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Introduction

• An important method for privacy preserving data mining is

that of anonymization.

• In anonymization, a record is released only if it is indistin-

guishable from a pre-defined number of other entities in the

data.

• We examine the anonymization problem from the perspec-

tive of inference attacks over all possible combinations of

attributes.



Public Information

• In k-anonymity, the premise is that public information can be

combined with the attribute values of anonymized records in

order to identify the identities of records.

• Such attributes which are matched with public records are

referred to as quasi-identifiers.

• For example, a commercial database containing birthdates,

gender and zip-codes can be matched with voter registration

lists in order to identify the individuals precisely.



Example

• Consider the following 2-dimensional records on (Age,

Salary) = (26,94000) and (29,97000).

• Then, if age is generalized to the range 25-30, and if salary is

generalized to the range 90000-100000, then the two records

cannot be distinguished from one another.

• In k-anonymity, we would like to provide the guarantee that

each record cannot be distinguished from at least (k − 1)

other records.

• In such a case, even public information cannot be used to

make inferences.



The k-anonymity method

• The method of k-anonymity typically uses the techniques of

generalization and suppression.

• Individual attribute values and records can be suppressed.

• Attributes can be partially generalized to a range (retains

more information than complete suppression).

• The generalization and suppression process is performed so

as to create at least k indistinguishable records.



The condensation method

• An alternative to generalization and suppression methods is

the condensation technique.

• In the condensation method, clustering techniques are used

in order to construct indistinguishable groups of k records.

• The statistical characteristics of these clusters are used to

generate pseudo-data which is used for data mining purposes.

• There are some advantages in the use of pseudo-data, since

it does not require any modification of the underlying data

representation as in a generalization approach.



High Dimensional Case

• Typical anonymization approaches assume that only a small

number of fields which are available from public data are used

as quasi-identifiers.

• These methods typically use generalizations on domain-

specific hierarchies of these small number of fields.

• In many practical applications, large numbers of attributes

may be known to particular groups of individuals.

• Larger number of attributes make the problem more chal-

lenging for the privacy preservation process.



Challenges

• The problem of finding optimal k-anonymization is NP-hard.

• This computational problem is however secondary, if the data

cannot be anonymized effectively.

• We show that in high dimensionality, it becomes more dif-

ficult to perform the generalizations on partial ranges in a

meaningful way.



Anonymization and Locality

• All anonymization techniques depend upon some notion of

spatial locality in order to perform the privacy preservation.

• Generalization based locality is defined in terms of ranges of

attributes.

• Locality is also defined in the form of a distance function in

condensation approaches.

• Therefore, the behavior of the anonymization approach will

depend upon the behavior of the distance function with in-

creasing dimensionality.



Locality Behavior in High Dimensionality

• It has been argued that under certain reasonable assumptions

on the data distribution, the distances of the nearest and

farthest neighbors to a given target in high dimensional space

is almost the same for a variety of data distributions and

distance functions (Beyer et al).

• In such a case, the concept of spatial locality becomes ill

defined.

• Privacy preservation by anonymization becomes impractical

in very high dimensional cases, since it leads to an unaccept-

able level of information loss.



Notations and Definitions

Notation Definition

d Dimensionality of the data space
N Number of data points
F 1-dimensional data

distribution in (0,1)
Xd Data point from Fd with

each coord. drawn from F
distk

d(x, y) Distance between (x1, . . . xd)
and (y1, . . . yd) using Lk metric

=
∑d

i=1[(x
i
1 − xi

2)
k]1/k

‖ · ‖k Distance of a vector
to the origin (0, . . . ,0) using
the function distk

d(·, ·)
E[X], var[X] Expected value and

variance of a random variable X
Yd →p c A sequence of vectors

Y1, . . . , Yd converges in probability
to a constant vector c if:
∀ǫ > 0 limd→∞P [distd(Yd, c) ≤ ǫ] = 1



Range based generalization

• In range based generalization, we generalize the attribute

values to a range such that at least k records can be found

in the generalized grid cell.

• In the high dimensional case, most grid cells are empty.

• But what about the non-empty grid cells?

• How is the data distributed among the non-empty grid cells?



