
Checking for k-Anonymity
Violation by Views

X. Sean Wang
The University of Vermont

Co-authors:
Chao Yao, Sushil Jajodia
George Mason University

Outline

Motivation
Problem definition
Complexity of the general problem
Polynomial cases
Conservative checking methods
Conclusion

Anonymity set and
k-anonymity

K-anonymity. Two versions:
Property k-anonymity: Given a set of k distinct
properties, and a particular person. The adversary knows
that the person has one of the k properties, but he does
not know exactly which property the person has.
Person k-anonymity: Given a set of k distinct persons,
and a particular property. The adversary knows that one
of the k persons has the property, but she can’t tell
among the k persons who has that property.

Implicit assumption: probability of a particular association
(between person and property) is rather small.

Prior work
Samarati and Sweeney, PODS 1998; Meyerson and Williams
PODS 2005, and others.
Problem studied: Given a private/base table (one tuple per
person), how to “generalize” or “obfuscate” values so that
adversary can only tell that each published tuple “originates”
from at least k tuples in the private table.
Example (Person 2-anonymity):

SSN Problem

111-11-1111 P11

111-11-1112 P21

111-11-1123 P31

111-11-1124 P32

SSN Problem

111-11-111* P11

111-11-111* P21

111-11-112* P31

111-11-112* P32

Property 2-anonymity

Not handled by prior work (although
techniques do apply).
Hybrid solution:

SSN Problem

111-11-1111 P11

111-11-1112 P21

111-11-1123 P31

111-11-1124 P32

SSN Problem

111-11-1111 P?1

111-11-1112 P?1

111-11-112* P31

111-11-112* P32

Publishing with views

110K

Private table P1

v1 and v2 together: Violation of property 2-anonymity!

A little more complicated
example

110K

Private table P1

Functional Dependency:
Name Problem

110K

Private table P2

Prior work on views

Miklau and Suciu 2004; Dalvi, Miklau, and
Suciu 2005; Deutsch and Papakonstantinou
2005; Dalvi and Suciu 2005 VLDB (“to some
extent”).
Probability models
Not at the tuple level

Outline

Motivation
Problem definition
Complexity of the general problem
Polynomial cases
Conservative checking methods
Conclusion

Assumptions

Provided to the public
View set v: a set of materialized views
View definitions (i.e., the queries)

In addition, the “public” knows the constraints
(FDs) on the private (base) table.
Notation:
Iv is the set of all possible base/private table

instances, each yielding (exactly) the given view
set.

Assumptions (II)

Two (fixed) attributes: ID and P (Property) on
the base/private table
The secret (to be protected) is the projection:

Looking for property k-anonymity

∏= PID
IIS

,
)()(

Definitions
(Secret) association:

A binary tuple on (ID, P)

An association cover A wrt a view set v is:
a set of associations,
all have the same ID value, and
for each I in Iv, S(I) ∩ A ≠ ∅.

Intuition: If there exists A with |A|<2, then there is
“information leak”.

What if |A|<k?

Association cover example

110K
Private table P1

One association cover: {(Bill, HIV)}
Another: {(George, Cold), (George, Obesity)}

K-anonymity

Given a view set v and integer k ≥ 2, we say v
violates k-anonymity if there exists an
association cover wrt v of size less than k.

Outline

Motivation
Problem definition
Complexity of the general problem
Polynomial cases
Conservative checking methods
Conclusion

Computationally hard

With FD present, it is -complete to test if a
view set violates k-anonymity
Data complexity

Complexity is in terms of the number of tuples

∑p

2

Outline

Motivation
Problem definition
Complexity of the general problem
Polynomial cases
Conservative checking methods
Conclusion

Polynomial case

No FDs
Selection and projection queries

Conjunctive selection conditions

Basic definitions

Tuple cover for a view set v:
A set of tuples T such that for each I in Iv, I ∩ T ≠ ∅
Amin: the set of all minimal association covers
Tmin: the set of all minimal tuple covers

