
QoS-based Data Access and Placement for Federated Systems

Wen-Syan Li Vishal S. Batra∗ Vijayshankar Raman Wei Han Inderpal Narang

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120 USA

Email: wen@almaden.ibm.com

1 Motivations
A wide variety of applications require access to multiple
heterogeneous, distributed data sources. By transparently
integrating such diverse data sources, underlying differ-
ences in DBMSs, languages, and data models can be hid-
den and users can use a single data model and a single high-
level query language to access the unified data through a
global schema.

To address the needs of such federated information sys-
tems, IBM has developed the DB2 Information Integra-
tor (II) [1] to provide relational access to both relational
DBMSs and non-relational sources, such as file systems
and web services. These data sources are registered at
II as nicknames and thereafter can be accessed via wrap-
pers. Statistics about the remote databases are collected
and maintained at II for later use by the optimizer for cost-
ing query plans.

DB2 Information Integrator deploys cost-based query
optimization to select a low cost global query plan to ex-
ecute. Thus, cost functions used by II heavily influence
what remote servers (i.e. equivalent data sources) to ac-
cess and how federated queries are processed. Cost esti-
mation is usually based on database statistics, query state-
ments, and the local and remote system configuration, such
as the CPU power and I/O device characteristics. DB2 al-
lows the system administrator to specify expected network
latency between II and the remote servers. However, ex-
isting cost functions do not consider (1) the load on the
remote servers, (2) dynamic nature of network latency be-
tween remote servers and II, and (3) the availability of the
remote sources. As a result, federated information systems
cannot dynamically adapt to runtime environment changes,
such as network congestions or load spikes at the remote

∗ This work was performed when the author was on an assignment
at IBM Almaden Research Center. He is currently affiliated with IBM
Indida Research Center and can be reached at bvishal@in.ibm.com.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

sources. Also, since the query plans are generated via
cost-based decision making process, currently, there are no
mechanisms to avoid fast but unreliable sources. Further-
more, II optimizes user queries individually rather than op-
timizing a workload as a whole nor does it consider QoS
goals. In some scenarios, it is required to distribute queries
among servers for balancing load and differentiating QoS
requirement for response time.

2 System Architecture
In [2], we introduce a novel query cost calibrator (QCC)
to calibrate the cost function based on system availability,
process and network latency at the remote sources, and the
load at the II nodes. QCC transparently adapts the cost
functions to the runtime environment, and indirectly in-
fluences the federated query optimizer in query planning.
QCC enables the selection of a set of appropriate remote
sources or replicas with consideration of the runtime en-
vironment to improve the predictability of query response
time. QCC also identifies alternate query plans and rec-
ommends load balancing strategies to improve overall re-
sponse time for the workload and availability.

We have extended the technology developed in [2] by in-
corporating the notion of QoS into query processing as well
as autonomic data placement functionality. We now de-
scribe the new system architecture of our prototype (shown
in Figure 1). A DB2 II-based federated system is enhanced
transparently with three complementary components: (1)
a meta-wrapper (MW), (2) a query cost calibrator (QCC),
and (3) a data placement advisor (DPA).

The meta-wrapper serves as a middleware between II
and wrappers. At the compile time, MW receives queries
from II and records (a) the incoming federated queries, (b)
the outgoing query fragments, (c) the estimated cost of the
federated queries and query fragments, and (d) their map-
pings to the remote servers. The overhead of logging in the
meta-wrapper is inexpensive compared with the federated
query processing cost. The log is periodically collected by
QCC for analysis.

During the run time, MW records (e) the response time
of each query fragment. This information, (a)-(e), is for-
warded to QCC for further processing and analysis. Based
on the estimated cost at the compile time and actual exe-

1358



Figure 1: Federated Systems with MW, QCC, and DPA

cution time monitored at the runtime, QCC derives an up-
to-date query fragment processing cost calibration factor.
Using this factor, QCC can dynamically calibrate the future
query estimation cost so that various system characteristics,
such as remote system loads and network latency, are im-
plicitly taken into consideration in global query costing. In
addition to such transparent statistics collection, QCC uses
daemon programs that periodically access remote sources,
through MW, to ensure their availability. The daemon pro-
grams are also used to derive initial query cost calibration
factors by exploring the network latency and processing la-
tency at remote sources.

When wrappers are not able to provide cost estimation
or it is not feasible to access remote servers to get nec-
essary database statistics for estimating query processing
cost, QCC features a simulated federated system that has
the same II, meta-wrapper, and wrappers as same as the
original run time system as well as the simulated catalog
and virtual tables, to capture database statistics and server
characteristics without storing the actual data. The sim-
ulated federated system allows QCC to derive alternative
query plans and perform ”what-if” analysis for query rout-
ing and data placement.

