
Statistical Learning Techniques for
Costing XML Queries

Ning Zhang1 Peter J. Haas2 Vanja Josifovski2

Guy M. Lohman2 Chun Zhang2

1University of Waterloo

2IBM Almaden Research Center

VLDB 2005

1Ning Zhang

COMET: A New Cost-Modeling Approach

Catalog Statistics

Production
query

Identify Features

cache misses
Selectivity …

Estimate feature values

RUNSTATS

Collect Statistics

Develop analytical cost model

Apply cost function

Cost estimate

cost

CPU_speed)hash_cost(*
tyselectivicost

ColCard/||
yselectivit

R

2Ning Zhang

COMET: A New Cost-Modeling Approach

Catalog Statistics

Production
query

Identify Features

cache misses
Selectivity …

Estimate feature values

RUNSTATS

Collect Statistics

Develop analytical cost model

Apply cost function

Cost estimate

Identify Features

cache misses
Selectivity …

Estimate feature values

RUNSTATS

Collect Statistics

Apply cost function

Cost estimate

Learn cost model

Training
queries

)̂,,̂(1 nvvfcost

f

ColCard/||
yselectivit

R

cost

CPU_speed)hash_cost(*
tyselectivicost

ColCard/||
yselectivit

R

2Ning Zhang

Advantages of COMET Approach

Can handle complex operators using statistical learning

• Operators not decomposable into simple scans, joins, etc.

• Operators with highly non-sequential data access patterns

• Used successfully to cost UDFs, remote DB systems
(Lee et al. 2004, He et al. 2004, Rahal et al. 2004)

Simplifies cost-model development

• Reduces need for painstaking code analysis used in analytical
modeling

• Easier to incorporate new operators into optimizer

• Helps avoid brittle simplifying assumptions

• Avoids need to explicitly incorporate HW parameters

3Ning Zhang

Advantages of COMET Approach

Can handle complex operators using statistical learning

• Operators not decomposable into simple scans, joins, etc.

• Operators with highly non-sequential data access patterns

• Used successfully to cost UDFs, remote DB systems
(Lee et al. 2004, He et al. 2004, Rahal et al. 2004)

Simplifies cost-model development

• Reduces need for painstaking code analysis used in analytical
modeling

• Easier to incorporate new operators into optimizer

• Helps avoid brittle simplifying assumptions

• Avoids need to explicitly incorporate HW parameters

3Ning Zhang

COMET Permits Optimizer to be Self Tuning

Optimizer

Execution Engine

Operator

COMET

execution
plan

ca
lls

training
data

co
st

m
od

el

training queries
user queries

4Ning Zhang

Our Motivation: XML Query Optimization

Query q1:

<bib>

{

for $b in

doc("bib.xml")/bib/book

where

$b/authors//last = "Stevens"

and $b/@year > 1991

return

<book>

{ $b/title }

</book>

}

</bib>

Need to cost candidate execution
plans:

1. Navigational plan:

• navigate the bib.xml tree
• check pred’s for each book

2. Value-based index plan:

• find elements with “Stevens” or
“1991” using value-based index

• navigate up to book and check
remaining conditions

3. Structure-based index plan:

• look up matching tree structures
using a path/twig index

• check pred’s for each book

5Ning Zhang

Today’s Talk: Application of COMET
Approach to an XML Operator

XML operator to be modeled:

• XNAV operator (complex and dynamic, so hard to model)

• Adaptation of TurboXPath (Josifovski et al. 2005)

• Will model CPU costs (nontrivial component of overall cost)
• prior work has focused primarily on cardinality estimation

Nontrivial steps in applying COMET methodology:

Step 1: Identify XNAV features

Step 2: Determine statistics for estimating feature values

Step 3: Determine formulas for feature-value estimation

Step 4: Identify appropriate statistical learning algorithm
for fitting cost model

6Ning Zhang

Today’s Talk: Application of COMET
Approach to an XML Operator

XML operator to be modeled:

• XNAV operator (complex and dynamic, so hard to model)

• Adaptation of TurboXPath (Josifovski et al. 2005)

• Will model CPU costs (nontrivial component of overall cost)
• prior work has focused primarily on cardinality estimation

Nontrivial steps in applying COMET methodology:

Step 1: Identify XNAV features

Step 2: Determine statistics for estimating feature values

Step 3: Determine formulas for feature-value estimation

Step 4: Identify appropriate statistical learning algorithm
for fitting cost model

6Ning Zhang

XNAV: A Complex XML Navigational
Operator

What is XNAV?

