

Union of columns in I1 and I2
Index scan benefits preserved 
Preserve seek benefits to at least one

A common prefix of two indexes
Partial seek benefits

Multiple thinner indexes
Replace covering indexes with Intersection/Union 
plans (A,B|C,F) [S] (B,E|F) = (B|F) + (A|C) + (E)
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning 
Advisor

Workload

Database 
Tuning 
Advisor

(DTA)

Parse and Compress 
Queries

Candidate Selection

Configuration 
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Search Algorithm
Search Space = “Locally Best” U “Merged”

Indexes and Indexed Views need to be 
considered together

Cannot “break” into two sequential selection 
steps

Search driven by reduction in optimizer 
estimated costs 

Top-Down: Get an optimal structure and then 
modify it
Bottom-up: Grow by picking the next k-structures
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Quality: Incremental 
Cost/Benefit of a structure

Benefit of an index/MV is relative to a 
given configuration 
Example

Two clustering indexes together can 
reduce cost of a join significantly

Example Metric 
Incremental penalty for removing a 
structure: (increase in cost)/(reduction of 
space)
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Efficiency: Reducing 
Optimizer Invocations

Each physical design can potentially 
resul0 88 -31otenti
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning 
Advisor

Workload

Database 
Tuning 
Advisor

(DTA)

Parse and Compress 
Queries

Candidate Selection

Configuration 
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Top-down Search
Shrink supersets rather than expanding 
subsets
Mixes merging and enumeration phases

Candidate selection Merging “Bottom up” greedy enumeration

Top-down “relaxation”
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Other Approaches
[Agrawal et. al 2000] Bottom-up search 

Incrementally add “most promising”
structures
But, consider tight interactions
Initially exhaustive, degenerate into greedy

[Valentin et.al. 2000] Knapsack + 
Genetic

Create a feasible solution through 
knapsack (ignore interactions)
Genetic mutations and generate new 
candidates
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Architecture: Knowledge 
of the Optimizer

Reduce co-dependence on optimizer 
by

Making only broadest assumptions 
(e.g., importance of covering indexes)

Use knowledge of key optimizer 
characteristic selectively (deeper 
interaction)
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Instrumenting the Query 
Optimizer

Intercept index and view “requests”
Concise, no false nen005m3s/posi05m3s

Obtain optimal indexes and views from 
requests

(New)
Instrumentation Original optimizer

Access Path Generation Module

Available Indexes

Find best indexes
 for request

Logical Request

simulate

Physical sub-plan
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Instrumenting the Query 
Optimizer

Intercept “index and view requests”
Concise, no false negatives/positives

Obtain optimal indexes and views from requests
Inject such structures during optimization

0
5
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Indexes
Indexed Views

Scalability

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input
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When to Tune?

Low-overhead diagnostics
Reliable lower-bound improvement

No false positives
“Proof” with valid configuration
Upper-bound Estimate
[Bruno, Chaudhuri 06] (this conference)

COLT [Schnaitter+ 06] does periodic “epoch-at-a-time”
polling distinguishing structure classes
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Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Lessons and Problems
Lessons:

Precise static optimization problem
Challenges in cost definition
Complex search space – depends on server 
sophistication

Problems:
How deeply to exploit optimizer
Uncertainty in cost estimation
Workload model [Agrawal+06] 
Search Algorithms (combinatorial optimization) 
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Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
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Auto-Tuning as Static Optimization
with Stochastic Input

Capacity Planning and
System Configuration

Workload varies statistically
Load may be unbounded

⇒ input is stochastic
⇒ can provide only stochastic guarantees
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System Capacity Planning
Key issue for long-term tuning:
how big should you configure your system resources?

• CPU speed, #processors in SMP, #servers in server farm
• amount of memory, cache sizes
• #disks, disk types, storage controller types
• software parameters for (static) resource limitation

→ configure system so as to meet goals for
• performance: throughput, response time (mean or quantile)
• reliability and availability

reasonably understood for OLTP server, HTTP server, etc.
not so well understood for DBMS, multi-tier Web Services
→ workload and complex system behavior

approximated/abstracted by stochastic models
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System Configuration Tool (1)
Workload Operational System Configuration

Admin

Modeling Calibration

Evaluation

Recommendation

MonitoringMapping

Hypothetical
config

Max. Throughput
Avg. waiting time
Expected downtime
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System Configuration Tool (2)
Workload Operational System Configuration
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Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
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Example: DBMS Cache Sizing

1
1000 $ 1000 $100 KB
1GB 100 s

λ−⇔ < 10.01sλ −⇔ >

Keep page in cache if diskcache CC <
Cost / throughput consideration:

Minimum cache size M such that
goalpercentile RTMgfratiohitfRT ≤== ...)),((...),(

Response-time guarantee:
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LRU-k Cache Hit Rate Prediction

P(W ) : E [ distinct pages referenced=

( )
n W

j W jW
i ij

i 1 j k
( 1 )β β −

= =
= −∑ ∑

1W : P ( M )−�¦p:P[[i[i[siiiiie( ) W

j
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LRU-k Response Time Prediction
with cache size M, page access probabilites ,
disk characteristics, global load, ...

