
T
H

E

U N I V E R S
I

T
Y

O
F

E
D I N B U

R
G

H

� � � � � ��� �	�

 � � �
 �	� � � � ��
� � �� � � � �

Wenfei Fan, Floris Geerts, Xibei Jia, Anastasios Kementsietsidis

The University of Edinburgh

Abstract: XML views have been widely used to enforce access control, support data integration, and speed up query answering. In many applications,
e.g., XML security enforcement, it is prohibitively expensive to materialize and maintain a large number of views. Therefore, views are necessarily virtual.
This demo presents SMOQE, the first system to provide efficient support for answering queries over virtual and possibly recursively defined XML views.
We demonstrate a set of novel techniques for the specification of views, the rewriting, evaluation and optimization of XML queries. Moreover, we provide
insights into the internals of the engine by a set of visual tools.

Introduction
For all the reasons that views are essential to traditional
databases, XML views are also important for XML data.
In many applications, e.g., in XML security enforcement,
views are necessarily virtual: it is prohibitively expensive
to materialize and maintain a large number of views, one
for each user group.

We have developed the Secure MOdular Query Engine
(SMOQE) for facilitating the specification of XML views
and answering of XML queries on virtual views. The
main features of SMOQE are the following.� SMOQE supports XML views defined by annotating an

XML schema with Regular XPath [3] queries. It supports
recursively defined schemas (and thus views).� SMOQE is able to rewrite any Regular XPath query

�

posed by users on a virtual view � to an equivalent
Regular XPath query

� �

on the underlying document �.� SMOQE encompasses a query engine for Regular XPath
queries, implementing an efficient evaluation algorithm
and a novel indexing structure.

Figure 1. The SMOQE Architecture

System Architecture
As shown in Fig. 1, SMOQE consists of four major mod-
ules:

(a) �

SMOQE, a visual tool through which a user can de-
fine XML views, inspect the query rewriting and evalua-
tion, and browse query results (a small user icon is used
to indicate all the system components accessible through�

SMOQE);
(b) a query rewriter (indicated by a blue box at the left
of the figure) for translating user Regular XPath queries
posed on XML views to equivalent Regular XPath queries
on the underlying document;
(c) a query evaluator (indicated by a pink box in the mid-
dle of the figure) for processing Regular XPath queries;
and
(d) an indexer (indicated by a green box at the right of the
figure), which is used by the evaluator to build indexes
and optimize queries.

Security Views
An access specification

�

is an extension of a document
DTD

� by associating security annotations with produc-
tions of � [1]. Here is an example:

document DTD

���

hospital � patient

�

ann(hospital,patient) = [visit/treatment/
medication = ‘autism’]

patient � pname, visit

�
, parent

�
ann(patient, pname) = N
ann(patient, visit) = N

parent � patient
visit � treament, date
ann(visit, treatment) = [medication]

treatment � test + medication
ann(treatment, test) = N

access specification

��

A security view specification could be either manually
defined by security administrators or automatically de-

rived from access specifications. Moreover, a view DTD
could be provided to help users posing queries by the
view derivation algorithm in the latter case:

hospital � patient

�!� (hospital, patient) = patient[visit/
treatment/medication = ‘autism’]

patient � treatment

�

, parent

�!� (patient, treatment) = visit/treatment
[medication]!� (patient, parent) = parent

parent � patient!� (parent, patient) = patient
treatment � medication!� (treatment, medication) = medication

view specification !� derived from

�� view DTD

�#"

Regular XPath Evaluation
While it is always possible to rewrite a Regular XPath
query

�

on a view to an equivalent query

� �

on the un-
derlying document, the size of

� �

, if directly represented
as Regular XPath expressions, may be exponential in the
size of

�
[2]. The SMOQE rewriter overcomes this chal-

lenge by employing an automaton characterization of

� �

,
denoted by MFA (mixed finite state automaton) [2], which
is linear in the size of

�

.

Figure 2: The MFA

$&% for

�%

For example, Fig. 2 depicts the MFA

$ % characterizing
the Regular XPath query:

�% = hospital/patient[(parent/patient)

'

/visit/treatment/test/() *
visit/treatment[medication/text()=“headache”]]/pname

The SMOQE evaluator implements a novel algorithm, re-
ferred to as HyPE (Hybrid Pass Evaluation) [2], for pro-
cessing Regular XPath queries represented by MFA’s. Fig.
3 shows the evaluation of the MFA

$&% given earlier on
an XML document:

Figure 3: Evaluation of

$ % using HyPE

A unique feature of HyPE is that it needs a single top-
down depth-first traversal of the XML tree, during which
HyPE both evaluates predicates of the input query (equiv-
alently, AFA’s of the MFA) and identifies potential answer
nodes (by evaluating the NFA of the MFA). The poten-
tial answer nodes are collected and stored in an auxiliary
structure, referred to as Cans (candidate answers), which
is often much smaller than the XML document tree. A
pass over Cans is needed to retrieve the real result nodes.

References
[1] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML querying with security

views. In SIGMOD, 2004.
[2] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular XPath

queries on XML views.
http://www.lfcs.inf.ed.ac.uk/research/database/rewriting.pdf.

[3] M. Marx. XPath with conditional axis relations. In EDBT, 2004.