• XNAV XPath(XMLTrees) −→ list of matching XML nodes

• XNAV is complex:
• equivalent to non-decomposable N-way join
• data stored as paged tree

High-level description of XNAV algorithm:

• XNAV traverses the XML tree in a single pass, with possible
skipping of nodes

• XNAV maintains internal states and buffers for matching the
query tree during the traversal

7Ning Zhang

Step 1: Identifying XNAV Features

Basis for feature identification

• Knowledge of XNAV algorithm (involves human interaction)

• Trial and error experimentation (with cross-validation)

Learning algorithm automatically removes redundant features

• Just need to find “at least enough” features

Some features for XNAV:

• #visits : # of XML nodes actually traversed

• #p requests : # of pages read

• . . . more features given in the paper

8Ning Zhang

Step 1: Identifying XNAV Features

Basis for feature identification

• Knowledge of XNAV algorithm (involves human interaction)

• Trial and error experimentation (with cross-validation)

Learning algorithm automatically removes redundant features

• Just need to find “at least enough” features

Some features for XNAV:

• #visits : # of XML nodes actually traversed

• #p requests : # of pages read

• . . . more features given in the paper

8Ning Zhang

Step 1: Identifying XNAV Features

Basis for feature identification

• Knowledge of XNAV algorithm (involves human interaction)

• Trial and error experimentation (with cross-validation)

Learning algorithm automatically removes redundant features

• Just need to find “at least enough” features

Some features for XNAV:

• #visits : # of XML nodes actually traversed

• #p requests : # of pages read

• . . . more features given in the paper

8Ning Zhang

Step 2: Novel Statistics for Estimating
Features

How to choose statistics ?

• “As simple as possible, but not simpler”
• Easy to collect and maintain, less error-prone

• Need to balance space and time requirements
• Storing redundant stats can speed up feature-value estimation

Example — Simple Path (SP) Statistics

• cardinality: |p|, where p is a “simple” path (no branching, no
wildcards, etc.)

• children and descendant cardinality: |p/∗| and |p//∗|
• page cardinality: ‖p‖
• . . . more in the paper

9Ning Zhang

Step 2: Novel Statistics for Estimating
Features

How to choose statistics ?

• “As simple as possible, but not simpler”
• Easy to collect and maintain, less error-prone

• Need to balance space and time requirements
• Storing redundant stats can speed up feature-value estimation

Example — Simple Path (SP) Statistics

• cardinality: |p|, where p is a “simple” path (no branching, no
wildcards, etc.)

• children and descendant cardinality: |p/∗| and |p//∗|
• page cardinality: ‖p‖
• . . . more in the paper

9Ning Zhang

Step 3: Feature-Value Estimation Using Stats

Can estimate all needed feature values using SP stats

• Analysis required, but much easier than analyzing entire
XNAV operator

• See paper for detailed formulas (algorithms)

• Formulas tend to overestimate feature values,
but COMET automatically compensates for bias (see below)

Example

• #visits =
∑

p∈S |p/∗|+
∑

q∈C |q//∗|

where S is a set of root-to-non-leaf simple path in the query
tree whose next step is connected by a /-axis;
C is a set of root-to-non-leaf simple path in the query tree
whose next step is connected by a //-axis

10Ning Zhang

Step 3: Feature-Value Estimation Using Stats

Can estimate all needed feature values using SP stats

• Analysis required, but much easier than analyzing entire
XNAV operator

• See paper for detailed formulas (algorithms)

• Formulas tend to overestimate feature values,
but COMET automatically compensates for bias (see below)

Example

• #visits =
∑

p∈S |p/∗|+
∑

q∈C |q//∗|

where S is a set of root-to-non-leaf simple path in the query
tree whose next step is connected by a /-axis;
C is a set of root-to-non-leaf simple path in the query tree
whose next step is connected by a //-axis

10Ning Zhang

Step 4: Fitting The Cost Model

Use Transform Regression (Pednault 2004)

• “Linear regression on steroids”

• Handles discontinuities and nonlinearities in cost function

• Fully automated (no statistician needed) and highly efficient

• Seamlessly handles both numerical and categorical features

Uses 1-level linear regression tree to “linearize” each feature

vj

cost

w = h vj j()

LRT-based partitions

wj

cost
45o

11Ning Zhang

Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang

Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang

Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang

Step 4: Transform Regression—Continued

Uses multivariate linear regression on linearized features

• Greedy forward stepwise-regression

• Handles redundant features (multicollinearity)

Uses “gradient boosting” to capture feature interactions

• First-order model: models the cost

• ith-order model: models the error in (i − 1)st-order model

Uses other tricks to speed up convergence and improve the fit

• See paper for details

Model learned from estimated feature values

• So COMET is robust to systematic bias in feature-value estimation

12Ning Zhang

Experimental Study

Training data and queries:

• Synthetic and real-world data sets
(Including TPC-H, XMark, NASA, and XBench)

• Randomly generated queries:
• Simple linear paths (e.g., /a/b/c)
• Branching paths (e.g., /a[b][c]/d)
• Complex paths (e.g., /a[.//b][c//d]//e)

Model evaluation:

• Use 5-fold cross-validation

• Plot predicted vs. actual costs

• Calculate accuracy measurements

13Ning Zhang

Experimental Study

Training data and queries:

• Synthetic and real-world data sets
(Including TPC-H, XMark, NASA, and XBench)

• Randomly generated queries:
• Simple linear paths (e.g., /a/b/c)
• Branching paths (e.g., /a[b][c]/d)
• Complex paths (e.g., /a[.//b][c//d]//e)

Model evaluation:

• Use 5-fold cross-validation

• Plot predicted vs. actual costs

• Calculate accuracy measurements

13Ning Zhang

Evaluating COMET’s Accuracy

Error metrics:

• NRMSE (Normalized Root-Mean-Squared Error):
measures the average (relative) prediction error

NRMSE =
1

c̄

(
1

n

n∑
i=1

(
ci − ĉi

)2
)1/2

where ci and ĉi are the actual and estimated costs for ith
query, and c̄ = average(c1, c2, . . . , cn)

• Other metrics discussed in paper: R2, OPD, MUP

14Ning Zhang

Accuracy of COMET

COMET does decent-to-excellent job in most cases:

0 1000 3000 5000

0
10

00
30

00
50

00
70

00

Predicted vs. Actual Values

Predicted (msec.)

A
ct

ua
l (

m
se

c.
)

NRMSE = 0.084
R−sq = 0.997
OPD = 0.972
MUP = 1000.110 (14.6%)

0 20000 40000 60000 80000
0

20
00

0
40

00
0

60
00

0

Predicted vs. Actual Values

Predicted (msec.)

A
ct

ua
l (

m
se

c.
)

NRMSE = 0.099
R−sq = 0.980
OPD = 0.948
MUP = 6428.379 (14.3%)

(a) XMark (Mixed Queries) (b) TPC-H (Mixed Queries)

Add query type (simple, branching, complex) as feature?

15Ning Zhang

Effect of Errors in SP Statistics

COMET is not sensitive to systematic errors in SP stats:

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5

C
O

M
E

T
 a

cc
ur

ac
y

m
et

ric

Bias factor in SP stats

Sensitivity to random errors in SP-stats (NASA)

NRMSE
R-sq
OPD

16Ning Zhang

Effect of Training-set Size

Training-set is of reasonable size for reasonable accuracy:

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●●
●
●●●

●

●
●
●

●

●

●
●●

●●

●●

●●●●
●
●

●
●

●

●

●
●
●

●

●
●

●
●●

●

●

●

●●

●

●

●

●●●

●
●
●
●
●

●

●

●
●
●
●●●

●●

●
●

●●
●

●
●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●
●●

●●
●
●●

0 1000 2000 3000

0.
1

0.
2

0.
3

0.
4

0.
5

Number of training queries

N
R

M
S

E

Model build time for
1000 training queries:
< 1 second

17Ning Zhang

Conclusion

Summary

• Statistical learning increasingly needed as data and its management
become increasingly complicated

• COMET can accurately model XNAV cost
• COMET cost model is fast to construct and adaptable to changing

environment
• A promising approach for costing complex query operators

Future Work
• Automatic identification of features
• Smarter generation of training queries
• Extensions to handle I/O costs, multi-user environments

(will identify appropriate features)
• Incorporation of selectivity-estimation technology
• Improve dynamic model maintenance

(incremental model building)
• Apply to other operators (XML, relational, text)

18Ning Zhang

Conclusion

Summary

• Statistical learning increasingly needed as data and its management
become increasingly complicated

• COMET can accurately model XNAV cost
• COMET cost model is fast to construct and adaptable to changing

environment
• A promising approach for costing complex query operators

Future Work
• Automatic identification of features
• Smarter generation of training queries
• Extensions to handle I/O costs, multi-user environments

(will identify appropriate features)
• Incorporation of selectivity-estimation technology
• Improve dynamic model maintenance

(incremental model building)
• Apply to other operators (XML, relational, text)

18Ning Zhang

	Introduction
	The XNAV operator
	Feature Estimation
	Transform Regression
	Experiments
	Conclusion and Future Work

