
Foundations of Foundations of
Automated Database TuningAutomated Database Tuning

Surajit ChaudhuriSurajit Chaudhuri
Gerhard WeikumGerhard Weikum

Microsoft ResearchMicrosoft Research
Max Planck InstituteMax Planck Institute

for Informatics for Informatics

2 Surajit Chaudhuri and Gerhard Weikum

Scope and Purpose of This Tutorial

Motivate and enable students and young scientists
to pursue research on the auto-tuning aspect
of autonomic computing

Complementary to
• SIGMOD 02 and VLDB 02 tutorials (Shasha/Bonnet)
on tuning techniques for DBAs

• VLDB 04 tutorial (Chaudhuri/Dageville/Lohman)
on self-management features of DBMS products

3 Surajit Chaudhuri and Gerhard Weikum

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up

4 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Part I: What Is It All About

• The Need for and Nature of Auto-Tuning
• State of the Art

• Product Features
• Scientific Principles

• Auto-Tuning Paradigms

5 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Need for Auto-Tuning
• Total cost of ownership (TCO) for DBMS-based IT solution

dominated by staff for system admin, management, and tuning

• Increasing complexity of multi-tier application services
call for automated management

• DBMS offers hundreds of tuning kobs
(system config-time, DB-load-time, startup-time, run-time parameters)

→ DBMS (and multi-tier IT systems) should be autonomic (self-*):
self-managing, self-monitoring, self-healing, self-tuning

6 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Easy Solutions

• Throw more hardware (KIWI method)
• Use this with caution
• Where do you throw hardware?

• Rules of Thumb approach
• Finding them is harder than you think
• May simply not exist – oversimplified wrong

solutions are not helpful

7 Surajit Chaudhuri and Gerhard Weikum

Nature of Auto-Tuning
Part I: What Is It All About

ability to predict
workload × config → performance

!!! !!! ???
is key to finding the right knob setting

workload × config → performance goal
!!! ??? !!!

Many difficult ramifications:
• workloads at different levels and time scales

• app-level vs. internal, long-term steady-state vs. next hour or minute
• variety of performance metrics

• resource usage, response time, throughput
• mean values vs. distributions
• single-class vs. multi-class

• unknown, fluctuating, and evolving parameters

8 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

State of the Art: Product Features
Oracle 10g Self-Managing Database:

automatic database diagnostic monitor, automatic memory pool management,
automatic workload repository, automatic routine administration,
drill-down root-cause analysis, etc.

IBM DB2 Autonomic Technology:
index advisor, configuration advisor, health monitoring,
learning query optimizer, etc.

Microsoft SQL Server Self-Tuning Features:
physical design wizard, continuous monitoring, statistics management,
memory pressure analysis & heuristic resolution, etc.

Storage systems: AutoRAID etc.

+ great online profiling & analysis infrastructure
+ viable solutions for specific tuning issues
− progress exaggerated by marketing
? fundamental principles

9 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

State of the Art: Scientific Principles

this page is left blank necessarily

10 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Call for Scientific Principles

Integration into DBMS

Product Features

Results on
Specific
Tuning Issues

Marketing
Hype

Auto-Tuning Paradigms

Mathematical Foundations

11 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Foundations, Paradigms, Tuning Issues

physical design, QP statistics management,
memory management, MPL tuning, storage configuration,
application tricks, middleware caching, ...

tradeoff elimination, online optimization,
feedback loop, diagnostics, what-if analysis, ...

combinatorial optimization, queueing theory
control theory, statistical learning, ...

12 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

Auto-Tuning Paradigms
Aim: generalize from good approaches to specific tuning problems

Auto-tuning as:
• tradeoff elimination (ex. cache replacement)
• static optimization (ex. index selection)
• stochastic prediction (ex. capacity planning)
• online optimization (ex. memory governing)
• feedback control loop (ex. MPL tuning)
• what-if analysis (ex. bottleneck identification)
• statistical learning (ex. root-cause analysis)

13 Surajit Chaudhuri and Gerhard Weikum

Part I: What Is It All About

General Literature
• D. Shasha, P. Bonnet: Database Tuning – Principles, Experiments, and

Troubleshooting Techniques, Morgan Kaufmann, 2003
(see also tutorials at SIGMOD 2002 and VLDB 2002)

• S. Chaudhuri, B. Dageville, G. Lohman: Self-Managing Technology in Database,
Management Systems, Tutorial Slides, VLDB 2004

• IBM Systems Journal 42(1), 2003, Special Issue on Autonomic Computing
• G. Weikum, A. Mönkeberg, C. Hasse, P. Zabback: Self-Tuning Database Technology
and Information Services: from Wishful Thinking to Viable Engineering, VLDB 2002

• G. Weikum, C. Hasse, A. Mönkeberg, P. Zabback: The COMFORT Automatic
Tuning Project, Information Systems 19(5), 1994

• S. Chaudhuri (Editor): IEEE CS Data Engineering Bulletin 22(2), 1999,
Special Issue on Self-Tuning Databases and Application Tuning

• G. Candea, A.B. Brown, A. Fox, D. Patterson: Recovery-Oriented Computing:
Building Multitier Dependability. IEEE Computer 37(11), 2004

• David S. Reiner, T.B. Pinkerton: A Method for Adaptive Performance Improvement
of Operating Systems, SIGMETRICS 1981

• R. Jain: The Art of Computer Systems Performance Analysis, Wiley 1991
• A. Ailamaki (Editor), IEEE Data Engineering Bulleting Vol.29 No.3, Special Issue
on Self-Managing Database Systems, September 2006

14 Surajit Chaudhuri and Gerhard Weikum

Call for Papers
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

International Workshop on
Self-Managing Database Systems (SMDB 2007)

on April 16, 2007, in Istanbul, Turkey
in conjunction with ICDE 2007

Workshop chair: Guy Lohman
Submission deadline: November 20, 2006

for more details see
http://db.uwaterloo.ca/tcde-smdb/SMDB2007_CFP.html

15 Surajit Chaudhuri and Gerhard Weikum

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up

16 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms

Part 2: Five Auto-Tuning
Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

17 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

1 Auto-Tuning as Tradeoff Elimination
Tuning parameters handle tradeoffs

If you can find a parameter setting that yields
universally close-to-optimal performance

(across a wide spectrum of workloads and for several technology generations)
then the tuning knob can be eliminated !

Examples:
• B+-tree (vs. hash index): scan vs. random-lookup performance
• Page size: disk IO efficiency vs. memory efficiency
• Striping unit: IO parallelism vs. disk throughput
• LRU-k-style caching: recency (LRU) vs. frequency (LFU)

18 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Example: Caching Strategies
LRU: drop page that has been least recently used
LFU: drop page that has been least frequently used

LFU: optimal for static access probabilities, but has no aging
LRU: optimal if last access is indicative for next future access

Tradeoff recency vs. frequency:

LRU degrades for sequential only-once access
and is suboptimal for multiple page pools (e.g., index pages)

time

A B C D
X Y X Y

A B C D
X Y X Y

A B C D
X Y X Y

1 2 3 4 5 10 15 20 24 now

Example:

Hybrid LRU/LFU strategies have weights that are critical to tune
Using multiple page-pool caches (each with LRU) is a tuning nightmare

19 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Example: LRU-k Caching Strategy
LRU-k: drop page with the oldest k-th last reference

estimates heat (p) =
)(ptnow

k
k−

extensions and variations for variable-size
objects, non-uniform storage, etc.

optimal for IRM

But cache bookkeeping has time and space overhead:
• O(log M) time for priority queue maintenance
• M* > M entries in cache directory
to remember k last accesses to M* pages

+ overhead acceptable for improved cache hit rate
+ add‘l bookkeeping memory is small and uncritical to tune

→ improved implementations: 2Q, ARC

Lesson: substitute critical tuning param by robust 2nd-order params
and accept small overhead

20 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Lessons and Problems
Lessons:
find „sweet spot“ for tuning param by mathematical analyis and/or
substitute „difficult“ param by „well-tempered“ param,
and accept some overhead for making better run-time decisions

Problems:
• caching for multi-class workload with per-class goals
• extend 2Q / ARC methods to hierarchical & distributed caching
• combine caching & prefetching with response time guarantees
• systematic study & characterization of tuning-parameter sensitivities

21 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Auto-Tuning as Tradeoff Elimination

Literature on Tradeoff Elimination:
• E.J. O‘Neil, P. O‘Neil, G. Weikum: The LRU-k Page Replacement Algorithm
for Database Disk Buffering, SIGMOD 1993

• T. Johnson, D. Shasha: 2Q: A Low Overhead High Performance Buffer
Management Replacement Algorithm, VLDB 1994

• J. Gray, G. Graefe: The Five-Minute Rule Ten Years Later, and Other Computer
Storage Rules of Thumb, SIGMOD Record 26(4), 1997

• D. Lomet: B-Tree Page Size When Caching is Considered,
SIGMOD Record 27(3), 1998

• N. Megiddo, D.S. Modha: Outperforming LRU with an Adaptive Replacement
Cache Algorithm, IEEE Computer 37(4), 2004

• HP / Oracle White Paper: Auto-SAME,
http://www.oracle.com/technology/tech/hp/storage.pdf

• P.A. Boncz, S. Manegold, M.L. Kersten: Database Architecture Optimized for the
New Bottleneck: Memory Access, VLDB 1999

• J. Schindler, A. Ailamaki, G.R. Granger: Lachesis: Robust Database Storage
Management Based on Device-specific Performance Characteristics, VLDB 2003

• A. Ailamaki: Database Architecture for New Hardware, Tutorial Slides, VLDB 2004

22 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up

23 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Auto-Tuning as Static Optimization
with Deterministic Input

Physical Database Design

24 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Physical Database Design
Performance of a query depends on
execution plan
Execution plan picked by optimizer
depends on

Statistics created by the optimizer
Physical design: Objects that exist

Choice of statistics and physical design
objects amortized
Physical Design Configuration

Clustered Indexes + Non-clustered indexes +
Materialized Views

25 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

26 Surajit Chaudhuri and Gerhard Weikum

Is this a hard problem?
SELECT A,B,C
FROM R
WHERE 10 < A < 20

AND 20 < B < 100

SELECT B,C,D
FROM R
WHERE 50 < B < 100

AND 60 < 2*D < 80
Storage for (A,B,C) + (D,B,C)

is too large!