Illustration
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Attribute Generalization

• Let us consider the axis-parallel generalization approach, in

which individual attribute values are replaced by a randomly

chosen interval from which they are drawn.

• In order to analyze the behavior of anonymization approaches

with increasing dimensionality, we consider the case of data

in which individual dimensions are independent and identically

distributed.

• The resulting bounds provide insight into the behavior of the

anonymization process with increasing implicit dimensional-

ity.



Assumption

• For a data point Xd to maintain k-anonymity, its bounding

box must contain at least (k − 1) other points.

• First, we will consider the case when the generalization of

each point uses a maximum fraction f of the data points

along each of the d partially specified dimensions.

• It is interesting to compute the conditional probability of k-

anonymity in a randomly chosen grid cell, given that it is

non-empty.

• Provides intuition into the probability of k-anonymity in a

multi-dimensional partitioning.



Result (Lemma 1)

• Let D be a set of N points drawn from the d-dimensional

distribution Fd in which individual dimensions are indepen-

dently distributed. Consider a randomly chosen grid cell,

such that each partially masked dimension contains a frac-

tion f of the total data points in the specified range. Then,

the probability P q of exactly q points in the cell is given by
(

N
q

)

· fq·d · (1 − fd)(N−q).

• Simple binomial distribution with parameter fd.



Result (Lemma 2)

• Let Bk be the event that the set of partially masked ranges

contains at least k data points. Then the following result for

the conditional probability P(Bk|B1) holds true:

P(Bk|B1) =

∑N
q=k

(

N
q

)

· fq·d · (1 − fd)(N−q)

∑N
q=1

(

N
q

)

· fq·d · (1 − fd)(N−q)
(1)

• P(Bk|B1) = P(Bk ∩ B1)/P(B1) = P(Bk)/P(B1)

• Observation: P(Bk|B1) ≤ P(B2|B1)

• Observation: P(B2|B1) = 1−N ·fd·(1−fd)(N−1)−(1−fd)N

1−(1−fd)N



Result

• Substitute x = fd and use L’Hopital’s rule

P(B2|B1) =

1 − limx→0
N ·(1−x)(N−1)−N ·x·(1−x)(N−2)

N ·(1−x)(N−1)

• Expression tends to zero as d → ∞

• The limiting probability for achieving k-anonymity in a non-

empty set of masked ranges containing a fraction f < 1 of

the data points is zero. In other words, we have:

limd→∞P(Bk|B1) = 0 (2)



Probability of 2-anonymity with increasing dimensionality

(f=0.5)
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The Condensation Approach

• Previous analysis is for range generalization.

• Methods such as condensation use multi-group cluster for-

mation of the records.

• In the following, we will find a lower bound on the information

loss for achieving 2-anonymity using any kind of optimized

group formation.



Information Loss

• We assume that a set S of k data points are merged together

in one group for the purpose of condensation.

• Let M(S) be the maximum euclidian distance between any

pair of data points in this group from database D.

• We note that larger values of M(S) represent a greater loss

of information, since the points within a group cannot be

distinguished for the purposes of data mining.

• We define the relative condensation loss L(S) for that group

of k entities as follows:

L(S) = M(S)/M(D) (3)



Observations

• A value of L(S) which is close to one implies that most of

the distinguishing information is lost as a result of the privacy

preservation process.

• In the following analysis, we will show how the value of L(S)

is affected by the dimensionality d.



Assumptions

• We first analyze the behavior of a uniform distribution of

N = 3 data points, and deal with the particular case of 2-

anonymity.

• For ease in analysis, we will assume that one of these 3 points

is the origin Od, and the remaining two points are Ad and Bd

which are uniformly distributed in the data cube.

• We also assume that the closest of the two points Ad and Bd

need to be merged with Od in order to preserve 2-anonymity

of Od. We establish some convergence results.

• We will also generalize the results to the case of N = n data

points.



Lemma

• Let Fd be uniform distribution of N = 2 points. Let us

assume that the closest of the 2 points to Od is merged with

Od to preserve 2-anonymity of the underlying data. Let qd

be the Euclidean distance of Od to the merged point, and let

rd be the distance of Od to the remaining point. Then, we

have: limd→∞E [rd − qd] = C, where C is some constant.