1 2, , ...β β

• RT = f (hit rate, disk access time)
• disk access time = service time  +  queueing delay

→ need disk model
→ need queueing analysis

rich repertoire of math, many models around,
but care needed in adopting models
→ need understanding of modeling & math



71 Surajit Chaudhuri and   Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
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Basics of Queueing Systems
prob. distr. of
interarrival time
(e.g.: M = exp. distr.)

prob. distr. of
service time S
(e.g.: M = exp. distr.)

scheduling
policy
(e.g.: FCFS)

service rate µarrival rate λ

...

service
station

customers
(requests)

queue
e.g., of type
M/M/1/∞/FCFS

arrival service time Swaiting time W time
departure

response time R throughput X
[requests / s]

utilization ρ = λ/µ
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Markov Chains
Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

0: sunny 1: cloudy 2: rainy
0.2

0.3
0.4

0.5

0.5 0.3
0.8

state transition prob‘s: pij

p0 = 0.8 p0 + 0.5 p1 + 0.4 p2
p1 = 0.2 p0 + 0.3 p2
p2 = 0.5 p1 + 0.3 p2
p0 + p1 + p2 = 1

⇒ p0 ≈ 0.657, p1 = 0.2, p2 ≈ 0.143

interested in stationary state probabilities: 

state prob‘s in step t: pi
(t) = P[S(t)=i]

( t ) ( t 1 )
j j k kjt t k

p : lim p lim p p−

→∞ →∞
= = ∑ j k kj

k
p p p=∑ j

j
p 1=∑

Markov property: P[S(t)=i | S(0), ..., S(t-1)] = P[S(t)=i | S(t-1)] 
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M/M/1 Queueing Systems
N(t): number of requests in queue (or in service)

0 1 ...
λ

µ

λ λ

µµ

λ: arrival
rate

µ: service
rate

flow balance equations:
1 0p pµ λ= n 1 n 1 np p p ( )λ µ λ µ− ++ = +and for n ≥ 1

⇒ for : 1 :λρ
µ

= < n
np ( 1 )ρ ρ= − for n ≥ 0

⇒ n
n 0

E [ N ] n p
1
ρ
ρ

∞

=
= =

−
∑ ⇒ E [ N ] E [ S ]E [ R ]

1λ ρ
= =

−

t / E [ R ]
RF ( t ) P [ R t ] 1 e−= ≤ = −response time distribution:

but more complex for non-exponential service time

flow rate:

t 0

P [ transition in t ]lim
t∆

∆
∆→

2
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Insights (Example): Variability Matters
λ

µ

S1 = 0.01 s

M/G/1:

λ1 = 40 s-1

S2 = 0.1 s
λ2 = 4 s-1

with 2 
workload
classes

λ

µ

S ≈ 0.01818 s

M/D/1:

λ = 44 s-1

with 1 
„average“
class

E[S] ≈ 0.01818 s
E[S2] = 0.00033 s2

ρ = 0.8
2E[ S ]E[ R ] E[ S ]

2(1 )E[ S ]
ρ

ρ
⇒ = +

−

0.00033 0.80.01818 s
0.4 0.01818

⋅
≈ +

⋅
0.054 s≈

E[S] ≈ 0.01818 s
E[S2] ≈ 0.00091 s2

ρ = 0.8
2E[ S ]E[ R ] E[ S ]

2(1 )E[ S ]
ρ

ρ
⇒ = +

−

0.00091 0.80.01818 s
0.4 0.01818

⋅
≈ +

⋅
0.118 s≈
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Other Queueing Systems
many variations and generalizations:
• M/G/1 models with general service time distributions
• multiple request (customer) classes, with priorities
• service scheduling other than FIFO
• GI/G/1 models
• discrete-time models
• queueing networks
etc. etc.
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Mathematical Tools (1)
X, Y, ...: continuous random variables 

with non-negative real values

prob. distribution of X :][)( xXPxFX ≤=

prob. density of X :)(')( xFxf XX =

A, B, ...: discrete random variables with
non-negative integer values

Af ( k ) P [ A k ] := = prob. density of A 

:][)()(*
0
∫
∞ −− == sX

X
sx

X eEdxxfesf

Laplace-Stieltjes transform (LST) of X 

i A
A A

i 0
G ( z ) z f ( i ) E[ z ] :

∞

=
= =∑

generating function of A 

Examples: exponential:
x

Xf ( x ) e αα −=

Xf * ( s )
s

α
α

=
+

k 1
kx

X
k( kx )f ( x ) e
( k 1)!

