
Pathfinder: XQuery—The Relational Way

Peter Boncz1 Torsten Grust2 Maurice van Keulen3

Stefan Manegold1 Jan Rittinger1,4,† Jens Teubner2

1CWI Amsterdam, The Netherlands 2Technische Universität München, Germany
{boncz,manegold}@cwi.nl {torsten.grust,jens.teubner}@in.tum.de

3University of Twente, The Netherlands 4University of Konstanz, Germany
m.vankeulen@utwente.nl rittinge@inf.uni-konstanz.de

1 Introduction

Relational query processors are probably the best un-
derstood (as well as the best engineered) query engines
available today. Although carefully tuned to process
instances of the relational model (tables of tuples),
these processors can also provide a foundation for the
evaluation of “alien” (non-relational) query languages:
if a relational encoding of the alien data model and its
associated query language is given, the RDBMS may
act like a special-purpose processor for the new lan-
guage.

This demonstration features our XQuery compiler
Pathfinder, the continuation of our earlier work on a
purely relational XPath and XQuery processing stack
[4, 6, 7] in which we developed relational encodings and
processing strategies for the tree-shaped XML data
model. The Pathfinder project is an exploration of
how far we can push the idea of using mature RDBMS
technology to design and build a full-fledged XQuery
implementation. The demonstration will show that
this line of research was and still is worth to be fol-
lowed: based on the extensible relational database ker-
nel MonetDB [2], Pathfinder provides highly efficient
and scalable XQuery technology that scales beyond
10 GB XML input instances on commodity hardware.

Pathfinder requires only local extensions to the un-
derlying DBMS’s kernel, such as the staircase join op-
erator [7, 9]. A join recognition logic in our com-
piler, as well as a careful consideration of order prop-

erties of relational operators [3], allow for effective op-
timizations that turn MonetDB into a highly efficient
XQuery engine.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005
†This work was supported by the DFG Research Train-

ing Group GK-1042 “Explorative Analysis and Visualization of
large Information Spaces”.

RDBMS

tree encoding (XPath accel.)

XPath axes (staircase join)

sequence
encoding

loop-lifting

XQuery

Figure 1: XQuery development stack.

We will briefly recite these ideas in the upcoming
section. Section 3 will provide experimental evidence
of the viability of our approach, before we sketch the
setup for this demonstration of Pathfinder.

2 Pathfinder XQuery Engine Overview

To bridge the apparent gap between the relational pro-
cessing model and the XQuery data model, Pathfinder
follows the step-by-step development stack of Figure 1.

Tree encoding. Relational XML processing starts off
with a suitable relational encoding for XML document
trees. We based our system on the XPath Accelerator
[4], a numbering scheme in which each node v is as-
signed a pre-order rank pre(v) and a post-order rank
post(v). These numbers efficiently characterize XPath
location steps as regions in a two-dimensional plane,
e.g., v′ is a descendant of v ⇔ pre(v) < pre(v′) ∧
post(v′) < post(v). Pathfinder employs an equivalent
encoding variant that represents the location of a node
as the 3-tuple 〈pre(v), size(v), level(v)〉 with the num-
ber of nodes in the subtree below v, size(v), and v’s
distance from the tree root, level(v). These tuples are
maintained in a table with schema pre|size|level.

XPath axes. This encoding scheme, turns XPath
step evaluation into a relational range selection.
The selection predicate describes region queries on
the 〈pre(v), size(v), level(v)〉 space, where the region
queried associates with the XPath axis [4]. These
range selections are well supported by existing access
and index structures.

Yet, the RDBMS gives away significant opportuni-
ties for optimization since the system is unaware of the

1322

π column projection, renaming
σ row selection
.
∪,\ disjoint union, difference
δ duplicate elimination
on, × equi-join, Cartesian product
% row-numbering

staircase join
ε, τ element/text node construction
~ arithmetic/comparison operator ∗

Table 1: The relational algebra used by Pathfinder.

atomic literals document order (e1 << e2)
sequences (e1, e2) node identity (e1 is e2)
variables ($v) arithmetics (+, -, . . .)
let $v := e1 return e2 comparisons (eq, lt, . . .)
for $v in e1 return e2 Boolean operators (and, or, . . .)
if e1 then e2 else e3 fn:doc(e)

typeswitch clauses fn:root(e)

element { e1 } { e2 } fn:data(e)

text { e } fs:distinct-doc-order(e)

e1 order by e2,...,en fn:count(e), fn:sum(e)
XPath (e/α::ν) fn:empty(e)

user defined functions fn:position(), fn:last()

Table 2: XQuery dialect supported by Pathfinder. Ex-
pressions may be composed arbitrarily; α denotes an
XPath axis, ν a node test.

isomorphism between the tree-shaped XML data and
its relational encoding. Injecting such tree-awareness,
however, is possible in terms of a special join opera-
tor, staircase join , that helps to turn RDBMSs into
highly efficient XPath processors [7].