UPDATE R
SET B=B+1
WHERE 10 < C < 20

We started fine, but progressively:

•Used statistical information

•Guessed how the optimizer would use
statistics

•Guessed how the optimizer would use
proposed indexes

•Gave up

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

27 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

And that was just indexes!
SELECT A,B,C
FROM V
WHERE 20 < B < 100

Views and Indexes on Views

CREATE VIEW V AS
SELECT A,B,C FROM R
WHERE 10 < A < 20

+
INDEX on IV(B,A,C)

SELECT A,B,C
FROM R
WHERE 10 < A < 20

AND 20 < B < 100

||

Partitions on Indexes (on views)

CREATE INDEX ON R(A,B,C)
PARTITIONED ON B [20, 100]

Access only this partition

28 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Real Life Queries are Complex!

SELECT CNTRYCODE, count(*) as NUMCUST, sum(C_ACCTBAL) as TOTACCTBAL
FROM (

SELECT substring(C_PHONE,1,2) as CNTRYCODE, C_ACCTBAL
FROM CUSTOMER
WHERE substring(C_PHONE,1,2) in ('31', '17', '30', '24', '26', '34', '10', '')

AND C_ACCTBAL > (
SELECT avg(C_ACCTBAL)
FROM CUSTOMER
WHERE C_ACCTBAL > 0.00

AND substring(C_PHONE,1,2) in
('31', '17', '30', '24', '26', '34', '10', '')

)
AND NOT EXISTS (

SELECT *
FROM ORDERS
WHERE O_CUSTKEY = C_CUSTKEY
)

) as CUSTSALE
GROUP BY CNTRYCODE
ORDER BY CNTRYCODE

TPC-H SAMPLE QUERY

29 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Real Life Queries are Complex!

--- Galaxy target selection with spectroscopic redshifts

SELECT top 15 str(gal.ra,9,4) AS ra, str(gal.dec,8,4) AS dec,

cast(spec.objTypeName AS CHAR(9)) AS type,
str(spec.z,7,4) AS Z,
fSpecZStatusN(spec.zStatus) AS status,
fGetUrlSpecImg(spec.specObjID) AS Spectra

FROM
@database..PhotoPrimary AS gal,
@database..specObj AS spec

WHERE
gal.objID = spec.bestObjID AND
-- Our star-galaxy separation AND target selection
psfMag_r - modelMag_r >= @delta_psf_model AND
petroMag_r - extinction_r <= @maglim AND
petroMag_r - 2.5*log10(2*@pi*petroR50_r*petroR50_r) < @SBlim AND
-- Check flags
(flags & @bad_flags) = 0 AND
(((flags & @BLENDED) = 0) OR ((flags & @NODEBLEND) != 0)) AND
-- Check spectro flags

NOT spec.zStatus IN (@FAILED, @NOT_MEASURED)

SKYSERVER SAMPLE QUERY

30 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

31 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Physical Database Design
as Static Optimization

Workload
queries and updates

Configuration
A set of indexes, materialized views and partitions from
a search space

Constraints
Upper bound on storage space for indexes

Search: Pick a configuration with lowest cost for the given
database and workload.

32 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design

What-if Physical Design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

33 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

What is “cost”?
Execution cost of the query

Requires physical design changes – too disruptive
Optimizer Estimated Cost

Used to compare alternative plans for the query
We choose optimizer estimated cost

Better than designing a new cost model
Estimate quantitatively the impact of physical
design on workload (queries and updates)

e.g., if we add an index on T.c, which queries benefit and
by how much?

Never meant to compare across physical
designs/Queries

34 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Estimating Cost of a
configuration for Search

Without making actual changes to physical
design
What-If Indexes!

35 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

“What-If” Indexes
Query Optimizer decides which plan to
choose given a physical design
Query optimizer does not require
physical design to be materialized

Relies on statistics to choose right plan
Sampling based techniques for building statistic

Sufficient to fake existence of physical
design

Build approximate statistics
Change “meta-data” entry

36 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Using What-If Analysis

Create Hypothetical
Object

Create Statistics

Define Configuration C

Optimizer Query Q for
Configuration C

ShowPlan

Physical Design
Component

Relational Query
Engine

37 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

“What-If” Architecture
Overview

Query

Optimizer
(Extended)

Database Engine

Workload

Search
Algorithm

Recommendation

“What-if”

Application

38 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

39 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Balancing Requirements of
Multiple Queries

Simple divide and conquer not enough
Because, union of “best” configurations
for each query may not be feasible

Violate storage constraints
Maintenance costs for update queries may rule
out “ideal” indexes/MV

Use locally suboptimal alternatives -
need for “merging”

40 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning
Advisor

Workload

Database
Tuning
Advisor

(DTA)

Parse and Compress
Queries

Candidate Selection

Configuration
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”

41 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Characteristics of Merged
Candidates

A derived configuration from one or more seed
configurations
M12 is a “merged” candidate from parents P1, P2

If Q was using P1, it can have a plan using M12
New plans using M12 is not “much” more expensive

Merging can
Introduce new logical objects (materialized views)
Introduce new physical structures (indexes)

42 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Sample Algorithm:
MV Merging Candidates

V1 and V2 be on same set of tables and same join
conditions
Merged MV V12 contains

Union of projection columns of V1 , V2
Union of Group-By columns of V1 and V2
Selection conditions common to V1 and V2
Columns in different selection conditions
pushed into Group-By

Reject the merge if size of V12 is too large

43 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Sample Algorithm:
Index Merging Candidates

Union of columns in I1 and I2
Index scan benefits preserved
Preserve seek benefits to at least one

A common prefix of two indexes
Partial seek benefits

Multiple thinner indexes
Replace covering indexes with Intersection/Union
plans (A,B|C,F) [S] (B,E|F) = (B|F) + (A|C) + (E)

44 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

45 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning
Advisor

Workload

Database
Tuning
Advisor

(DTA)

Parse and Compress
Queries

Candidate Selection

Configuration
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”

46 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Search Algorithm
Search Space = “Locally Best” U “Merged”

Indexes and Indexed Views need to be
considered together

Cannot “break” into two sequential selection
steps

Search driven by reduction in optimizer
estimated costs

Top-Down: Get an optimal structure and then
modify it
Bottom-up: Grow by picking the next k-structures

47 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Quality: Incremental
Cost/Benefit of a structure

Benefit of an index/MV is relative to a
given configuration
Example

Two clustering indexes together can
reduce cost of a join significantly

Example Metric
Incremental penalty for removing a
structure: (increase in cost)/(reduction of
space)

48 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Efficiency: Reducing
Optimizer Invocations

Each physical design can potentially
resul0 88 -31otenti

49 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Example: Database Tuning
Advisor

Workload

Database
Tuning
Advisor

(DTA)

Parse and Compress
Queries

Candidate Selection

Configuration
Enumeration

Merging

Recommendation

Query

Optimizer
(Extended)

Database Server

“What-If”

50 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Top-down Search
Shrink supersets rather than expanding
subsets
Mixes merging and enumeration phases

Candidate selection Merging “Bottom up” greedy enumeration

Top-down “relaxation”

51Surajit Chaudhuriand Gerhard Weikum 1 . O bt a in i ni ti alc on fi gu r an at io w it h b es ta l t e r g i n a v e f o r e t t a 2 0 q u e s t 2 . W h i l e t i m e i s n o t e x c e e d e d a) Pick s o m ec o n f i g u r a n a t i ; r e l a xi t u s i n g t h e m o s t p r o m i s i n g “r e l a x i n a t i” . b)I n c r e m e n t a l l y e v a l u a t e c o s t . c)I f b e s t s o f a r , k e e p i t .