αα α −
−=

−
k

X
kf * ( s )

k s
α

α
⎛ ⎞= ⎜ ⎟+⎝ ⎠

Erlang-k: k

Af ( k ) e
k !

α α−=
Poisson:

( z 1 )
AG ( z ) eα −=
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Mathematical Tools (2)

∫+ −=
z

YXYX dxxzFxfzF
0

)()()(
Convolution of independent random variables:

)(*)(*)(* sfsfsf YXYX =+

k

A B A Y
i o

F ( k ) f ( i )F ( k i )+
=

= −∑

A B A BG ( z ) G ( z )G ( z )+ =

{ }0|)(*inf][ ≥−≤≥ − θθθ
X

t fetXPChernoff tail bound:
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M/G/1 Queueing Systems
N(t) at request departure times forms embedded Markov chain

with
2

22

2
2

]S[E
]S[E]S[E

]S[E
]S[VarCS

−
==

2
1

1

2
SC]S[E]W[E

+
−

=
ρ

ρ

]S[E]W[E]R[E +=

)(
]S[E]W[E]W[E

ρ
λ

−
+=

13
2

3
22

ρ−
+=

1

2
22 ]S[E]W[E]R[E

)(*S
)(][*W

θλλθ
θρθ

+−
−

=
1 R* [ ] W * ( ) S * ( )θ θ θ= ⋅
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Modeling Disk Service Times

s ROT
*
rot

1 ef ( s )
s ROT

−−
=rot

1f ( s )
ROT

=

for multi-zone disk

i Z

i
1 1

P [ B B ] C / Cν ν
ν ν= =

≤ = ∑ ∑max min
min

( C C ) ( 1 )
C C

Z 1ν
ν− ⋅ −

= +
−

B C / ROTν ν=

Z: #cylinders

ROT: rotation time
rotational delayrotT

itrans B/RT =
transfer time

disk transfer rate

Ci: track capacity
:ROT/CB ii =

arm seek time

== )z(tseekTseek
c z c z c1 2 5+ ≤ if 
c z c3 4   otherwise+

R: request size

max min
min

( C C ) ( 1 )
C C

Z 1ν
ν− ⋅ −

= +
−

dist
i

f ( k ) P [dist k ] P [dist k | on cyl i ]= = = =∑
2

dist
seek

dist

F ((( t c2 ) / c1 ) ) for t c1 c5 c2
F ( t )

F (( t c4 ) / c3 ) otherwise

⎧ − ≤ +⎪= ⎨
−⎪⎩

P [dist k | on cyl i ]= =

( )
disk

k k disk

k disk

k disk

C / C for k 0

C C / C for 0 k Z 1 k

C / C for k 0 and i Z 1 k
C / C fork 0 and k

ν

ν ν

ν

ν

ν

ν

− −

−

+

=⎧
⎪

+ < ≤ ≤ − −⎪
⎨

> > − −⎪
⎪ > <⎩
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min min max
rate 2

min max min max

( C / ROT r )( r Zr ZC / ROT C / ROT )F ( r )
( C C )Z( C C ) / ROT

+ − + −
=

+ −
C / ROTmax

trans rate size
r C / ROTmin

F ( t ) f ( r )F ( tr )dr
=

= ∫

manageable with
computer algebra tools
like Maple or Matlab
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Stochastic Response Time Prediction
for multi-zone disk with seek-time function tseek(x), Z tracks
of capacity Cmin ≤ Ci ≤ Cmax, rotation time ROT, disk load λdisk

n

R i i Rcache i i Rdisk
i 1

f ( t ) p f ( t ) ( 1 p ) f ( t )β β
=

= + −∑
n

* *
R i i Rdisk

i 1
f ( s ) ( 1 p ) f ( s )β

=
= −∑

* *
Rdisk serv *

disk disk serv

s( 1 )f f ( s )
s f ( s )

ρ
λ λ

−
=

− +
n

disk i i
i 1

( 1 p )λ λ β
=

= −∑

disk servE [ t ]ρ λ=* * * *
serv seek rot transf ( s ) f ( s ) f ( s ) f ( s )=

with M/G/1 queue:
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Cache Sizing: Putting It All Together
We can now:
• predict the cache hit ratio and 
the page-access response time (mean and quantiles) 
for given cache size M

• predict transaction response times by accumulating page accesses
• solve for smallest M that satisfies response time goal
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Stochastic Model for P2P Message Flooding
Gnutella-style „blind search“: 

forward query to (random subset of) neighbors, 
with TTL reduced at each hop

1

12222233333

?

