Checking for k-Anonymity Violation by Views

X. Sean Wang The University of Vermont

Co-authors:

Chao Yao, Sushil Jajodia George Mason University

Outline

- Motivation
- Problem definition
- Complexity of the general problem
- Polynomial cases
- Conservative checking methods
- Conclusion

Anonymity set and k-anonymity

• K-anonymity. Two versions:

- Property k-anonymity: Given a set of k distinct properties, and a particular person. The adversary knows that the person has one of the k properties, but he does not know exactly which property the person has.
- Person k-anonymity: Given a set of k distinct persons, and a particular *property*. The adversary knows that one of the k persons has the *property*, but she can't tell among the k persons who has that *property*.
- Implicit assumption: probability of a particular association (between person and property) is rather small.

Prior work

- Samarati and Sweeney, PODS 1998; Meyerson and Williams PODS 2005, and others.
- Problem studied: Given a *private/base table* (one tuple per person), how to "generalize" or "obfuscate" values so that adversary can only tell that each published tuple "originates" from at least k tuples in the private table.
- Example (Person 2-anonymity):

SSN	Problem	SSN	Problem
111-11-1111	P11	111-11-111*	P11
111-11-1112	P21	111-11-111*	P21
111-11-1123	P31	111-11-112*	P31
111-11-1124	P32	111-11-112*	P32

Property 2-anonymity

- Not handled by prior work (although techniques do apply).
- Hybrid solution:

SSN	Problem	SSN	Proble
111-11-1111	P11	111-11-1111	P?1
111-11-1112	P21	111-11-1112	P?1
111-11-1123	P31	111-11-112*	P31
111-11-1124	P32	111-11-112*	P32

Publishing with views

Name	Job	Salary	Problem
George	Manager	70K	Cold
John	Manager	90K	Obesity
Bill	Lawyer	110K	HIV

Private table P1

$v_1 = \Pi_{Nat}$	$_{me,Job}(P_1)$	$v_2 = \Pi_{Job,P}$	$P_{roblem}(P_1)$
Name	Job	Job	Problem
George	Manager	Manager	Cold
John	Manager	Manager	Obesity
Bill	Lawyer	Lawyer	HIV

v1 and v2 together: Violation of property 2-anonymity!

A little more complicated example

Name	Job	Salary	Problem
George	Manager	$70\mathrm{K}$	Cold
John	Manager	90K	Obesity
Bill	Lawyer	110K	HIV

Private table P1

 $\Pi_{Name}\sigma_{Salary>80K}(P_1) \qquad \Pi_{Problem}\sigma_{80K<Salary<100K}(P_1)$

Problem Obesity

 $\Pi_{Name}\sigma_{Salary<105K}(P_1)$

Functional Dependency: Name→Problem

Name	Problem	Charge
George	Cold	$20\mathrm{K}$
John	Obesity	$20\mathrm{K}$
John	Obesity	30K
Bill	HIV	30K

Private table P2

$\Pi_{Name,Charge}(P_2)$	

 $\Pi_{Charge,Problem}(P_2)$

Name	Charge
George	$20\mathrm{K}$
John	$20\mathrm{K}$
John	30K
Bill	30K

e nar ge,1 i eetent (=)		
Charge	Problem	
20K	Cold	
20K	Obesity	
30K	Obesity	
30K	HIV	

Prior work on views

- Miklau and Suciu 2004; Dalvi, Miklau, and Suciu 2005; Deutsch and Papakonstantinou 2005; Dalvi and Suciu 2005 VLDB ("to some extent").
- Probability models
- *Not* at the tuple level

Outline

- Motivation
- Problem definition
- Complexity of the general problem
- Polynomial cases
- Conservative checking methods
- Conclusion

Assumptions

- Provided to the public
 - View set *v*: a set of materialized views
 - View definitions (i.e., the queries)
- In addition, the "public" knows the constraints (FDs) on the private (base) table.

Notation:

 I^{v} is the set of all possible base/private table instances, each yielding (exactly) the given view set.

Assumptions (II)

- Two (fixed) attributes: ID and P (Property) on the base/private table
- The secret (to be protected) is the projection: $S(I) = \prod_{ID,P} (I)$
- Looking for property k-anonymity

Definitions

- (Secret) association:
 - A binary tuple on *(ID, P)*
- An *association cover* A wrt a view set v is:
 - a set of associations,
 - all have the same ID value, and
 - for each I in I^{v} , $S(I) \cap A \neq \emptyset$.
- Intuition: If there exists A with |A| < 2, then there is "information leak".
 - What if |A| < k?

Association cover example

	Name	e Job	Salary	r I	Problem
	George	e Manage	r 70K		Cold
	John	Manage	r 90K		Desity
	Bill	Lawyer	110K	ŀ	HIV
	Private table P1				
$v_1 = \Pi_{Name, Job}(P_1)$ $v_2 = \Pi_{Job, Problem}(P_1)$					
I	Name	Job	Job		Problem
(George	Manager	Manag	ger	Cold

Manager

Lawyer

John

Bill

One association cover: { (Bill, HIV) } Another: { (George, Cold), (George, Obesity) }

Manager

Lawyer

Obesity

HIV

K-anonymity

Given a view set *v* and integer $k \ge 2$, we say *v* violates *k*-anonymity if there exists an association cover wrt *v* of size less than *k*.