• Multiply numerator and denominator by rd + qd and proceed.



Result

• Let Ad = (P1 . . . Pd) and Bd = (Q1 . . . Qd) with Pi and Qi

being drawn from F.

• Let PAd = {∑d
i=1(Pi)

2}1/2 be the distance of Ad to the origin

Od, and PBd = {∑d
i=1(Qi)

2}1/2 the distance of Bd from Od.

• |PAd − PBd| =
|(PAd)

2−(PBd)
2|

(PAd)+(PBd)

• Analyze the convergence behavior of the numerator and de-

nominator separately in conjunction with Slutsky’s results.



Generalization to N points

• Let Fd be uniform distribution of N = n points. Let us

assume that the closest of the n points is merged with Od to

preserve 2-anonymity. Let qd be the Euclidean distance of Od

to the merged point, and let rd be the distance of the furthest

point from Od. Then, we have: C′′′ ≤ limd→∞E [rd − qd] ≤
(n − 1) · C′′′, where C′′′ is some constant.

• Direct extension of previous result.



Lemma

• Let Fd be uniform distribution of N = n points. Let us

assume that the closest of the n points is merged with Od to

preserve 2-anonymity. Let qd be the Euclidean distance of Od

to the merged point, and let rd be the distance of the furthest

point from Od. Then, we have: limd→∞E
[

rd−qd
rd

]

= 0, where

C′′′ is some constant.

• This result can be proved by showing that rd →p
√

d.

• Note that the distance of each point to the origin in d-

dimensional space increases at this rate.



Information Loss for High Dimensional Case

• We note that the information loss M(S)/M(D) for 2-

anonymity can be expressed as 1 − E
[

rd−qd
rd

]

.

• This expression converges to 1 in the limiting case as d → ∞.

• We are approximating M(D) to rd since the origin of the cube

is probabilistically expected to be one of extreme corners

among the maximum distance pair in the database.



Result

• Bounds for 2-anonymity are lower bounds on the general case

of k-anonymity.

• For any set S of data points to achieve k-anonymity, the

information loss on the set of points S must satisfy:

limd→∞E[M(S)/M(D)] = 1 (4)



Experimental Results

• The synthetic data sets were generated as Gaussian clusters

with randomly distributed centers in the unit cube.

• The radius along each dimension of each of the clusters was a

random variable with a mean of 0.075 and standard deviation

of 0.025.

• Thus, a given cluster could be elongated differently along

different dimensions by varying the corresponding standard

deviation.

• Each data set was generated with N = 10000 data points in

a total of 50 dimensions.



Market Basket Data Sets

• We also tested the anonymization behavior with a number

of market basket data sets.

• These data sets were generated using the data generator ,

except that the dimensionality was reduced to only 100 items.

• In order to anonymize the data, each customer who bought

an item was masked by also including other random cus-

tomers as buyers of that item.

• Thus, this experiment to useful to illustrate the effect of our

technique on categorical data sets.

• As a result, for each item, the masked data showed that 50%

of the customers had bought it, and the other 50% had not

bought it.



Experimental Results

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
R

A
C

T
IO

N
 O

F
 D

A
T

A
 P

O
IN

T
S

 P
R

E
S

E
R

V
IN

G
 2

−
A

N
O

N
Y

M
IT

Y

DIMENSIONALITY

1 CLUSTER  
2 CLUSTERS 
5 CLUSTERS 
10 CLUSTERS

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
IN

IM
U

M
 IN

F
O

R
. L

O
S

S
 F

O
R

 P
R

E
S

E
R

V
IN

G
 2

−
A

N
O

N
Y

M
IT

Y

DIMENSIONALITY

1 CLUSTER  
2 CLUSTERS 
5 CLUSTERS 
10 CLUSTERS



Experimental Results
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Conclusions and Summary

• Analysis of k-anonymity in high dimensionality.

• Earlier work has shown that k-anonymity is computationally

difficult (NP-hard).

• This work shows that in high dimensionality, even the use-

fulness of k-anonymity methods becomes questionable.