Config/tuning question (for s elf-organizing P2P):

how often should a  filebe replicated at randompeers

to guarantee

success prob. and r e s p o n s e t i m e?Answer: stochastic(queuing) model& analysis! see, e.g., Q. Lv et al., ICS 02, and  J. Kleinberg, ICM 06
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Stochastic Model for P2P File Swarming
BitTorrent-style file chunk (coupon) collecting: 

pick peer & replicate one of its (rare) chunks;
leave (a while) after completing your chunk set Config/tuning question (for s elf-organizing P 2P):intohowmanychunksshoulda filebechoppedto guaranteecomplete-chunk-setsuccessprob. and responsetime?

Answer: stochastic(queuing) model & analysis !see, e.g., Massoulie& Vojnovic: Sigmetrics05

?
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Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop
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Dependability Measures

• Failure tolerance: ability to recover from failures
• Failure masking: ability to hide failures from application program
• Reliability: time until failure (a random variable);

usually given by the expectation value
• Availability: probability of service (at random time point);

often given by #nines (e.g., 99.99 % ≈ 1 hour downtime per year)
• Performability: performance with consideration of

service degradation due to (transient) component failures
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Availability Example
only transient, repairable failures
availability = P[system is operational at random time point]

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Single 
server:

Mirrored
server pair:

0: down1: up

1 / MTTF 2 / MTTF

1 / MTTR

p0 / MTTR = p1 / MTTF
p1 /MTTF = p0 / MTTR
p0 + p1 = 1

⇒
MTTRMTTF

MTTFp
+

=1

availability of server

0:1:

1 / MTTF

2: both
up

1 up
1 down

both
down

1 / MTTR1 / MTTR

p1 / MTTR = 2 p2 / MTTF
2 p2 / MTTF + p0 / MTTR = 

p1 / MTTR + p1 / MTTF
p1 / MTTF = p0 / MTTR
p0 + p1 + p2 = 1

⇒
2

2
2MTTFp ≈

availability of server pair
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Lessons and Problems
Lessons:
• stochastic models are key to predicting performance for
workloads with statistical fluctuation,
and thus key for capacity planning and system
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Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up
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Auto-Tuning as Online 
Optimization

Memory Governance
Histogram Maintenance
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Online Algorithms
Characteristics:

Deal with a sequence of events
Future events are unknown to the algorithm
The algorithm has to deal with one event at each 
time. 

Goodness with respect to uncertainty
measured via competitive ratio

Compare to offline algorithm with full knowledge 
of the input

Competitive ratio alone is not a sufficient 
criteria 
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Memory Governance
Memory = Other Processes + DB

Query OS on the amount of free physical memory
Respond to Memory availability

DB =  Shared Cache +  Working Memory
No good answer on how to split across the two

Working Memory = Sum (WorkingO-
Memory)

Hope is to leverage characteristics of SQL 
operators
No formal problem definition 
We will look at the state of the art
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Shared Cache
Buffer Pool

Events are page references
Minimize page fault
LRU is k-competitive (LB), LFU is unbounded
Competitiveness alone is not sufficient

Shared Cache more than Buffer Pool
Procedure cache (compiled query plans)
Split across different classes

Multi-class workload, variant of cache 
replacement problem
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Working Memory Assignment
Query Operators must be adaptive 
with memory assignment

May be assumed with some limitations
We will look at Hash Join
No formal study of implementations in an 
online memory adaptive framework 
([Barve, Vitter 1994])
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Roadmap

Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in 
Products
Troubleshooting Memory Pressure
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Making Hash Join Memory 
Adaptive

In Memory:Grace Hash: Recursive Hash 
Role Reversal
Memory fluctuation across “steps”

Adjust cluster size for partitioning buffers
Maximize size of write requests (e.g., flush largest 
partition to give up memory)

Fluctuation during steps
+: Enlarge buffers for build as well as probe
-: Reduce partition buffer, not input buffers
-: Bit Vector Filtering
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Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in 
Products
Troubleshooting Memory Pressure
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Allocation Problem
Challenges: Characterizing each operator

Take into account memory vs. response time 
profiles of each stage of adaptive operators

To estimate value of incremental memory

Challenges: Mid-flight changes 
Cardinality: Optimizer estimates not reliable 
Progress of an operator/stage 

Challenges: Handling multiple operators
Criteria for distribution across operators
Preemption, admission control as  mechanisms
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ROC Framework for Allocation
ROC (Return on Consumption) = 
benefit/cost of incremental memory