52 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Other Approaches
[Agrawal et. al 2000] Bottom-up search

Incrementally add “most promising”
structures
But, consider tight interactions
Initially exhaustive, degenerate into greedy

[Valentin et.al. 2000] Knapsack +
Genetic

Create a feasible solution through
knapsack (ignore interactions)
Genetic mutations and generate new
candidates

53 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Roadmap

Why the problem is hard?
Abstract problem Formulation
Measuring Goodness of a design
Search: Need for Merging
Search: Bottom-up vs Top-down
Search: Leveraging the server

54 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Architecture: Knowledge
of the Optimizer

Reduce co-dependence on optimizer
by

Making only broadest assumptions
(e.g., importance of covering indexes)

Use knowledge of key optimizer
characteristic selectively (deeper
interaction)

55 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Instrumenting the Query
Optimizer

Intercept index and view “requests”
Concise, no false nen005m3s/posi05m3s

Obtain optimal indexes and views from
requests

(New)
Instrumentation Original optimizer

Access Path Generation Module

Available Indexes

Find best indexes
 for request

Logical Request

simulate

Physical sub-plan

56 Surajit Chaudhuri and Gerhard Weikum

Instrumenting the Query
Optimizer

Intercept “index and view requests”
Concise, no false negatives/positives

Obtain optimal indexes and views from requests
Inject such structures during optimization

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

TPC-H Queries

N
um

be
r o

f C
an

di
da

te
s

Indexes
Indexed Views

Scalability

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

57 Surajit Chaudhuri and Gerhard Weikum

When to Tune?

Low-overhead diagnostics
Reliable lower-bound improvement

No false positives
“Proof” with valid configuration
Upper-bound Estimate
[Bruno, Chaudhuri 06] (this conference)

COLT [Schnaitter+ 06] does periodic “epoch-at-a-time”
polling distinguishing structure classes

58 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

Lessons and Problems
Lessons:

Precise static optimization problem
Challenges in cost definition
Complex search space – depends on server
sophistication

Problems:
How deeply to exploit optimizer
Uncertainty in cost estimation
Workload model [Agrawal+06]
Search Algorithms (combinatorial optimization)

59 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

References (1)
Surajit Chaudhuri, Benoît Dageville, and Guy M. Lohman. Self-
Managing Technology in Database Management Systems.
Tutorial presented at VLDB 2004.
Sheldon J. Finkelstein, Mario Schkolnick, Paolo Tiberio. Physical
Database Design for Relational Databases. ACM TODS 13(1):
91-128 (1988).
Steve Rozen, Dennis Shasha: A Framework for Automating
Physical Database Design. VLDB 1991: 401-411
Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server. VLDB
1997.
Surajit Chaudhuri, and Vivek R. Narasayya. AutoAdmin 'What-if'
Index Analysis Utility. SIGMOD 1998.
Surajit Chaudhuri and Vivek R. Narasayya. Index Merging. ICDE
1999.

60 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

References (2)
Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman,
and Alan Skelley. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. ICDE 2000.
Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya.
Automated Selection of Materialized Views and Indexes in SQL
Databases. VLDB 2000.
Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman.
Automating Physical Database Design in a Parallel Database.
SIGMOD 2002.
Sanjay Agrawal, Vivek R. Narasayya, and Beverly Yang.
Integrating Vertical and Horizontal Partitioning into Automated
Physical Database Design. SIGMOD 2004.
Nicolas Bruno and Surajit Chaudhuri. Automatic Physical
Database Tuning: A Relaxation-based Approach. SIGMOD 2005.
Nicolas Bruno and Surajit Chaudhuri. Physical Design
Refinement: The ``Merge-Reduce'' Approach, EDBT 2006.

61 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Deterministic Input

References (3)
Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman,
and Alan Skelley. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. ICDE 2000.
Arnd Christian König, Shubha U. Nabar: Scalable Exploration of
Physical Database Design. ICDE 2006
Nicolas Bruno, Surajit Chaudhuri: Physical Design Refinement:
The "Merge-Reduce" Approach. EDBT 2006
Karl Schnaitter, Serge Abiteboul, Tova Milo, Neoklis Polyzotis:
COLT: Continuous On-Line Database Tuning, SIGMOD Demo
2006
Nicolas Bruno, Surajit Chaudhuri: To Tune or not to Tune? A
Lightweight Physical Design Alerter, VLDB 2006

62 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

63 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Auto-Tuning as Static Optimization
with Stochastic Input

Capacity Planning and
System Configuration

Workload varies statistically
Load may be unbounded

⇒ input is stochastic
⇒ can provide only stochastic guarantees

64 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

System Capacity Planning
Key issue for long-term tuning:
how big should you configure your system resources?

• CPU speed, #processors in SMP, #servers in server farm
• amount of memory, cache sizes
• #disks, disk types, storage controller types
• software parameters for (static) resource limitation

→ configure system so as to meet goals for
• performance: throughput, response time (mean or quantile)
• reliability and availability

reasonably understood for OLTP server, HTTP server, etc.
not so well understood for DBMS, multi-tier Web Services
→ workload and complex system behavior

approximated/abstracted by stochastic models

65 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

System Configuration Tool (1)
Workload Operational System Configuration

Admin

Modeling Calibration

Evaluation

Recommendation

MonitoringMapping

Hypothetical
config

Max. Throughput
Avg. waiting time
Expected downtime

66 Surajit Chaudhuri and Gerhard Weikum

System Configuration Tool (2)
Workload Operational System Configuration

A
d

m
i

n

Modeling Calibration

Evaluation

R e c o m m e n d a t i o n

Monitoring

Mapping

Min-cost
re-config.

G
o

a
l

s
:

m
i

n
(

t
h

r
o

u
g

h
p

u
t

)
m

a
x

(
w

a
i

t
i

n
g

t

ime)max(downtime)+ constraints

Part II: Five Auto-Tuning ParadigmsStatic Op timizationw ith StochasticInput

67 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

68 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Example: DBMS Cache Sizing

1
1000 $ 1000 $100 KB
1GB 100 s

λ−⇔ < 10.01sλ −⇔ >

Keep page in cache if diskcache CC <
Cost / throughput consideration:

Minimum cache size M such that
goalpercentile RTMgfratiohitfRT ≤== ...)),((...),(

Response-time guarantee:

69 Surajit Chaudhuri and Gerhard Weikum

LRU-k Cache Hit Rate Prediction

P(W) : E [distinct pages referenced=

()
n W

j W jW
i ij

i 1 j k
(1)β β −

= =
= −∑ ∑

1W : P (M)−�¦p:P[[i[i[siiiiie() W

j

70 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

LRU-k Response Time Prediction
with cache size M, page access probabilites ,
disk characteristics, global load, ...

1 2, , ...β β

• RT = f (hit rate, disk access time)
• disk access time = service time + queueing delay

→ need disk model
→ need queueing analysis

rich repertoire of math, many models around,
but care needed in adopting models
→ need understanding of modeling & math

71 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

72 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Basics of Queueing Systems
prob. distr. of
interarrival time
(e.g.: M = exp. distr.)

prob. distr. of
service time S
(e.g.: M = exp. distr.)

scheduling
policy
(e.g.: FCFS)

service rate µarrival rate λ

...

service
station

customers
(requests)

queue
e.g., of type
M/M/1/∞/FCFS

arrival service time Swaiting time W time
departure

response time R throughput X
[requests / s]

utilization ρ = λ/µ

73 Surajit Chaudhuri and Gerhard Weikum

Markov Chains
Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

0: sunny 1: cloudy 2: rainy
0.2

0.3
0.4

0.5

0.5 0.3
0.8

state transition prob‘s: pij

p0 = 0.8 p0 + 0.5 p1 + 0.4 p2
p1 = 0.2 p0 + 0.3 p2
p2 = 0.5 p1 + 0.3 p2
p0 + p1 + p2 = 1

⇒ p0 ≈ 0.657, p1 = 0.2, p2 ≈ 0.143

interested in stationary state probabilities:

state prob‘s in step t: pi
(t) = P[S(t)=i]

(t) (t 1)
j j k kjt t k

p : lim p lim p p−

→∞ →∞
= = ∑ j k kj

k
p p p=∑ j

j
p 1=∑

Markov property: P[S(t)=i | S(0), ..., S(t-1)] = P[S(t)=i | S(t-1)]

74 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

M/M/1 Queueing Systems
N(t): number of requests in queue (or in service)

0 1 ...
λ

µ

λ λ

µµ

λ: arrival
rate

µ: service
rate

flow balance equations:
1 0p pµ λ= n 1 n 1 np p p ()λ µ λ µ− ++ = +and for n ≥ 1

⇒ for : 1 :λρ
µ

= < n
np (1)ρ ρ= − for n ≥ 0

⇒ n
n 0

E [N] n p
1
ρ
ρ

∞

=
= =

−
∑ ⇒ E [N] E [S]E [R]

1λ ρ
= =

−

t / E [R]
RF (t) P [R t] 1 e−= ≤ = −response time distribution:

but more complex for non-exponential service time

flow rate:

t 0

P [transition in t]lim
t∆

∆
∆→

2

75 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Insights (Example): Variability Matters
λ

µ

S1 = 0.01 s

M/G/1:

λ1 = 40 s-1

S2 = 0.1 s
λ2 = 4 s-1

with 2
workload
classes

λ

µ

S ≈ 0.01818 s

M/D/1:

λ = 44 s-1

with 1
„average“
class

E[S] ≈ 0.01818 s
E[S2] = 0.00033 s2

ρ = 0.8
2E[S]E[R] E[S]

2(1)E[S]
ρ

ρ
⇒ = +

−

0.00033 0.80.01818 s
0.4 0.01818

⋅
≈ +

⋅
0.054 s≈

E[S] ≈ 0.01818 s
E[S2] ≈ 0.00091 s2

ρ = 0.8
2E[S]E[R] E[S]

2(1)E[S]
ρ

ρ
⇒ = +

−

0.00091 0.80.01818 s
0.4 0.01818

⋅
≈ +

⋅
0.118 s≈

76 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Other Queueing Systems
many variations and generalizations:
• M/G/1 models with general service time distributions
• multiple request (customer) classes, with priorities
• service scheduling other than FIFO
• GI/G/1 models
• discrete-time models
• queueing networks
etc. etc.