3 QoS-based Data Access and Placement
After query compilation at II, only the global query plan
with the lowest cost is stored in the explain table. When
queries are unique, this approach of choosing low cost
plans is suitable. However, if there is a large number of
similar queries that use the same plan, then the remote
servers involved in this plan can get overloaded, render-
ing the original statistics invalid. To prevent such hot-spots
and achieve proper load balance, through the calibration
and query routing of QCC, II is enabled to use alternative
(maybe not the lowest cost, but close) global query plans in
addition to the lowest-cost query plan. QCC also enables

QoS aware query routing by selecting query plans that best
match with specified QoS goals for each user group and
service class on alternative servers.

To carry out load balance at the global query level,
QCC needs to derive all possible global execution plans (as
well as eliminate some less efficient plans). QCC utilizes
the simulated federated system to generate all alternative
global execution plans and estimate their calibrated costs.
QCC achieves this by iterating through possible query frag-
ment pairs one at a time at the wrapper level. Calibrated
costs of query fragments are used to estimate the cost of the
global query plan. The cost of the alternative global query
plans are then calibrated by the information integration cost
calibration factor as described earlier. Once the calibration
costs of all alternative query plans are derived, QCC can
eliminate plans that are not promising. Next, QCC identi-
fies plans which have similar costs (i.e. within 20%) and
these are executed on different sets of servers. Therefore,
QCC identifies groups of plans to recommend to II in a
round robin fashion for the given query. By selecting the
plans in this way, II distributes the load to multiple servers
in a balanced way. Note that, since QCC maintains the
server cost calibration factors for all remote sources, it can
exclude those remote sources with very high server cost
calibration factors from being considered as candidates for
query routing destinations.

Additional consideration is needed when there are dif-
ferent QoS requirements for various service classes. In this
scenario, selecting a single low cost global query plan and
applying this plan to all service classes is not necessarily
ideal. In Figure 2, we show an example where all global
query processing plans and their calibrated costs are de-
rived for Q1 and five alternative plans are eliminated. On
the right of Figure 2, we show that there are seven ser-
vice classes with various response time requirements: 7,
8, 10, 15, 20, 30, and 40. With the current query process-
ing scheme, II will select the lowest calibrated cost global

1359



Figure 2: Query Routing with Consideration of QoS Requirement and Load Balance

query processing plan, Q1 p9, for all user groups. As a
result, all requests will be routed to servers R1 and R2.
This may result in an overload at R1 and R2; consequently,
users may observer a response much slower than the ex-
pected response time, 6. On the other hand, we can see
that for those user groups whose data-tier response time re-
quirements for Q1 are greater than 20, there is no need to
route the queries to R1 and R2 based on Q1 p9. Their re-
quests can be safely routed to S1 and S2 (based on Q1 p4)
as the expected calibrated response time of 18 will meet
their QoS goals. Therefore, instead of assigning the same
plan with the lowest cost to all user queries, QCC intel-
ligently assigns plans that best matches the QoS require-
ment of the service classes, while using the available re-
sources effectively. This assignment scheme allows critical
resources to be preserved for the requests that need them
most, while satisfying more users’ QoS requirements. Note
that, in this example, for the service class with the QoS
requirement of 15, we have two alternatives: Q1 p3 and
Q1 p6. Since the costs of these two plans are close and they
are executed in different sets of serves, Q1 p3 and Q1 p6

can be grouped together and chosen in a round robin fash-
ion for this service class as described earlier.

Assignment of global plans based on QoS, since they
effect server loads, may change the cost of the global plan.
For example, after QCC routes the queries issued by the
user groups with QoS requirements of 7, 8, and 10 to R1

and R2, the actual response time of Q1 p9 may increase
from 6 to 8. Thus, QCC re-assigns the query plan Q1 p7 to
the requests from the user group whose QoS requirement is
10 upon cost re-calibration.

We have developed a set of guidelines for query routing
with considerations to the QoS requirements. The guide-
lines are summarized as follows:

• For global query plans whose query fragments are ex-
ecuted on the same set of servers, pick the cheapest
plan.

• For each federated query with a QoS requirement,
pick the global query plan whose calibrated runtime
cost best matches the QoS goal.

• Reassign query plans if a cost re-calibration results in
failing to satisfy QoS requirements.

Note that the workload of the query (i.e. calibrated cost
times the frequency of queries issued in a period) must
be greater than a preset threshold value in order for the
query to be considered load distribution. If the federated
query is inexpensive or seen less frequently compared with
other queries, it is not worth deploying the load distribution
scheme.