Basic mechanism
Given a view set v,

Amin⊆{ΠID,P (T)|T in Tmin}

Why useful?
if |A|<k for A in Amin, then |ΠID,P (T)| < k for a T in Tmin

if |ΠID,P (T)| < k for T in Tmin, then |A|<k for an A in Amin.
• ΠID,P (T) is an association cover by definition
• minimality of Amin

Basic mechanism

A projection fact (PF) is a tuple in a view
(qi, ri) in the view set v
Tuple Set for a PF p in a view (qi, ri) in v is
the set of all the tuples t in Iv such that qi(t) =
p.
u(p): the tuple set for PF p

Basic mechanism

Tmin⊆ {u(p) | p is a PF}

One more… we are there
Given a tuple p in a view (qi, ri) (of a view set v with
n views)
u(p) can be computed as the intersection of the
following n sets

All the tuples t that returns p with qi
All the tuples that returns a FP in the first remaining view,
and tuples that do not satisfy the selection condition of
that first remaining view,
…
All the tuples that returns a FP in the last remaining view,
and tuples that do not satisfy the selection condition of
that last remaining view.

Going back to an example

Let p=(George, Manager), then u(p) consists of all the tuples
that project to p, and project to a tuple in v2 (note there is no
selection condition).
Therefore, u(p) ={ (George, Manager, Cold),

(George, Manager, Obesity) }

Going back to example 2

Let p=(Obesity) in the right view, then u(p) consists of all the tuples
that satisfy:

• 80K < salary < 105K,
• name=John or name=George (due to middle view; note selection

condition must be satisfied).
• name = John or name=Bill (due to the left view)

Hence: u(p)={(John, s, Obesity)} where 80K<s<100K.

The algorithm
Represent tuple sets for each projection
fact as a formula (from selection
condition, or it’s complement)
Perform all the intersections as indicated
earlier
Count the number of possible tuples in
each intersection.
Complexity: basically |v|n, where n is the
number of views and |v| is the number of
tuples in each view (data complexity).

With FDs
Some special cases based on observations on FDs
Consider two views in the view set

If an FD does not contain attributes from both views,
then we can safely ignore this FD.
If the two view do not have common attributes and there
is a single FD ID P, then checking is easy.
If the single FD is not ID P, checking is NP-complete.

Outline

Motivation
Problem definition
Complexity of the general problem
Polynomial cases
Conservative checking methods
Conclusion

Conservative algorithms

Let Sa(I) =
b1 and b2 are symmetric for a: Given (a, b1)
and (a, b2) in IDD × PD, if exactly one of the
two is in Sa(I), where I is in Iv, then there is I’
in Iv such that Sa(I’) differs from Sa(I) only in
having the other association (among (a, b1)
and (a, b2)).

))((, IPIDaID Π=σ

K-anonymity

Given a view set v and a value a in IDD , v
does not violate k-anonymity for a, if there
exists I in Iv, such that the following condition
is satisfied: For each association (a, b) in S(I),
there exists a set of k−1 distinct values bi
such that bi is symmetric to b for a and (a, bi)
is not in S(I).

Going back to example

Given ID value John, Cold and Obesity are symmetric. Then
for John, 2-anonymity is NOT violated.

Conclusion & future work
Introduced k-anonymity violation for views
Showed computational hardness of the problem
Gave a polynomial algorithm for a no-FD case
Provided a general approach for conservative
algorithms
Future work

Value obfuscation with views?
Experiments?
Duplicate preserving projection?
More complex views?

	Checking for k-Anonymity Violation by Views
	Outline
	Anonymity set andk-anonymity
	Prior work
	Property 2-anonymity
	Publishing with views
	A little more complicated example
	Functional Dependency: NameProblem
	Prior work on views
	Outline
	Assumptions
	Assumptions (II)
	Definitions
	Association cover example
	K-anonymity
	Outline
	Computationally hard
	Outline
	Polynomial case
	Basic definitions
	Basic mechanism
	Basic mechanism
	Basic mechanism
	One more… we are there
	Going back to an example
	Going back to example 2
	The algorithm
	With FDs
	Outline
	Conservative algorithms
	K-anonymity
	Going back to example
	Conclusion & future work