77 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Mathematical Tools (1)
X, Y, ...: continuous random variables

with non-negative real values

prob. distribution of X :][)(xXPxFX ≤=

prob. density of X :)(')(xFxf XX =

A, B, ...: discrete random variables with
non-negative integer values

Af (k) P [A k] := = prob. density of A

:][)()(*
0
∫
∞ −− == sX

X
sx

X eEdxxfesf

Laplace-Stieltjes transform (LST) of X

i A
A A

i 0
G (z) z f (i) E[z] :

∞

=
= =∑

generating function of A

Examples: exponential:
x

Xf (x) e αα −=

Xf * (s)
s

α
α

=
+

k 1
kx

X
k(kx)f (x) e
(k 1)!

αα α −
−=

−
k

X
kf * (s)

k s
α

α
⎛ ⎞= ⎜ ⎟+⎝ ⎠

Erlang-k: k

Af (k) e
k !

α α−=
Poisson:

(z 1)
AG (z) eα −=

78 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Mathematical Tools (2)

∫+ −=
z

YXYX dxxzFxfzF
0

)()()(
Convolution of independent random variables:

)(*)(*)(* sfsfsf YXYX =+

k

A B A Y
i o

F (k) f (i)F (k i)+
=

= −∑

A B A BG (z) G (z)G (z)+ =

{ }0|)(*inf][≥−≤≥ − θθθ
X

t fetXPChernoff tail bound:

79 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

M/G/1 Queueing Systems
N(t) at request departure times forms embedded Markov chain

with
2

22

2
2

]S[E
]S[E]S[E

]S[E
]S[VarCS

−
==

2
1

1

2
SC]S[E]W[E

+
−

=
ρ

ρ

]S[E]W[E]R[E +=

)(
]S[E]W[E]W[E

ρ
λ

−
+=

13
2

3
22

ρ−
+=

1

2
22]S[E]W[E]R[E

)(*S
)(][*W

θλλθ
θρθ

+−
−

=
1 R* [] W * () S * ()θ θ θ= ⋅

80 Surajit Chaudhuri and Gerhard Weikum

Modeling Disk Service Times

s ROT
*
rot

1 ef (s)
s ROT

−−
=rot

1f (s)
ROT

=

for multi-zone disk

i Z

i
1 1

P [B B] C / Cν ν
ν ν= =

≤ = ∑ ∑max min
min

(C C) (1)
C C

Z 1ν
ν− ⋅ −

= +
−

B C / ROTν ν=

Z: #cylinders

ROT: rotation time
rotational delayrotT

itrans B/RT =
transfer time

disk transfer rate

Ci: track capacity
:ROT/CB ii =

arm seek time

==)z(tseekTseek
c z c z c1 2 5+ ≤ if
c z c3 4 otherwise+

R: request size

max min
min

(C C) (1)
C C

Z 1ν
ν− ⋅ −

= +
−

dist
i

f (k) P [dist k] P [dist k | on cyl i]= = = =∑
2

dist
seek

dist

F (((t c2) / c1)) for t c1 c5 c2
F (t)

F ((t c4) / c3) otherwise

⎧ − ≤ +⎪= ⎨
−⎪⎩

P [dist k | on cyl i]= =

()
disk

k k disk

k disk

k disk

C / C for k 0

C C / C for 0 k Z 1 k

C / C for k 0 and i Z 1 k
C / C fork 0 and k

ν

ν ν

ν

ν

ν

ν

− −

−

+

=⎧
⎪

+ < ≤ ≤ − −⎪
⎨

> > − −⎪
⎪ > <⎩

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

min min max
rate 2

min max min max

(C / ROT r)(r Zr ZC / ROT C / ROT)F (r)
(C C)Z(C C) / ROT

+ − + −
=

+ −
C / ROTmax

trans rate size
r C / ROTmin

F (t) f (r)F (tr)dr
=

= ∫

manageable with
computer algebra tools
like Maple or Matlab

81 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Stochastic Response Time Prediction
for multi-zone disk with seek-time function tseek(x), Z tracks
of capacity Cmin ≤ Ci ≤ Cmax, rotation time ROT, disk load λdisk

n

R i i Rcache i i Rdisk
i 1

f (t) p f (t) (1 p) f (t)β β
=

= + −∑
n

* *
R i i Rdisk

i 1
f (s) (1 p) f (s)β

=
= −∑

* *
Rdisk serv *

disk disk serv

s(1)f f (s)
s f (s)

ρ
λ λ

−
=

− +
n

disk i i
i 1

(1 p)λ λ β
=

= −∑

disk servE [t]ρ λ=* * * *
serv seek rot transf (s) f (s) f (s) f (s)=

with M/G/1 queue:

82 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Cache Sizing: Putting It All Together
We can now:
• predict the cache hit ratio and
the page-access response time (mean and quantiles)
for given cache size M

• predict transaction response times by accumulating page accesses
• solve for smallest M that satisfies response time goal

83 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Stochastic Model for P2P Message Flooding
Gnutella-style „blind search“:

forward query to (random subset of) neighbors,
with TTL reduced at each hop

1

12222233333

?

Config/tuning question (for s elf-organizing P2P):

how often should a filebe replicated at randompeers

to guarantee

success prob. and r e s p o n s e t i m e?Answer: stochastic(queuing) model& analysis! see, e.g., Q. Lv et al., ICS 02, and J. Kleinberg, ICM 06

84 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Stochastic Model for P2P File Swarming
BitTorrent-style file chunk (coupon) collecting:

pick peer & replicate one of its (rare) chunks;
leave (a while) after completing your chunk set Config/tuning question (for s elf-organizing P 2P):intohowmanychunksshoulda filebechoppedto guaranteecomplete-chunk-setsuccessprob. and responsetime?

Answer: stochastic(queuing) model & analysis !see, e.g., Massoulie& Vojnovic: Sigmetrics05

?

85 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input

• Capacity Planning
• Example: Cache Sizing
• Queueing Theory
• Further Aspects and Lessons

4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

86 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Dependability Measures

• Failure tolerance: ability to recover from failures
• Failure masking: ability to hide failures from application program
• Reliability: time until failure (a random variable);

usually given by the expectation value
• Availability: probability of service (at random time point);

often given by #nines (e.g., 99.99 % ≈ 1 hour downtime per year)
• Performability: performance with consideration of

service degradation due to (transient) component failures

87 Surajit Chaudhuri and Gerhard Weikum

Availability Example
only transient, repairable failures
availability = P[system is operational at random time point]

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Single
server:

Mirrored
server pair:

0: down1: up

1 / MTTF 2 / MTTF

1 / MTTR

p0 / MTTR = p1 / MTTF
p1 /MTTF = p0 / MTTR
p0 + p1 = 1

⇒
MTTRMTTF

MTTFp
+

=1

availability of server

0:1:

1 / MTTF

2: both
up

1 up
1 down

both
down

1 / MTTR1 / MTTR

p1 / MTTR = 2 p2 / MTTF
2 p2 / MTTF + p0 / MTTR =

p1 / MTTR + p1 / MTTF
p1 / MTTF = p0 / MTTR
p0 + p1 + p2 = 1

⇒
2

2
2MTTFp ≈

availability of server pair

88 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Lessons and Problems
Lessons:
• stochastic models are key to predicting performance for
workloads with statistical fluctuation,
and thus key for capacity planning and system

89 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Literature (1) on II.3: Static Optimization with Stochastic Input

• A. Allen: Probability, Statistics, and Queueing Theory with Computer Science
Applications, Academic Press, 1990

• R. Nelson: Probability, Stochastic Processes, and Queueing Theory, Springer 1995
• R.A. Sahner, K.S. Trivedi, A. Puliafito: Performance and Reliability Analysis of

Computer Systems, Kluwer, 1996
• B.R. Haverkort: Performance of Computer Communication Systems, Wiley 1998
• D.A. Menasce, V.A.F. Almeida: Capacity Planning for Web Performance –
Metrics, Models, and Methods, Prentice Hall, 1998

• C. Millsap: Optimizing Oracle Performance, O‘Reilly, 2003
• C.K. Wong: Algorithmic Studies in Mass Storage Systems,

Computer Science Press, 1983
• E.G. Coffman Jr., M. Hofri: Queueing Models of Secondary Storage Devices,

Queueing Systems 1(2), 1986
• C. Ruemmler, J. Wilkes: An Introduction to Disk Drive Modeling,
IEEE Computer 27(3), 1994

• J. Wilkes, R.A. Golding, C. Staelin, T. Sullivan: The HP AutoRAID Hierarchical
Storage System, ACM TOCS 14(1), 1996

90 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Static Optimization with Stochastic Input

Literature (2) on II.3: Static Optimization with Stochastic Input

•E.A.M. Shriver, A. Merchant, J. Wilkes: An Analytic Behavior Model for
Disk Drives with Readahead Caches and Request Reordering, SIGMETRICS 1998

• G.A. Alvarez et al.: Minerva: An Automated Resource Provisioning Tool for
Large-Scale Storage Systems, ACM TOCS 19(4), 2001

• A. Dan, P.S. Yu, J.-Y. Chung: Database Access Characterization for
Buffer Hit Prediction, ICDE 1993

• G. Nerjes, P. Muth, G. Weikum: Stochastic Service Guarantees for Continuous Data
on Multi-Zone Disks, PODS 1997

• M. Gillmann, G. Weikum, W. Wonner: Workflow Management with
Service Quality Guarantees, SIGMOD 2002

• A.E. Dashti, S.H. Kim, C. Shahabi, R. Zimmermann: Streaming Media Server Design,
Prentice Hall, 2003

• L. Massoulie, M. Vojnovic: Coupon Replication Systems, SIGMETRICS 2005
• Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker: Search and Replication in Unstructured
Peer-to-Peer Networks, ICS 2002

• J. Kleinberg: Complex Networks and Decentralized Search Algorithms, ICM 2006

91 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up

92 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Auto-Tuning as Online
Optimization

Memory Governance
Histogram Maintenance

93 Surajit Chaudhuri and Gerhard Weikum

Online Algorithms
Characteristics:

Deal with a sequence of events
Future events are unknown to the algorithm
The algorithm has to deal with one event at each
time.