Outline

- Motivation
- Problem definition
- Complexity of the general problem
- Polynomial cases
- Conservative checking methods
- Conclusion

Computationally hard

- With FD present, it is \sum_{2}^{p} -complete to test if a view set violates k-anonymity
- Data complexity
 - Complexity is in terms of the number of tuples

Outline

- Motivation
- Problem definition
- Complexity of the general problem
- Polynomial cases
- Conservative checking methods
- Conclusion

Polynomial case

- No FDs
- Selection and projection queriesConjunctive selection conditions

Basic definitions

- *Tuple cover* for a view set *v*:
 - A set of tuples *T* such that for each *I* in *I*^v, $I \cap T \neq \emptyset$
- A_{min} : the set of all minimal association covers
- T_{min} : the set of all minimal tuple covers

Basic mechanism

Given a view set v, $A_{min} \subseteq \{\Pi_{ID,P}(T) | T \text{ in } T_{min}\}$

Why useful?

- if $|A| \le k$ for A in A_{min} , then $|\Pi_{ID,P}(T)| \le k$ for a T in T_{min}
- if $|\Pi_{ID,P}(T)| < k$ for T in T_{min} , then |A| < k for an A in A_{min} .
 - $\Pi_{ID,P}(T)$ is an association cover by definition
 - minimality of A_{min}

Basic mechanism

- A projection fact (PF) is a tuple in a view (q_i, r_i) in the view set v
- *Tuple Set* for a PF p in a view (q_i, r_i) in v is the set of all the tuples t in I^v such that $q_i(t) = p$.
- u(p): the tuple set for PF p

Basic mechanism

$T_{min} \subseteq \{u(p) \mid p \text{ is a } PF\}$

One more... we are there

- Given a tuple p in a view (q_i, r_i) (of a view set v with n views)
- u(p) can be computed as the intersection of the following n sets
 - All the tuples t that returns p with q_i
 - All the tuples that returns a FP in the first remaining view, and tuples that do not satisfy the selection condition of that first remaining view,
 - • •
 - All the tuples that returns a FP in the last remaining view, and tuples that do not satisfy the selection condition of that last remaining view.

Going back to an example

$v_1 = \Pi_{Name, Job}(P_1)$		_	$v_2 = \Pi_{Job,Problem}(P_1)$		
Name	Job		Job	Problem	
George	Manager		Manager	Cold	
John	Manager		Manager	Obesity	
Bill	Lawyer]	Lawyer	HIV	

Let p=(George, Manager), then u(p) consists of all the tuples that project to p, and project to a tuple in v_2 (note there is no selection condition). Therefore, u(p) ={ (George, Manager, Cold),

(George, Manager, Obesity) }

Going back to example 2

 $\Pi_{Name}\sigma_{Salary>80K}(P_1)$

 $\Pi_{Problem}\sigma_{80K<Salary<100K}(P_1)$

Name
John
Bill

 $\Pi_{Name}\sigma_{Salary<105K}(P_1)$

Let p=(Obesity) in the right view, then u(p) consists of all the tuples that satisfy:

- 80K < salary < 105K,
- name=John or name=George (due to middle view; note selection condition must be satisfied).

• name = John or name=Bill (due to the left view)

Hence: $u(p) = \{(John, s, Obesity)\}$ where 80K < s < 100K.

The algorithm

- Represent tuple sets for each projection fact as a formula (from selection condition, or it's complement)
- Perform all the intersections as indicated earlier
- Count the number of possible tuples in each intersection.
- Complexity: basically /v/n, where n is the number of views and /v/ is the number of tuples in each view (data complexity).

With FDs

- Some special cases based on observations on FDs
- Consider two views in the view set
 - If an FD does not contain attributes from *both* views, then we can safely ignore this FD.
 - If the two view do not have common attributes and there is a single FD *ID*→*P*, then checking is easy.
 - If the single FD is not $ID \rightarrow P$, checking is NP-complete.

Outline

- Motivation
- Problem definition
- Complexity of the general problem
- Polynomial cases
- **Conservative checking methods**
- Conclusion

Conservative algorithms

• Let
$$S_a(I) = \sigma_{ID=a}(\Pi_{ID,P}(I))$$

• b_1 and b_2 are symmetric for a: Given (a, b_1) and (a, b_2) in $ID^D \times P^D$, if exactly one of the two is in $S_a(I)$, where I is in I^v , then there is I'in I^v such that $S_a(I')$ differs from $S_a(I)$ only in having the other association (among (a, b_1) and (a, b_2)).

K-anonymity

Given a view set v and a value a in ID^D, v does not violate k-anonymity for a, if there exists I in I^v, such that the following condition is satisfied: For each association (a, b) in S(I), there exists a set of k−1 distinct values b_i such that b_i is symmetric to b for a and (a, b_i) is not in S(I).

Going back to example

$v_1 = \Pi_{Name, Job}(P_1)$		_	$v_2 = \Pi_{Job,Problem}(P_1)$	
Name	Job		Job	Problem
George	Manager		Manager	Cold
John	Manager		Manager	Obesity
Bill	Lawyer		Lawyer	HIV

Given ID value John, Cold and Obesity are symmetric. Then for John, 2-anonymity is NOT violated.

Conclusion & future work

- Introduced k-anonymity violation for views
- Showed computational hardness of the problem
- Gave a polynomial algorithm for a no-FD case
- Provided a general approach for conservative algorithms
- Future work
 - Value obfuscation with views?
 - Experiments?
 - Duplicate preserving projection?
 - More complex views?