Identify dependence on incremental 
memory for the “current” phase of an 
operator
Capture space-time product
ROC(M) = (T(M0) – T(M)) / (M*T(M) –
M0*T(M0))

Optimization problem based on ROC
Still need to resolve multi-operator 
assignment
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Challenges in ROC Model
Derive ∆perf/ ∆Mi for each operator

Decision to take away memory interacts with
implied IO costs
Limited work on modeling adaptive join operators
(Davidson 1995 thesis)

Balancing across query groups in the 
workload may be important

Criticality (OLTP, OLAP, DSS)
Small, Medium or Large operands
Resource Brokering framework based on ROC 
(Davidson, Graefe)
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Roadmap
Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in 
Products (Oracle and Microsoft)

See DB2 paper in VLDB06
Troubleshooting Memory Pressure
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Example: Approach in 
Microsoft SQL Server

Shared cache
Procedure cache (high cost of replacement) and 
data page buffers

Compile Time
For each operator phase, a min and max memory 
value is assigned

Based on expected cardinalities
For multiple concurrently executing phases, 
division is proportional to expected work (a 
fraction is assigned)
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SQL Server Memory 
Management (2)

Run time
At least min, but give Max if available 
Below a threshold of total memory

Use admission control
Queue new requests instead of preempting active 
operators

Waiting operators and waiting memory
Waiting operators release memory to active 
operators on-demand
Longest waiting operator first to free memory
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Oracle Workspace Memory 
Management

Adaptive operators modeled with
Max, Min setting for memory 

A memory target M is provided 
Active Work Area Profiles for each active 
operator

At least Min
Below 5% of overall limit of working memory
Fairness: At most (max_requirement, g)

Memory M is distributed among all of them as 
an optimization problem to maximize g
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Oracle: Setting Memory 
Target

Do you have to adjust Memory Target?
DBA induced change
Wrong allocation due to slow response of 
operators or fragmentation
Statistical advice from simulator (Memory Target 
vs. Percentage of In-Memory executions)

Global bound recomputed frequently in the 
background

Active re-computation needed for severe cases 
Bootstrapping from idle state
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Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in 
Products
Troubleshooting Memory Pressure
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Troubleshooting Memory 
Pressure

Part II: Five Auto-Tuning Paradigms Online Optimization

Manifestation of memory pressure
Cache hit ratio/Page Life Expectancy/ IO 
subsystem under stress
Too many recompilations
Length of Memory grant queue

Possible Solution: 
Fix Physical Designs
Fix SQL statement and compilation
Set transaction isolation level carefully
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Lessons and Problems
Lessons

Cache (Buffer Pool) replacement 
reasonably solved
Static optimization not a feasible approach
Memory pressure due to many different 
reasons
Use of built-in simulators 

Problems
Allocation problem & incremental value of 
memory analysis open
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Auto-Tuning as Online 
Optimization

Histogram Maintenance
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Histograms as Succinct
Data Set Summaries
Used for selectivity estimation
Data set partitioned into buckets

Each bucket consists of a bounding box and
aggregate statistics (count of tuples)
Uniformity is assumed inside buckets.

Histograms should partition data set in buckets
with uniform tuple density.

Multi-dimensional data makes partitioning
even more challenging
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Histogram Maintenance
Scenario 1: Insert/Deletes/Updates to relation 
take place

How can we avoid rebuilding histogram from 
scratch?
“Online incremental maintenance”

Scenario 2: No updates to relation. But, trying 
to construct histograms by only looking at 
query executions

How can we modify histogram as we get 
“additional evidence”?
“Online incremental correction”
a.k.a Self Tuning Histograms
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Online Incremental Maintenance
Maintain a sample of the relation 
incrementally (Gibbons,Matias,Poosala V. VLDB 1997)

Insertion: Traditional Reservoir sampling
Modification: In-place
Deletion: Delete, may trigger a re-sampling 
(also see paper in VLDB06)

Incrementally update histogram by changing 
frequency counts of buckets

Detect unbalanced buckets (std deviation)
If the histogram is not “balanced”, use the 
sample to rebuild histogram
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Histogram Maintenance
Scenario 1: Insert/Deletes/Updates to relation 
take place

How can we avoid rebuilding histogram from 
scratch?
“Online incremental maintenance”

Scenario 2: No updates to relation. But, trying 
to construct histograms by only looking at 
query executions

How can we modify histogram as we get 
“additional evidence”?
“Online incremental correction”
a.k.a Self Tuning Histograms
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Self-tuning Histograms

Optimizer Execution

Estimated 
Selectivity

Histogram

ResultPlan

Database

Actual 
Selectivity

X Refinement

Start with an initial (inaccurate) histogram 
and refine it based on feedback
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Online Incremental Correction
Part II: Five Auto-Tuning Paradigms Online Optimization