Goodness with respect to uncertainty
measured via competitive ratio

Compare to offline algorithm with full knowledge
of the input

Competitive ratio alone is not a sufficient
criteria

94 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Memory Governance
Memory = Other Processes + DB

Query OS on the amount of free physical memory
Respond to Memory availability

DB = Shared Cache + Working Memory
No good answer on how to split across the two

Working Memory = Sum (WorkingO-
Memory)

Hope is to leverage characteristics of SQL
operators
No formal problem definition
We will look at the state of the art

95 Surajit Chaudhuri and Gerhard Weikum

Shared Cache
Buffer Pool

Events are page references
Minimize page fault
LRU is k-competitive (LB), LFU is unbounded
Competitiveness alone is not sufficient

Shared Cache more than Buffer Pool
Procedure cache (compiled query plans)
Split across different classes

Multi-class workload, variant of cache
replacement problem

96 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Working Memory Assignment
Query Operators must be adaptive
with memory assignment

May be assumed with some limitations
We will look at Hash Join
No formal study of implementations in an
online memory adaptive framework
([Barve, Vitter 1994])

97 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Roadmap

Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in
Products
Troubleshooting Memory Pressure

98 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Making Hash Join Memory
Adaptive

In Memory:Grace Hash: Recursive Hash
Role Reversal
Memory fluctuation across “steps”

Adjust cluster size for partitioning buffers
Maximize size of write requests (e.g., flush largest
partition to give up memory)

Fluctuation during steps
+: Enlarge buffers for build as well as probe
-: Reduce partition buffer, not input buffers
-: Bit Vector Filtering

99 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in
Products
Troubleshooting Memory Pressure

100 Surajit Chaudhuri and Gerhard Weikum

Allocation Problem
Challenges: Characterizing each operator

Take into account memory vs. response time
profiles of each stage of adaptive operators

To estimate value of incremental memory

Challenges: Mid-flight changes
Cardinality: Optimizer estimates not reliable
Progress of an operator/stage

Challenges: Handling multiple operators
Criteria for distribution across operators
Preemption, admission control as mechanisms

101 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

ROC Framework for Allocation
ROC (Return on Consumption) =
benefit/cost of incremental memory

Identify dependence on incremental
memory for the “current” phase of an
operator
Capture space-time product
ROC(M) = (T(M0) – T(M)) / (M*T(M) –
M0*T(M0))

Optimization problem based on ROC
Still need to resolve multi-operator
assignment

102 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Challenges in ROC Model
Derive ∆perf/ ∆Mi for each operator

Decision to take away memory interacts with
implied IO costs
Limited work on modeling adaptive join operators
(Davidson 1995 thesis)

Balancing across query groups in the
workload may be important

Criticality (OLTP, OLAP, DSS)
Small, Medium or Large operands
Resource Brokering framework based on ROC
(Davidson, Graefe)

103 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Roadmap
Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in
Products (Oracle and Microsoft)

See DB2 paper in VLDB06
Troubleshooting Memory Pressure

104 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Example: Approach in
Microsoft SQL Server

Shared cache
Procedure cache (high cost of replacement) and
data page buffers

Compile Time
For each operator phase, a min and max memory
value is assigned

Based on expected cardinalities
For multiple concurrently executing phases,
division is proportional to expected work (a
fraction is assigned)

105 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

SQL Server Memory
Management (2)

Run time
At least min, but give Max if available
Below a threshold of total memory

Use admission control
Queue new requests instead of preempting active
operators

Waiting operators and waiting memory
Waiting operators release memory to active
operators on-demand
Longest waiting operator first to free memory

106 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Oracle Workspace Memory
Management

Adaptive operators modeled with
Max, Min setting for memory

A memory target M is provided
Active Work Area Profiles for each active
operator

At least Min
Below 5% of overall limit of working memory
Fairness: At most (max_requirement, g)

Memory M is distributed among all of them as
an optimization problem to maximize g

107 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Oracle: Setting Memory
Target

Do you have to adjust Memory Target?
DBA induced change
Wrong allocation due to slow response of
operators or fragmentation
Statistical advice from simulator (Memory Target
vs. Percentage of In-Memory executions)

Global bound recomputed frequently in the
background

Active re-computation needed for severe cases
Bootstrapping from idle state

108 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Roadmap

Brief discussion of cache management
Adaptive operators
Allocation problem (ROC)
Example of Memory Governance in
Products
Troubleshooting Memory Pressure

109 Surajit Chaudhuri and Gerhard Weikum

Troubleshooting Memory
Pressure

Part II: Five Auto-Tuning Paradigms Online Optimization

Manifestation of memory pressure
Cache hit ratio/Page Life Expectancy/ IO
subsystem under stress
Too many recompilations
Length of Memory grant queue

Possible Solution:
Fix Physical Designs
Fix SQL statement and compilation
Set transaction isolation level carefully

110 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Lessons and Problems
Lessons

Cache (Buffer Pool) replacement
reasonably solved
Static optimization not a feasible approach
Memory pressure due to many different
reasons
Use of built-in simulators

Problems
Allocation problem & incremental value of
memory analysis open

111 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

References (Memory
Management)

Weikum G., Konig C., Kraiss A., Sinnwell, M. Towards Self-
Tuning Memory Management for Data Servers, IEEE Data
Engineering Bulletin 22(2): 3-11, 1999.
Yu P., Cornell D. Buffer Management Based on Return on
Consumption in a Multi-Query Environmentt, VLDB Journal 2(1):
1-37, 1993.
Brown K., Carey M., Livny M., Goal-Oriented Buffer
Management Revisited, SIGMOD Conference,1996.
Surajit Chaudhuri, Eric Christensen, Goetz Graefe, Vivek R.
Narasayya, Michael J. Zwilling: Self-Tuning Technology in
Microsoft SQL Server. IEEE Data Eng. Bull. 22(2): 20-26 (1999)
Per-Åke Larson, Goetz Graefe: Memory Management During
Run Generation in External Sorting. SIGMOD Conference 1998:
472-483

112 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

References (Memory
Management)

Goetz Graefe, Ross Bunker, Shaun Cooper: Hash Joins and
Hash Teams in Microsoft SQL Server. VLDB 1998: 86-97
Diane L. Davison, Goetz Graefe: Dynamic Resource Brokering
for Multi-User Query Execution. SIGMOD Conference 1995:
281-292
Diane L. Davison, Goetz Graefe: Memory-Contention
Responsive Hash Joins. VLDB 1994: 379-390
Benoît Dageville, Mohamed Zaït: SQL Memory Management in
Oracle9i. VLDB 2002: 962-973
Qi S., Dang M.: The DB2 UDB Memory Model, IBM
DeveloperWorks.
Adam J. Storm, Christian Garcia-Arellano, Sam S. Lightstone,
Yixin Diao, Maheswaran Surendra: Adaptive Self-tuning Memory
in DB2, VLDB 2006

113 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Auto-Tuning as Online
Optimization

Histogram Maintenance

114 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Histograms as Succinct
Data Set Summaries
Used for selectivity estimation
Data set partitioned into buckets

Each bucket consists of a bounding box and
aggregate statistics (count of tuples)
Uniformity is assumed inside buckets.

Histograms should partition data set in buckets
with uniform tuple density.

