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COMET: A New Cost-Modeling Approach
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Advantages of COMET Approach

Can handle complex operators using statistical learning

• Operators not decomposable into simple scans, joins, etc.

• Operators with highly non-sequential data access patterns

• Used successfully to cost UDFs, remote DB systems
(Lee et al. 2004, He et al. 2004, Rahal et al. 2004)

Simplifies cost-model development

• Reduces need for painstaking code analysis used in analytical
modeling

• Easier to incorporate new operators into optimizer

• Helps avoid brittle simplifying assumptions

• Avoids need to explicitly incorporate HW parameters
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COMET Permits Optimizer to be Self Tuning
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Our Motivation: XML Query Optimization

Query q1:

<bib>

{

for $b in

doc("bib.xml")/bib/book

where

$b/authors//last = "Stevens"

and $b/@year > 1991

return

<book>

{ $b/title }

</book>

}

</bib>

Need to cost candidate execution
plans:

1. Navigational plan:

• navigate the bib.xml tree
• check pred’s for each book

2. Value-based index plan:

• find elements with “Stevens” or
“1991” using value-based index

• navigate up to book and check
remaining conditions

3. Structure-based index plan:

• look up matching tree structures
using a path/twig index

• check pred’s for each book
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Today’s Talk: Application of COMET
Approach to an XML Operator

XML operator to be modeled:

• XNAV operator (complex and dynamic, so hard to model)

• Adaptation of TurboXPath (Josifovski et al. 2005)

• Will model CPU costs (nontrivial component of overall cost)
• prior work has focused primarily on cardinality estimation

Nontrivial steps in applying COMET methodology:

Step 1: Identify XNAV features

Step 2: Determine statistics for estimating feature values

Step 3: Determine formulas for feature-value estimation

Step 4: Identify appropriate statistical learning algorithm
for fitting cost model
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XNAV: A Complex XML Navigational
Operator

What is XNAV?

• XNAV XPath(XMLTrees) −→ list of matching XML nodes

• XNAV is complex:
• equivalent to non-decomposable N-way join
• data stored as paged tree

High-level description of XNAV algorithm:

• XNAV traverses the XML tree in a single pass, with possible
skipping of nodes

• XNAV maintains internal states and buffers for matching the
query tree during the traversal
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Step 1: Identifying XNAV Features

Basis for feature identification

• Knowledge of XNAV algorithm (involves human interaction)

• Trial and error experimentation (with cross-validation)

Learning algorithm automatically removes redundant features

• Just need to find “at least enough” features

Some features for XNAV:

• #visits : # of XML nodes actually traversed

• #p requests : # of pages read

• . . . more features given in the paper
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Step 2: Novel Statistics for Estimating
Features

How to choose statistics ?

• “As simple as possible, but not simpler”
• Easy to collect and maintain, less error-prone

• Need to balance space and time requirements
• Storing redundant stats can speed up feature-value estimation

Example — Simple Path (SP) Statistics

• cardinality: |p|, where p is a “simple” path (no branching, no
wildcards, etc.)

• children and descendant cardinality: |p/∗| and |p//∗|
• page cardinality: ‖p‖
• . . . more in the paper
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Step 3: Feature-Value Estimation Using Stats

Can estimate all needed feature values using SP stats

• Analysis required, but much easier than analyzing entire
XNAV operator

• See paper for detailed formulas (algorithms)

• Formulas tend to overestimate feature values,
but COMET automatically compensates for bias (see below)

Example

• #visits =
∑

p∈S |p/∗|+
∑

q∈C |q//∗|

where S is a set of root-to-non-leaf simple path in the query
tree whose next step is connected by a /-axis;
C is a set of root-to-non-leaf simple path in the query tree
whose next step is connected by a //-axis
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Step 4: Fitting The Cost Model

Use Transform Regression (Pednault 2004)

• “Linear regression on steroids”

• Handles discontinuities and nonlinearities in cost function

• Fully automated (no statistician needed) and highly efficient

• Seamlessly handles both numerical and categorical features

Uses 1-level linear regression tree to “linearize” each feature

vj

cost

w = h vj j( )

LRT-based partitions

wj

cost
45o
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Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang



Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang



Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang



Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang



Experimental Study

Training data and queries:

• Synthetic and real-world data sets
(Including TPC-H, XMark, NASA, and XBench)

• Randomly generated queries:
• Simple linear paths (e.g., /a/b/c)
• Branching paths (e.g., /a[b][c]/d)
• Complex paths (e.g., /a[.//b][c//d]//e)

Model evaluation:

• Use 5-fold cross-validation

• Plot predicted vs. actual costs

• Calculate accuracy measurements
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Evaluating COMET’s Accuracy

Error metrics:

• NRMSE (Normalized Root-Mean-Squared Error):
measures the average (relative) prediction error

NRMSE =
1

c̄

(
1

n

n∑
i=1

(
ci − ĉi

)2
)1/2

where ci and ĉi are the actual and estimated costs for ith
query, and c̄ = average(c1, c2, . . . , cn)

• Other metrics discussed in paper: R2, OPD, MUP
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Accuracy of COMET

COMET does decent-to-excellent job in most cases:
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Effect of Errors in SP Statistics

COMET is not sensitive to systematic errors in SP stats:
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Effect of Training-set Size

Training-set is of reasonable size for reasonable accuracy:
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Conclusion

Summary

• Statistical learning increasingly needed as data and its management
become increasingly complicated

• COMET can accurately model XNAV cost
• COMET cost model is fast to construct and adaptable to changing

environment
• A promising approach for costing complex query operators

Future Work
• Automatic identification of features
• Smarter generation of training queries
• Extensions to handle I/O costs, multi-user environments

(will identify appropriate features)
• Incorporation of selectivity-estimation technology
• Improve dynamic model maintenance

(incremental model building)
• Apply to other operators (XML, relational, text)
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