Does not examine actual data set
Assume uniformity and independence until 
feedback shows otherwise 
Uses Split and Merge techniques

Each query defines a potential new bucket if cardinality
error is above threshold
Merge victims are chosen based on adjacency and
similarity of density

Goal: Error minimized if the workload is replayed. 
Contrast with online incremental maintenance
technique..
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Evaluation Metric

Absolute Error:

Normalized Absolute Error:
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Refining STGrid
Histograms

Observe error and accumulate 
information about data distribution 
in histogram buckets

Frequency 
Refinement

Periodic
Restructuring

Better bucket boundaries
Split high frequency buckets
Merge buckets with similar 
frequencies
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STHoles Histograms
Tree structure among buckets.
Buckets with holes: relaxes rectangular 
regions while using rectangular bucket
structures.

Non 
rectangular 

region
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Example STHoles
Histogram

Gaussian Data Set STHoles Histogram
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Refining STHoles
Histograms

Initialize histogram H assuming uniformity.
For each query q in workload:
1- Gather simple statistics from query results.
2- Identify candidate holes and drill (add) them as 

new buckets in H.
3- Merge superfluous buckets in H.
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Drilling New Candidate Buckets
For each query q in workload and bucket b in 
histogram:

?

Count how many tuples in result stream lie inside
q∩b.
Drill q∩b as a new bucket (child of b).

q
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Parent-Child Merges

Eliminate buckets too similar to their parents.
Example: The interesting region in bc is covered

by its child b1.
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Sibling-Sibling Merges

Consolidate buckets with similar densities
that cover close regions.
Extrapolate frequency distributions to yet
unseen regions.
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Accuracy vs. Overhead

STGRID
Too coarse grained usage of feedback

STHOLES
Accurate, but per-bucket tracking can be 
expensive

ISOMER [Srivastava+06]
Use maximum entropy principle to divide 
the inaccuracy across buckets
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Lessons and Problems
Lessons

Maintenance: Precise, online threshold driven
Needs auxiliary structures for correctness

Correction: An attractive approach because it 
avoids offline a priori decisions

Problems
Correction: 

Target optimization function alternatives
Analysis of convergence
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Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered
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Auto-Tuning as 
Feedback Control Loop

MPL Tuning (Admission Control)
• No full-fledged predictive model of system behavior
• Errors in estimation of parameters and modeling
• Rapid workload evolution: bursts and shifts

→ feedback control
• is adaptive    
• can work with black-box system,
• and has theoretical underpinnings
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MPL Tuning with Multiple Load Classes
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

arriving
transactions response time [s]

1.0

DBS

0.8trans.
queue

0.6

0.4
active
trans, 0.2

10 20 30 40 50
Key problem: dynamics, lack of predictability MPL
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Adaptive Load Control 
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

for Avoidance of 
Lock-Contention Thrashing

arriving trans.

transaction admission

transaction cancellation

transaction 
execution

aborted
trans.

conflict ratio

conflict ratio =

.transrunningbyheldlocks#
.transallbyheldlocks#

critical
conflict ratio
≈ 1.3

restarted
trans.

committed trans.
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Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered
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Basics of Feedback Control Theory
(following J.L. Hellerstein et al.: Feedback Control of Computing Systems, Wiley, 2004)

Controller Target System+−

Transducer

Disturbance Noise

Measured
Output

Transduced
Output
(e,g., moving
time average)

Reference
Input
(Setpoint)

Control
Error

Control
Input

yueŷ

closed loop with feedback possible even for black-box system;
open loop (feedforward control) possible only with predictive model

Application examples: thermostat, control valves, cruise control, ABS,
building control (heating, energy, etc.)
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Example: Dynamic Cache Sizing

Controller Cache Manager+−

Control
Error

Reference
Response 
Time

Cache
Size

Measured
Response 
Time

SISO controller (single input, single output)
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Example: Web Server

Controller Web Server+−

Reference
CPU Util.

Control
Error

MIMO controller (multiple inputs, multiple outputs)

Reference
Memory Util.

Session
Timeout

+−

Measured
CPU Util.