Multi-dimensional data makes partitioning
even more challenging

115 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Histogram Maintenance
Scenario 1: Insert/Deletes/Updates to relation
take place

How can we avoid rebuilding histogram from
scratch?
“Online incremental maintenance”

Scenario 2: No updates to relation. But, trying
to construct histograms by only looking at
query executions

How can we modify histogram as we get
“additional evidence”?
“Online incremental correction”
a.k.a Self Tuning Histograms

116 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Online Incremental Maintenance
Maintain a sample of the relation
incrementally (Gibbons,Matias,Poosala V. VLDB 1997)

Insertion: Traditional Reservoir sampling
Modification: In-place
Deletion: Delete, may trigger a re-sampling
(also see paper in VLDB06)

Incrementally update histogram by changing
frequency counts of buckets

Detect unbalanced buckets (std deviation)
If the histogram is not “balanced”, use the
sample to rebuild histogram

118 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Histogram Maintenance
Scenario 1: Insert/Deletes/Updates to relation
take place

How can we avoid rebuilding histogram from
scratch?
“Online incremental maintenance”

Scenario 2: No updates to relation. But, trying
to construct histograms by only looking at
query executions

How can we modify histogram as we get
“additional evidence”?
“Online incremental correction”
a.k.a Self Tuning Histograms

119 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Self-tuning Histograms

Optimizer Execution

Estimated
Selectivity

Histogram

ResultPlan

Database

Actual
Selectivity

X Refinement

Start with an initial (inaccurate) histogram
and refine it based on feedback

120 Surajit Chaudhuri and Gerhard Weikum

Online Incremental Correction
Part II: Five Auto-Tuning Paradigms Online Optimization

Does not examine actual data set
Assume uniformity and independence until
feedback shows otherwise
Uses Split and Merge techniques

Each query defines a potential new bucket if cardinality
error is above threshold
Merge victims are chosen based on adjacency and
similarity of density

Goal: Error minimized if the workload is replayed.
Contrast with online incremental maintenance
technique..

121 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Evaluation Metric

Absolute Error:

Normalized Absolute Error:

122 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Refining STGrid
Histograms

Observe error and accumulate
information about data distribution
in histogram buckets

Frequency
Refinement

Periodic
Restructuring

Better bucket boundaries
Split high frequency buckets
Merge buckets with similar
frequencies

123 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

STHoles Histograms
Tree structure among buckets.
Buckets with holes: relaxes rectangular
regions while using rectangular bucket
structures.

Non
rectangular

region

124 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Example STHoles
Histogram

Gaussian Data Set STHoles Histogram

125 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Refining STHoles
Histograms

Initialize histogram H assuming uniformity.
For each query q in workload:
1- Gather simple statistics from query results.
2- Identify candidate holes and drill (add) them as

new buckets in H.
3- Merge superfluous buckets in H.

126 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Drilling New Candidate Buckets
For each query q in workload and bucket b in
histogram:

?

Count how many tuples in result stream lie inside
q∩b.
Drill q∩b as a new bucket (child of b).

q

127 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Parent-Child Merges

Eliminate buckets too similar to their parents.
Example: The interesting region in bc is covered

by its child b1.

128 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Sibling-Sibling Merges

Consolidate buckets with similar densities
that cover close regions.
Extrapolate frequency distributions to yet
unseen regions.

129 Surajit Chaudhuri and Gerhard Weikum

Accuracy vs. Overhead

STGRID
Too coarse grained usage of feedback

STHOLES
Accurate, but per-bucket tracking can be
expensive

ISOMER [Srivastava+06]
Use maximum entropy principle to divide
the inaccuracy across buckets

130 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

Lessons and Problems
Lessons

Maintenance: Precise, online threshold driven
Needs auxiliary structures for correctness

Correction: An attractive approach because it
avoids offline a priori decisions

Problems
Correction:

Target optimization function alternatives
Analysis of convergence

131 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Online Optimization

References (Histogram Maintenance)
Gibbons, P., Matias Y., Poosala V. Fast Incremental
Maintenance of Approximate Histograms. VLDB 1997.
Chung-Min Chen, Nick Roussopoulos: Adaptive Selectivity
Estimation Using Query Feedback. SIGMOD Conference 1994:
161-172
Aboulnaga, A. and Chaudhuri, S., Self-Tuning Histograms:
Building Histograms Without Looking at Data. SIGMOD 1999.
Yossi Matias, Jeffrey Scott Vitter, Min Wang, Dynamic
Maintenance of Wavelet-Based Histograms, VLDB 2000
Bruno N., Chaudhuri S. and Gravano L. STHoles: A
Multidimensional Workload-Aware Histogram. SIGMOD 2001
Markl V., Megiddo N., Kutsch M., Tran T.M., Haas P., Srivastava
U., Consistently Estimating the Selectivity of Conjuncts of
Predicates. VLDB 2005
Utkarsh Srivastava, Peter J. Haas, Volker Markl, Marcel Kutsch,
Tam Minh Tran: ISOMER: Consistent Histogram Construction
Using Query Feedback. ICDE 2006

132 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered

133 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms

Auto-Tuning as
Feedback Control Loop

MPL Tuning (Admission Control)
• No full-fledged predictive model of system behavior
• Errors in estimation of parameters and modeling
• Rapid workload evolution: bursts and shifts

→ feedback control
• is adaptive
• can work with black-box system,
• and has theoretical underpinnings

134 Surajit Chaudhuri and Gerhard Weikum

MPL Tuning with Multiple Load Classes
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

arriving
transactions response time [s]

1.0

DBS

0.8trans.
queue

0.6

0.4
active
trans, 0.2

10 20 30 40 50
Key problem: dynamics, lack of predictability MPL

135 Surajit Chaudhuri and Gerhard Weikum

Adaptive Load Control
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

for Avoidance of
Lock-Contention Thrashing

arriving trans.

transaction admission

transaction cancellation

transaction
execution

aborted
trans.

conflict ratio

conflict ratio =

.transrunningbyheldlocks#
.transallbyheldlocks#

critical
conflict ratio
≈ 1.3

restarted
trans.

committed trans.

136 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered

137 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Basics of Feedback Control Theory
(following J.L. Hellerstein et al.: Feedback Control of Computing Systems, Wiley, 2004)

Controller Target System+−

Transducer

Disturbance Noise

Measured
Output

Transduced
Output
(e,g., moving
time average)

Reference
Input
(Setpoint)

Control
Error

Control
Input

yueŷ

closed loop with feedback possible even for black-box system;
open loop (feedforward control) possible only with predictive model

Application examples: thermostat, control valves, cruise control, ABS,
building control (heating, energy, etc.)

138 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Example: Dynamic Cache Sizing

Controller Cache Manager+−

Control
Error

Reference
Response
Time

Cache
Size

Measured
Response
Time

SISO controller (single input, single output)

139 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Example: Web Server

Controller Web Server+−

Reference
CPU Util.

Control
Error

MIMO controller (multiple inputs, multiple outputs)

Reference
Memory Util.

Session
Timeout

+−

Measured
CPU Util.

Max
Sessions

Measured
Memory Util.

140 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

SASO Properties (1)
Desired guarantees:
stability – bounded input results in bounded output (BIBO)
accuracy – low error between reference and measured output
short settling time – fast convergence to steady state after excitement
low overshoot – low deviation from steady-state behavior

good bad

142 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

First-order Linear Models
described by difference equation with discrete time:
y(k 1) ay(k) bu(k)+ = + with coefficients a, b

higher-order controller considers y(k-1), y(k-2), ...
non-linear behavior may be linearly approximated
parameters a, b derived from system model or estimated by regression

Examples:
• linearize M/M/1/K model, to control queue limit K based on resp. time
• MIMO controller for CPU and memory utilization:

11 12 11 12CPU(k 1) a CPU(k) a Mem(k) b Timeout(k) b Sessions(k)+ = + + +
21 22 21 22Mem(k 1) a CPU(k) a Mem(k) b Timeout(k) b Sessions(k)+ = + + +

143 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Mathematical Tools
Z transform of discrete-time signal u:

k

k 0
U(z) u(k) z

∞
−

=
= ∑ uG (1 / z)=

with generating function Gu

Properties:
y(k) au(k) Y(z) aU(z)= ⇒ =
y(k) u(k) v(k) Y(z) U(z) V(z)= + ⇒ = +

1y(k) u(k 1) Y(z) z U(z)−= − ⇒ =...
Examples:

invert Z transform
by table lookup,
partial fraction expansion,
etc.

Impulse u(0) 1, u(k) 0 for k 0 U(z) 1= = > ⇒ =
Step u(k) 1 for k 0 U(z) z /(z 1)= ≥ ⇒ = −
Ramp 2u(k) k U(z) z /(z 1)= ⇒ = −
Exponential ku(k) a U(z) z /(z a)= ⇒ = −
Sine 2

z sinu(k) sin k U (z)
z (2 cos)z 1

θθ
θ

= ⇒ =
− +

144 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Transfer Function
for Guaranteed Behavior

uG (1 / z)=
with generating function Gu

k

k 0
U(z) u(k) z

∞
−

=
= ∑

Y(z)F(z)
U(z)

= Z transform of output
Z transform of input

Transfer function of linear first-order model with y(0)=0 :
y(k 1) ay(k) bu(k)+ = +

zY(z) zy(0) aY(z) bU(z)⇒ − = + bU(z)Y(z)
z a

⇒ =
−

F(z) b /(z a)⇒ = −

Theorem: system is stable iff all poles of F(z) have abs ≤ 1
(poles: roots of denominator polynomial)

more theorems about convergence, steady-state error,
transient responses, settling times, overshoot, oscillation, etc.