Relational XQuery evaluation. Pathfinder com-
piles XQuery expressions into a purely relational query
plan. This target algebra solely uses standard op-
erators, available in off-the-shelf RDBMSs (Table 1).
Note that the extra operators , ε, and τ are just
short-hands for efficient implementations of equivalent
algebraic expressions. A row-numbering operator % is
provided by many existing RDBMSs, e.g., in terms of
MonetDB’s mark operator, or the DENSE RANK() func-
tion in SQL:1999. The algebra still suffices to express
the XQuery dialect listed in Table 2, a subset that,
e.g., suffices to express all XMark queries [10]. Fig-
ure 5 in Section 3 depicts the query plan of a typical
XQuery FLWOR clause.

Our query plans use a very explicit, “assembly-
style” algebra. The exploitation of specific restric-
tions which hold for this algebra (e.g., all joins are
equi-joins, π does not imply duplicate elimination,
all unions are disjoint) enables additional, quite far-
reaching optimizations. All in all, this makes this par-
ticular variant of relational algebra very efficiently im-
plementable on any relational DBMS. Query plans can
become quite large (XMark query Q8 [10], e.g., prior
to optimization, compiles to a plan DAG of 120 oper-
ators). This complexity may significantly be reduced

iter pos item
1 1 10
1 2 20

(a) (10,20) in s0.

iter pos item
1 1 10
2 1 20

(b) $v in scope s1.

iter pos item
1 1 10
2 1 10
3 1 20
4 1 20

(c) $v in scope s2.

iter pos item
1 1 100
2 1 200
3 1 100
4 1 200

(d) $w in scope s2.

iter pos item
1 1 110
2 1 210
3 1 120
4 1 220

(e) $v + $w in s2.

inner outer
1 1
2 1
3 2
4 2

(f) map(s1,s2).

iter pos item
1 1 110
1 2 210
1 3 120
1 4 220

(g) Result (scope s0).

Figure 3: Intermediate results in evaluation of
for $v in (10,20), $w in (100,200) return $v + $w.

by peep-hole style optimization [5], though.

pos item
1 5
2 "x"
3 <a/>
4 "x"

Fig. 2: Sequence
encoding of (5,
"x",<a/>,"x").

Sequence encoding. The XQuery
data model is based on the sequence,
an ordered (possibly heterogeneous)
list of items. We implement sequence
order by means of an explicit pos

column, as depicted on the right.
The polymorphic item column is ef-
ficiently implemented with help of
MonetDB’s mposjoin operator.

Loop lifting. A crucial part in XQuery evaluation is
the efficient implementation of its iteration primitive,
the FLWOR clause. In [6], we developed a database style,
bulk-oriented way of loop processing. We sketch the
basic idea here.

The compilation from the iterative FLWOR clauses to
bulk-oriented table manipulation is achieved through
loop-lifting : a column iter added to the encoding in
Figure 2 accounts for the different bindings a variable
assumes when it iterates over a sequence. To illustrate,
Figure 3 shows some intermediate results for the rela-
tional query plan that evaluates

s0

for $v in (10,20)

s1

{

for $w in (100,200)
s2 {return $v + $w .

The loop-lifting concept makes any relational se-
quence encoding depend on its associated iteration
scope si. The initial expression (10,20) is evaluated
in the top-level scope s0, with a constant iter value of 1
(Figure 3(a)). The for loop introduces new iter values
for each tuple to represent $v in s1 (Figure 3(b)): for
example, in the second iteration in scope s1, variable
$v will be bound to the single item 20. The return
expression in scope s2 is to be evaluated four times,
represented by four different iter values for expressions
$v, $w, and $v + $w (Figures 3(c)–(e)).

The semantics of nested iteration implies that dur-
ing the first two iterations of scope s2, scope s1 is still
in its first iteration, while for iterations 3 and 4 of
scope s2, s1 is in its second iteration. We capture this

1323

semantics by a relation map (Figure 3(f)) that relates
iter values between scopes s1 and s2.

Back-mapping the encoding in Figure 3(e) to the
top-level scope finally forms the overall expression re-
sult in Figure 3(g). Observe that our bulk-oriented
way of evaluation is quite different from other XQuery
engines, which in a sense only do nested loop, i.e.,
recursive, processing. For details on the loop-lifting
concept, refer to [6].

MonetDB. We designed Pathfinder as an XQuery
compiler : XQuery expressions are translated into re-
lational query plans. Their execution on a database
back-end evaluates the input expression by means of
a single algebraic query. A simple post-processor then
serializes the relational result to form a response in
terms of the XQuery data model.

The compiler currently targets MonetDB, an ex-
tensible relational database system, available in open
source [2]. Its main-memory optimized implementa-
tion and features like virtual object identifiers (that,
e.g., make the row-numbering operator % a no-cost op-
erator) make MonetDB particularly suitable for our
objective: scalable XQuery processing. The use of
alternative back-ends (e.g., SQL) is current work in
progress.

3 Scalability and Performance

Our implementation is meant to assess the viability of
using relational back-ends for XQuery. RDBMSs are
known to scale well with increasing data volumes—an
inevitable feature if XQuery systems are to support
large amounts of XML data.