Max
Sessions

Measured
Memory Util.
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SASO Properties (1)
Desired guarantees:
stability – bounded input results in bounded output (BIBO)
accuracy – low error between reference and measured output
short settling time – fast convergence to steady state after excitement
low overshoot – low deviation from steady-state behavior

good bad
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First-order Linear Models
described by difference equation with discrete time:
y( k 1) ay( k ) bu( k )+ = + with coefficients a, b

higher-order controller considers y(k-1), y(k-2), ...
non-linear behavior may be linearly approximated
parameters a, b derived from system model or estimated by regression

Examples:
• linearize M/M/1/K model, to control queue limit K based on resp. time
• MIMO controller for CPU and memory utilization:

11 12 11 12CPU( k 1) a CPU( k ) a Mem( k ) b Timeout( k ) b Sessions( k )+ = + + +
21 22 21 22Mem( k 1) a CPU( k ) a Mem( k ) b Timeout( k ) b Sessions( k )+ = + + +
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Mathematical Tools
Z transform of discrete-time signal u:

k

k 0
U( z ) u( k ) z

∞
−

=
= ∑ uG (1 / z )=

with generating function Gu

Properties:
y( k ) au( k ) Y( z ) aU( z )= ⇒ =
y( k ) u( k ) v( k ) Y( z ) U( z ) V( z )= + ⇒ = +

1y( k ) u( k 1) Y( z ) z U( z )−= − ⇒ =...
Examples:

invert Z transform
by table lookup,
partial fraction expansion,
etc.

Impulse u(0 ) 1, u( k ) 0 for k 0 U( z ) 1= = > ⇒ =
Step u( k ) 1 for k 0 U( z ) z /( z 1)= ≥ ⇒ = −
Ramp 2u( k ) k U( z ) z /( z 1)= ⇒ = −
Exponential ku( k ) a U( z ) z /( z a )= ⇒ = −
Sine 2

z sinu( k ) sin k U ( z )
z ( 2 cos )z 1

θθ
θ

= ⇒ =
− +
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Transfer Function 
for Guaranteed Behavior

uG (1 / z )=
with generating function Gu

k

k 0
U( z ) u( k ) z

∞
−

=
= ∑

Y( z )F( z )
U( z )

= Z transform of output
Z transform of input

Transfer function of linear first-order model with y(0)=0 :
y( k 1) ay( k ) bu( k )+ = +

zY( z ) zy(0 ) aY( z ) bU( z )⇒ − = + bU( z )Y( z )
z a

⇒ =
−

F( z ) b /( z a )⇒ = −

Theorem: system is stable iff all poles of F(z) have abs ≤ 1
(poles: roots of denominator polynomial)

more theorems about convergence, steady-state error, 
transient responses, settling times, overshoot, oscillation, etc. 
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Controller Design

pu( k ) K e( k )=
ˆe( k ) y( k ) y= −

with control error

Iu( k ) u( k 1) K e( k )= − +
Integral Control (I Control):

Proportional Control (P Control):

rich results
on SASO 
properties

P I Pu( k ) u( k 1) ( K K )e( k ) K e( k 1)= − + + − −
PI Control:

plus many more controller types
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Example for P Controller Z transforms
of signals

Controller Target System

+−
Y(z)

reference
input r(k)

measured
output y(k)

error
e(k)

control
u(k)

R(z)
E(z) U(z)

P
EU

K E( z )U( z )F ( z )
E( z ) E( z )

= =

KP

UY
Y( z )F ( z )
U( z )

=

b/(z-a)

EU UY
RY

EU UY YY '

Y ( z ) F ( z )F ( z )G( z ) : F ( z )
R( z ) 1 F ( z )F ( z )F ( z )

= = =
+

Transducer
output y‘(k)=y(k-1) 1/z

YY '
Y '( z )F ( z )
Y ( z )

=

Stability Theorem: system is stable iff all poles of G(z) have abs ≤ 1
more theorems about convergence, steady-state error, 
transient responses, settling times, overshoot, oscillation, etc. 

can tune constants
KP, a, b, etc. for
controller properties
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Combining Feedback Control with
Model-based Stochastic Prediction

Controller Target
System

+−

Sensor

Measured
Output

Set
point

Error Control
Input Actuator Tuning

Param

Queueing
Predictor

Workload
Properties

Correc-
tion

Prediction &
Tuning 
Recommendation

Augmented control loop: + predictor reduces delays
in reacting to 
abrupt workload shifts

+ feedback control corrects
modeling errors of predictor

control resource allocations bi (bi > bi+1) for multi-class workload
so as to maintain relative performance guarantees gi/gi+1 (gi < gi+1)

i i iu ( k ) u ( k 1) e ( k )γ= − + i i i 1 i 1

i 1 i 1 i i

b ( k ) b ( k 1) g ( k ) W
b ( k ) b ( k 1) g ( k ) W

γ + +

+ +

⎛ ⎞−
= + −⎜ ⎟− ⎝ ⎠
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Part 2: Five Auto-Tuning 
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered
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MIMO Controller for Multi-class DBMS
for lock-contention (and memory-contention) avoidance

Intriguing (and obvious?) approach:

Multi-class
MPL
Controller

DBMS
+−

Resp. Time
Goal Class 1

Goal Violation (Control Error)

Resp. Time
Goal Class n

+−

Resp. Time
of Class 1

...