145 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Controller Design

pu(k) K e(k)=
ˆe(k) y(k) y= −

with control error

Iu(k) u(k 1) K e(k)= − +
Integral Control (I Control):

Proportional Control (P Control):

rich results
on SASO
properties

P I Pu(k) u(k 1) (K K)e(k) K e(k 1)= − + + − −
PI Control:

plus many more controller types

146 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Example for P Controller Z transforms
of signals

Controller Target System

+−
Y(z)

reference
input r(k)

measured
output y(k)

error
e(k)

control
u(k)

R(z)
E(z) U(z)

P
EU

K E(z)U(z)F (z)
E(z) E(z)

= =

KP

UY
Y(z)F (z)
U(z)

=

b/(z-a)

EU UY
RY

EU UY YY '

Y (z) F (z)F (z)G(z) : F (z)
R(z) 1 F (z)F (z)F (z)

= = =
+

Transducer
output y‘(k)=y(k-1) 1/z

YY '
Y '(z)F (z)
Y (z)

=

Stability Theorem: system is stable iff all poles of G(z) have abs ≤ 1
more theorems about convergence, steady-state error,
transient responses, settling times, overshoot, oscillation, etc.

can tune constants
KP, a, b, etc. for
controller properties

147 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Combining Feedback Control with
Model-based Stochastic Prediction

Controller Target
System

+−

Sensor

Measured
Output

Set
point

Error Control
Input Actuator Tuning

Param

Queueing
Predictor

Workload
Properties

Correc-
tion

Prediction &
Tuning
Recommendation

Augmented control loop: + predictor reduces delays
in reacting to
abrupt workload shifts

+ feedback control corrects
modeling errors of predictor

control resource allocations bi (bi > bi+1) for multi-class workload
so as to maintain relative performance guarantees gi/gi+1 (gi < gi+1)

i i iu (k) u (k 1) e (k)γ= − + i i i 1 i 1

i 1 i 1 i i

b (k) b (k 1) g (k) W
b (k) b (k 1) g (k) W

γ + +

+ +

⎛ ⎞−
= + −⎜ ⎟− ⎝ ⎠

148 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Part 2: Five Auto-Tuning
Paradigms
1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Example: MPL Tuning Problem & Early Approaches
• Feedback Control Theory
• Old Problem Reconsidered

149 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

MIMO Controller for Multi-class DBMS
for lock-contention (and memory-contention) avoidance

Intriguing (and obvious?) approach:

Multi-class
MPL
Controller

DBMS
+−

Resp. Time
Goal Class 1

Goal Violation (Control Error)

Resp. Time
Goal Class n

+−

Resp. Time
of Class 1

...

MPL1

MPLn

......

Resp. Time
of Class n

... ...

but a viable solution is not that simple!

150 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Lock-Contention Thrashing Reconsidered

response time or wait time (to drive MPL controller)
do not work robustly

Reference input metric is crucial:

need deeper insight and math to identify
viable metrics and setpoints:
• conflict ratio:

• should be < 1.3 (backed up by math analysis)
• wait depth:

• wait depth of running trans.: 0
• wait depth of trans. blocked by trans. at depth i: i+1
• limit wait depth to 1 by cancelling trans. that are blocked and block other trans.

lo cks h e ld b y a ll tra n s .
lo cks h e ld b y ru n n in g tra n s .

transaction
execution

aborted
trans.

committed trans.

arriving trans.

restarted
trans.

Details of control steps are crucial:
cancellation victim selection and restart waiting

151 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Lessons and Problems
Lessons:
• feedback control adequate for tuning issues with limited
predictive/causal understanding

• no panacea: controller design can be an art
• controller fine-tuning (e.g., sampling rates) can be critical
• can (and must) be combined with other paradigms
(queueing models, regression, etc.)

Problems:
• extend successful work on Web & mail servers to DBMS
• full-fledged MIMO controller for multi-class
MPL tuning problem (and memory allocation) in DBMS

• from stochastic or convergence guarantees
to hard predictability („bounded surprise“)

• integrate control theory into curriculum

152 Surajit Chaudhuri and Gerhard Weikum

Literature (1)
Part II: Five Auto-Tuning Paradigms

on II.5: Feedback Control Loop
• J.L. Hellerstein, Y. Diao, S. Parekh, D.M. Tilbury: Feedback Control of

Computing Systems, Wiley 2004 (see also tutorial at SIGMETRICS 2005)
• G.F. Franklin, J.D. Powell, M.L. Workman: Digital Control of Dynamic Systems,

Addison-Wesley, 1998
• K. Ogata: Modern Control Engineering, Prentice Hall, 2001
• K.J. Astrom, R. M. Murray: Analysis and Design of Feedback Systems Preprint, 2003

http://www.cds.caltech.edu/~murray/courses/cds101/fa03/caltech/am03.html
• T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang, Y. Lu: Feedback Performance

Control in Software Services, IEEE Control Systems Magazine 23(3), 2003
• Y. Diao, J.L. Hellerstein, G. Kaiser, S. Parekh, D. Phung: Self-Managing Systems:

A Control Theory Foundation, 2nd IEEE Conf. on Engineering of
Autonomic Systems, 2005

• J.L. Hellerstein, Y. Diao, S. Parekh: A First-Principles Approach to Constructing
Transfer Functions for Admission Control in Computing Systems, Conference on
Decision and Control, 2002

• M. Karlsson, C. Karamanolis, X. Zhu: Triage: Performance Isolation and
Differentiation for Storage Systems, Int. Workshop on Quality of Service, 2004

• Y. Lu, T. Abdelzaher, C. Lu, L. Sha, X. Liu: Feedback Control with
Queueing-Theoretic Prediction for Relative Delay Guarantees in Web Servers,
IEEE Real-Time and Embedded Technology and Applications Symposium, 2003

Feedback Control Loop

153 Surajit Chaudhuri and Gerhard Weikum

Part II: Five Auto-Tuning Paradigms Feedback Control Loop

Literature (2) on II.5: Feedback Control Loop
• D. Reiner, T.B. Pinkerton: A Method for Adaptive Performance Improvement of

Operating Systems, SIGMETRICS 1981
• G. Weikum, C. Hasse, A. Moenkeberg, P. Zabback: The COMFORT Automatic

Tuning Project, Information Systems 19(5), 1994
• A. Thomasian: Two-Phase Locking and its Thrashing Behavior, TODS 18(4), 1993
• K.P. Brown, M. Mehta, M.J. Carey, M. Livny: Towards Automated Performance

Tuning for Complex Workloads, VLDB 1994
• P.J.Denning, K.C. Kahn, J. Leroudier, D. Potier, R. Suri: Optimal Multiprogramming,

Acta Informatica 7, 1976
• H.-U. Heiss: Overload Effects and Their Prevention, Performance Eval. 12(4), 1991
• S. Parekh, K. Rose, Y. Diao, V. Chang, J. Hellerstein, S. Lightstone, M. Huras:

Throttling Utilities in the IBM DB2 Universal Database Server,
American Control Conference, 2004

• B. Schroeder, M. Harchol-Balter, A. Iyengar, E. Nahum, A. Wierman: How to
Determine a Good Multi-programming Level for External Scheduling, ICDE 06

• Y.-C. Tu, S. Liu, S. Prabhakar, B. Yao: Load Shedding in Stream Databases:
A Control-based Approach, VLDB 06

• C. Pautasso, T. Heinis, G. Alonso: Autonomic Execution of Web Service
Compositions, ICWS 05

154 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Outline
• Part I: What Is It All About
• Part II: Five Auto-Tuning Paradigms

1 Auto-Tuning as Tradeoff Elimination
2 Auto-Tuning as Static Optimization with Deterministic Input
3 Auto-Tuning as Static Optimization with Stochastic Input
4 Auto-Tuning as Online Optimization
5 Auto-Tuning as Feedback Control Loop

• Part III: Wrap-up

155 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

The Spectrum for Self-
Tuning

Time
horizon

External
feedback
loop

System
Managed
Triggering

Real
-tim

e

deci
sio

ns

Near
 Real

-Time

deci
sio

nsOcca
sio

nal

Reco
mputati

on

Longer T
erm

Deci
sio

ns

Self-tuning
algorithm

Integration
into DBS

Memory
Manager

LRU(k)
Pre-
fetching

Physical DB
Design Automated

Statistics
Maintenance

Slide adapted from
Gerhard Weikum

156 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Other Notable Areas for
Automated Tuning

Statistics management
Choice of isolation levels
Application tuning
Tuning of middleware caching

157 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

How to evaluate a tuning
solution

Clarity for target of tuning
Input parameters for tuning

Take into account their degree of precision
(e.g., uncertainty in estimation)
Right model of workload

Choice of a paradigm influenced by
Immediacy of tuning
Criticality of a decision (robustness) vs.
optimality

158 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Even before Tuning we
need..