When QCC cannot derive any plan to meet the QoS
goals, it alerts the DPA to advise data replication strate-
gies so that the QoS goal can be achieved. DPA derives
the server using the simulated information integrator and
informs the available replication utility to place and syn-
chronize replicas. In our system, QoS for response time
is measured for the whole workload rather than individual
queries. Due to the nature of distributed systems, it is not
feasible to guarantee the response time of each query. QCC
does not trigger data placement advisor immediately if it
observe certain QoS goals are not met. Instead, QCC aims
at ensuring the average response time for the whole work-
load meet the QoS goal by ignoring such jitters in system
load and network conditions.

In addition to collecting and using cost statistics, QCC
also records error messages (if any) from accessing remote
servers for assessing their availability and reliability. This
information is later used to compute the reliability factor
for cost calibration. Consequently, QCC influences II to
access not only high performance but also reliable remote
servers; adapting to the runtime environment.

We have extended our work in [2] and further enable ser-
vice class and QoS aware request processing in distributed
enterprise information systems, composed of web server,
application server, and a data-tier composed of local and
remote data servers. Based on the QoS goal for response
time specified by each service class and time spent in the
web and application server tiers, QCC recommends appro-
priate query plans and remote servers to meet the end to
end QoS goal.

4 Demonstration
We have implemented a prototype system based on the con-
figuration shown in Figure 1. Three servers are made avail-
able at IBM facility at IRL (India Research Lab.), SVL (Sil-
icon Valley Lab.), and ARC (Almaden Research Center). A

1360



Figure 3: The server at SVL is loaded and cannot meet QoS goal. DPA advises to create a replica at ARC.

DB2 II server is placed at ARC. The meta-wrapper, QCC,
and DPA are deployed on the DB2 II server to enable load,
network, QoS, and availability aware dynamic federation.
In this setting, we are able to load or disable any of these
three remote servers.

Figure 3 is a sample screen shot of the demonstration
system. On the demonstration console, we can see the fed-
erated query statement, query results (and their origin, such
as ARC, IRL, and SVL), QoS goals and achieved QoS, data
placement advice (if QoS goal cannot be met), and status
of three remote servers (including load level, availability,
network bandwidth, and estimated response time).

The scenarios of our demonstration are as following se-
quence:

1. The data is initially available only at IRL. The query
is routed to IRL and the response time is measured as
more than 5 seconds on average.

2. We now specify a QoS goal as 500ms. QCC detects
that the server at IRL cannot meet the QoS goal and
DPA is invoked to advise an appropriate server in the
grid to create a replica. In this case, DPA advises SVL
(i.e. QoS-based data placement).

3. After a replica is created at SVL, the query is routed
to SVL instead of IRL in order to meet the QoS goal
(as shown in Figure 3).

4. We then add load to the server at SVL so that the QoS
goal can no longer be met. Now, DPA advises to cre-
ate a replica at ARC. After a replica is created at ARC,
the query is now routed to ARC. Note that now ARC
is the only server that can meet the QoS goal of 500ms
response time.

5. Next, we alter the QoS goal by changing it from
500ms to 600ms. QCC now performs a QoS aware
routing and directs the query to SVL while reserving

ARC for other queries which demand fast response
time.

6. Then, we disable the server at SVL. MW detects
the server outage at SVL and proactively routes the
queries to ARC again.

The system demonstration is built based on commer-
cially available components and runs in real internet envi-
ronment. With the above scenarios, we are able to demon-
strate many novel functions unique on our federated infor-
mation systems, including (1) query cost calibration, (2)
network, load, and availability aware query routing, (3)
QoS-based query routing, and (4) QoS-based data place-
ment.

5 Concluding Remarks
In this demonstration description, we highlight the key fea-
tures of dynamic federation that enable enterprise informa-
tion systems adapt to runtime environment and QoS goals
for response time specified by the users. The current pro-
totype is able to handle simply queries that involve single
remote server. We are extending the data placement advi-
sor to handle more complex queries that involve multiple
servers with presence of replicas and material views.

References
[1] V. Josifovski, P. Schwarz, L. Haas, and E. Lin. Gar-

lic: A New Flavor of Federated Query Processing for
DB2. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2002.

[2] Wen-Syan Li, Vishal S. Batra, Vijayshankar Raman,
Wei Han, K. Seluk Candan, and Inderpal Narang. Load
and Network Aware Query Routing for Information In-
tegration. In Proceedings of the International Confer-
ence on Data Engineering, 2005.

1361