MPL1

MPLn

......

Resp. Time
of Class n

... ...

but a viable solution is not that simple!
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Lock-Contention Thrashing Reconsidered

response time or wait time (to drive MPL controller) 
do not work robustly

Reference input metric is crucial:

need deeper insight and math to identify
viable metrics and setpoints:
• conflict ratio: 

• should be < 1.3 (backed up by math analysis)
• wait depth: 

• wait depth of running trans.:  0
• wait depth of trans. blocked by trans. at depth i:  i+1
• limit wait depth to 1 by cancelling trans. that are blocked and block other trans.

# lo cks h e ld b y a ll tra n s .
# lo cks h e ld b y ru n n in g tra n s .

transaction 
execution

aborted
trans.

committed trans.

arriving trans.

restarted
trans.

Details of control steps are crucial:
cancellation victim selection and restart waiting
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Lessons and Problems
Lessons:
• feedback control adequate for tuning issues with limited
predictive/causal understanding

• no panacea: controller design can be an art
• controller fine-tuning (e.g., sampling rates) can be critical
• can (and must) be combined with other paradigms
(queueing models, regression, etc.)

Problems:
• extend successful work on Web & mail servers to DBMS
• full-fledged MIMO controller for multi-class
MPL tuning problem (and memory allocation) in DBMS

• from stochastic or convergence guarantees
to hard predictability („bounded surprise“)

• integrate control theory into curriculum
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Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up
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The Spectrum for Self-
Tuning
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Other Notable Areas for 
Automated Tuning

Statistics management
Choice of isolation levels
Application tuning
Tuning of middleware caching
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How to evaluate a tuning 
solution

Clarity for target of tuning
Input parameters for tuning

Take into account their degree of precision 
(e.g., uncertainty in estimation)
Right model of workload

Choice of a paradigm influenced by 
Immediacy of tuning 
Criticality of a decision (robustness) vs. 
optimality
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Even before Tuning we 
need..

Monitoring
Only a very tiny part of the state of the server is 
accessible 
Increasing awareness (Oracle ADDM Warehouse 
of system events, SQL Server DMV)
A flexible infrastructure for looking at system 
snapshot and its aggregation is useful

Diagnostics
Ability to do root cause analysis from the 
knowledge of the system
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Monitoring Progress of 
SQL Query Execution
Today’s DBMS provides little feedback to DBA 
during query execution
Goal: Provide reliable progress estimator during 
query execution for long running queries

Accuracy, Fine Granularity, Low Overhead, 
Monotonicity, Leverage feedback from execution

See papers in SIGMOD 2004, 2005, ICDE 2006
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Diagnostics
Requires a careful model of the system

Distinguish normal from unusual
Analyze events as well as phases of 
execution over a time interval
(Dias et.al. CIDR 2005) 

Decision trees are used as a 
representation

I/O bottleneck split into disk load
imbalance, too many seeks, poor cache hit
rate, insufficient bandwidth
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Principles for Self Tuning
Complex problems have simple, easy to 
understand wrong answers
“Observe-Predict-React” cycle can only be 
implemented locally 

Develop self-tuning, adaptive algorithms for 
individual tuning tasks
Need robust models – when and how

Monitoring/Global knowledge necessary for 
identification of bottlenecks
Watch out for too many Tuning parameters
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“Learning” != “Magic”
Conceptually enticing to say that the 
system will “learn from observation”
In reality, learning requires 

Identifying a learning model
Several thresholds
Essentially, “fits” the parameters given 
observation

Learning could be a tool but not a 
shortcut for thinking
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Rethinking Systems: 
Wishful Thinking?

VLDB 2000 Vision paper (Chaudhuri and Weikum 
2000)
Enforce Layered approach and Strong limits on 
interaction (narrow APIs)

Package as components of modest complexity
Encapsulation must be equipped with self-tuning

Featurism can be a curse 
Don’t abuse extensibility - Eliminate 2nd order optimization
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Final Words
Self-Tuning servers crucial for bounding 
cost

Policy based adaptive control                               
“observe-predict-react”
Monitoring infrastructure – leverage workload and events
What-if analysis 
Mathematical tools
Deep understanding of local systems needed

Some limited successes so far
Plenty of opportunities/challenges
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Self-Managing Database Systems (SMDB 2007)

on April 16, 2007, in Istanbul, Turkey
in conjunction with ICDE 2007

Workshop chair: Guy Lohman
Submission deadline: November 20, 2006

for more details see
http://db.uwaterloo.ca/tcde-smdb/SMDB2007_CFP.html
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