Monitoring
Only a very tiny part of the state of the server is
accessible
Increasing awareness (Oracle ADDM Warehouse
of system events, SQL Server DMV)
A flexible infrastructure for looking at system
snapshot and its aggregation is useful

Diagnostics
Ability to do root cause analysis from the
knowledge of the system

159 Surajit Chaudhuri and Gerhard Weikum

SQLCM Architecture
Database SystemDatabase System

Monitoring
and
Aggregation
Engine

E/C/A
Rule
Engine

Query
Processor Query

Persist
Reports

Database Database
AdministratorAdministrator Insert

Rules

Client
Tuning Tools

Implement
ChangesExecute

ContinuousContinuous
Monitoring EngineMonitoring Engine

Monitored
Objects

Results

Tune
DBMS
Internals

Notify

Storage
Engine

Physical
Database
Store

Physical
Database
Store

Physical
Database
Store

Part III: Wrap-up

160 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Monitoring Progress of
SQL Query Execution
Today’s DBMS provides little feedback to DBA
during query execution
Goal: Provide reliable progress estimator during
query execution for long running queries

Accuracy, Fine Granularity, Low Overhead,
Monotonicity, Leverage feedback from execution

See papers in SIGMOD 2004, 2005, ICDE 2006

161 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Diagnostics
Requires a careful model of the system

Distinguish normal from unusual
Analyze events as well as phases of
execution over a time interval
(Dias et.al. CIDR 2005)

Decision trees are used as a
representation

I/O bottleneck split into disk load
imbalance, too many seeks, poor cache hit
rate, insufficient bandwidth

162 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Principles for Self Tuning
Complex problems have simple, easy to
understand wrong answers
“Observe-Predict-React” cycle can only be
implemented locally

Develop self-tuning, adaptive algorithms for
individual tuning tasks
Need robust models – when and how

Monitoring/Global knowledge necessary for
identification of bottlenecks
Watch out for too many Tuning parameters

163 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

“Learning” != “Magic”
Conceptually enticing to say that the
system will “learn from observation”
In reality, learning requires

Identifying a learning model
Several thresholds
Essentially, “fits” the parameters given
observation

Learning could be a tool but not a
shortcut for thinking

164 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Rethinking Systems:
Wishful Thinking?

VLDB 2000 Vision paper (Chaudhuri and Weikum
2000)
Enforce Layered approach and Strong limits on
interaction (narrow APIs)

Package as components of modest complexity
Encapsulation must be equipped with self-tuning

Featurism can be a curse
Don’t abuse extensibility - Eliminate 2nd order optimization

165 Surajit Chaudhuri and Gerhard Weikum

Part III: Wrap-up

Final Words
Self-Tuning servers crucial for bounding
cost

Policy based adaptive control
“observe-predict-react”
Monitoring infrastructure – leverage workload and events
What-if analysis
Mathematical tools
Deep understanding of local systems needed

Some limited successes so far
Plenty of opportunities/challenges

166 Surajit Chaudhuri and Gerhard Weikum

Literature:
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

• Gang Luo, Jeffrey F. Naughton, Philip S. Yu: Multi-query SQL Progress
Indicators. EDBT 2006

• Gang Luo, Jeffrey F. Naughton, Curt Ellmann, Michael Watzke: Increasing
the Accuracy and Coverage of SQL Progress Indicators, ICDE 2006

• Surajit Chaudhuri, Raghav Kaushik, Ravishankar Ramamurthy: When Can
We Trust Progress Estimators for SQL Queries? SIGMOD 2005

• Gang Luo, Jeffrey F. Naughton, Curt Ellmann, Michael Watzke: Toward a
Progress Indicator for Database Queries. SIGMOD 2004

• Surajit Chaudhuri, Vivek R. Narasayya, Ravishankar Ramamurthy: Estimating
Progress of Long Running SQL Queries. SIGMOD 2004

• Dushyanth Narayanan, Eno Thereska, Anastassia Ailamaki. Continuous
resource monitoring for self-predicting DBMS, MASCOTS 2005

• Surajit Chaudhuri, Christian König, Vivek Narasayya: SQLCM: A Continuous
Monitoring Framework for Relational Database Engines. ICDE 2004

• Ning Jiang, Roy Villafane, Kien A. Hua, Abhijit Sawant, Kiran Prabhakara:
ADMiRe: An Algebraic Data Mining Approach to System Performance
Analysis. IEEE Trans. Knowl. Data Eng. 17(7), 2005

• IEEE CS Data Engineering Workgroup on Self-Managing Database Systems,
http://db.uwaterloo.ca/tcde-smdb/

167 Surajit Chaudhuri and Gerhard Weikum

Call for Papers
Part II: Five Auto-Tuning Paradigms Feedback Control Loop

International Workshop on
Self-Managing Database Systems (SMDB 2007)

on April 16, 2007, in Istanbul, Turkey
in conjunction with ICDE 2007

Workshop chair: Guy Lohman
Submission deadline: November 20, 2006

for more details see
http://db.uwaterloo.ca/tcde-smdb/SMDB2007_CFP.html

	Foundations of Automated Database Tuning
	Scope and Purpose of This Tutorial
	Outline
	Part I: What Is It All About
	Easy Solutions
	General Literature
	Call for Papers
	Outline
	Part 2: Five Auto-Tuning Paradigms
	1 Auto-Tuning as Tradeoff Elimination
	Example: Caching Strategies
	Example: LRU-k Caching Strategy
	Lessons and Problems
	Literature
	Outline
	Auto-Tuning as Static Optimization with Deterministic Input Physical Database Design
	Physical Database Design
	Roadmap
	Is this a hard problem?
	And that was just indexes!
	Real Life Queries are Complex!
	Real Life Queries are Complex!
	Roadmap
	Physical Database Design as Static Optimization
	Roadmap
	What is “cost”?
	Estimating Cost of a configuration for Search
	“What-If” Indexes
	Using What-If Analysis
	“What-If” Architecture Overview
	Roadmap
	Balancing Requirements of Multiple Queries
	Example: Database Tuning Advisor
	Characteristics of Merged Candidates
	Sample Algorithm: MV Merging Candidates
	Sample Algorithm:Index Merging Candidates
	Roadmap
	Example: Database Tuning Advisor
	Search Algorithm
	Quality: Incremental Cost/Benefit of a structure
	Efficiency: Reducing Optimizer Invocations
	Example: Database Tuning Advisor
	Top-down Search
	Top-Down Search Algorithm [SIGMOD 05]
	Other Approaches
	Roadmap
	Architecture: Knowledge of the Optimizer
	Instrumenting the Query Optimizer
	Instrumenting the Query Optimizer
	When to Tune?
	Lessons and Problems
	References (1)
	References (2)
	References (3)
	Part 2: Five Auto-Tuning Paradigms
	Auto-Tuning as Static Optimization with Stochastic InputCapacity Planning andSystem Configuration
	System Capacity Planning
	System Configuration Tool (1)
	System Configuration Tool (2)
	Part 2: Five Auto-Tuning Paradigms
	Example: DBMS Cache Sizing
	LRU-k Cache Hit Rate Prediction
	LRU-k Response Time Prediction
	Part 2: Five Auto-Tuning Paradigms
	Basics of Queueing Systems
	Markov Chains
	M/M/1 Queueing Systems
	Insights (Example): Variability Matters
	Other Queueing Systems
	Mathematical Tools (1)
	Mathematical Tools (2)
	M/G/1 Queueing Systems
	Modeling Disk Service Times
	Stochastic Response Time Prediction
	Cache Sizing: Putting It All Together
	Stochastic Model for P2P Message Flooding
	Stochastic Model for P2P File Swarming
	Part 2: Five Auto-Tuning Paradigms
	Dependability Measures
	Availability Example
	Lessons and Problems
	Literature (1)
	Literature (2)
	Outline
	Auto-Tuning as Online Optimization Memory GovernanceHistogram Maintenance
	Online Algorithms
	Memory Governance
	Shared Cache
	Working Memory Assignment
	Roadmap
	Making Hash Join Memory Adaptive
	Roadmap
	Allocation Problem
	ROC Framework for Allocation
	Challenges in ROC Model
	Roadmap
	Example: Approach in Microsoft SQL Server
	SQL Server Memory Management (2)
	Oracle Workspace Memory Management
	Oracle: Setting Memory Target
	Roadmap
	Troubleshooting Memory Pressure
	Lessons and Problems
	References (Memory Management)
	References (Memory Management)
	Auto-Tuning as Online Optimization Histogram Maintenance
	Histograms as Succinct Data Set Summaries
	Histogram Maintenance
	Online Incremental Maintenance
	Avoiding Rebuilding: Split and Merge
	Histogram Maintenance
	Self-tuning Histograms
	Evaluation Metric
	Refining STGrid Histograms
	STHoles Histograms
	Example STHoles Histogram
	Refining STHoles Histograms
	Drilling New Candidate Buckets
	Parent-Child Merges
	Sibling-Sibling Merges
	Accuracy vs. Overhead
	Lessons and Problems
	References (Histogram Maintenance)
	Part 2: Five Auto-Tuning Paradigms
	Auto-Tuning as Feedback Control LoopMPL Tuning (Admission Control)
	MPL Tuning with Multiple Load Classes
	Adaptive Load Control
	Part 2: Five Auto-Tuning Paradigms
	Basics of Feedback Control Theory
	Example: Dynamic Cache Sizing
	Example: Web Server
	SASO Properties (1)
	SASO Properties (2)
	First-order Linear Models
	Mathematical Tools
	Transfer Function for Guaranteed Behavior
	Controller Design
	Example for P Controller
	Combining Feedback Control withModel-based Stochastic Prediction
	Part 2: Five Auto-Tuning Paradigms
	MIMO Controller for Multi-class DBMS
	Lock-Contention Thrashing Reconsidered
	Lessons and Problems
	Literature (1)
	Literature (2)
	Outline
	The Spectrum for Self-Tuning
	Other Notable Areas for Automated Tuning
	How to evaluate a tuning solution
	Even before Tuning we need..
	SQLCM Architecture
	Monitoring Progress of SQL Query Execution
	Diagnostics
	Principles for Self Tuning
	“Learning” != “Magic”
	Rethinking Systems: Wishful Thinking?
	Final Words
	Literature:
	Call for Papers