We used the XML generator XMLgen from the
XMark benchmark set [10] to create XML instances
of sizes from 11 MB to 11 GB (50,000 to 500 million
nodes, respectively). Documents were loaded into our
MonetDB back-end to run the 20 XMark queries.

3.1 Storage Overhead

Pathfinder stores the structural part of XML docu-
ments in the pre|size|level encoding, as sketched in Sec-
tion 2. A prop column stores surrogates of XML node
properties. Actual property values (tag names, text
node content, etc.) are maintained in separate prop-
erty BATs and kept unique therein. These node prop-
erties are identified by their surrogates, where nodes
with identical properties share the same surrogate.

This surrogate sharing not only avoids expensive
string comparisons at query execution time, but also
reduces space consumption on secondary storage. For
the XMark benchmark set, disk space requirements
range between 147 % (11 MB instance) and 125 %
(110 MB instance) of the original XML document.1

1For larger instances, XMark documents tend to degrade:
more and more duplicate text nodes bring down disk space usage
below 80 % of the original XML instance.

11 MB 110 MB 1.1 GB 11 GB
Q X-Hive PF X-Hive PF X-Hive PF PF
1 0.37 0.05 1.29 0.17 9.9 1.2 13
2 0.45 0.07 1.75 0.30 33.0 2.4 25
3 0.65 0.28 5.66 1.51 25.1 12.5 126
4 0.10 0.08 1.00 0.45 18.1 3.8 36
5 0.13 0.05 0.90 0.16 20.7 1.2 11
6 1.07 0.02 10.17 0.05 178.1 0.3 3
7 1.57 0.03 24.84 0.07 278.4 0.4 4
8 0.85 0.14 3.51 0.75 49.1 10.4 208
9 32.25 0.20 12280.66 0.87 DNF 12.9 289

10 5.28 0.80 442.37 5.31 DNF 55.0 1882
11 98.91 0.18 19927.29 3.48 DNF 960.9 DNF
12 23.39 0.14 5100.19 1.66 DNF 431.3 DNF
13 0.10 0.07 1.03 0.22 12.9 1.3 13
14 0.72 0.26 11.16 2.20 110.2 21.3 6463
15 0.03 0.09 0.49 0.28 10.6 1.7 16
16 0.03 0.11 0.52 0.26 10.9 1.8 18
17 0.09 0.07 0.85 0.30 11.8 2.8 26
18 0.08 0.04 0.64 0.13 14.8 0.9 9
19 0.67 0.11 12.15 0.55 254.5 5.3 88
20 0.11 0.24 1.40 0.62 24.6 4.9 50

Table 3: Query evaluation times (in seconds) for dif-
ferent XMark instance sizes (scale factors 0.1 to 100).

3.2 Experimental Setup

We tested Pathfinder’s performance on a 1.6 GHz
AMD Opteron system, equipped with 8 GB RAM. For
comparison, we installed X-Hive/DB on the same sys-
tem [8]. X-Hive appears to be one of the faster XML
database systems and copes with large XML instances
quite well. We tuned the X-Hive database with value
indices on the buyer/@person and profile/@income
paths. These indices significantly reduced execution
times of some computationally intensive XMark join
queries (e.g., Q8).

3.3 Pathfinder Performance

The execution times, shown in Table 3, confirm the
strengths of our purely relational approach to XQuery
evaluation. Pathfinder handles simple path queries
(Q1–Q5, Q13–Q20) 2 to 20 times faster than X-Hive.
If paths include recursive axes, we benefit from our
staircase join implementation that outperforms X-Hive
by two orders of magnitude (Q6 and Q7).

It is not surprising that the join queries (Q8–Q12)
benefit most from our relational back-end. While X-
Hive almost competes with Pathfinder for the simple
join query Q8, its performance strongly degrades if in-

termediate query results are to be joined. Pathfinder
compiles these queries into join plans [3] and takes ad-
vantage of efficient join implementations in our back-
end. It is thus able to execute queries in reasonable
time which we were not able to run on our X-Hive
installation (Q9–Q12).

3.4 Scalability

To assess the scalability of our approach, we printed
XMark execution times normalized to the elapsed
times for the 110 MB XML instance. As shown in Fig-
ure 4, Pathfinder scales linearly for most of the queries.
Even the join queries (Q8–Q10) are of almost linear
complexity.

1324

 0.01

 0.1

 1

 10

 100

 1000

Q20Q19Q18Q17Q16Q15Q14Q13Q12Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
es

11 MB 110 MB 1.1 GB 11 GB

Figure 4: Pathfinder scalability: Execution times for
the XMark benchmark set, normalized to timings for
the 110 MB instance.

The only two exceptions are queries Q11/Q12.
Their quadratic scaling stems from a theta-join (pred-
icate >) that produces intermediate results of about
120 k, 12 M, and 1.2 G tuples for the 11 MB, 110 MB,
and 1.1 GB instances, respectively. Note that this con-
cerns the query result, whose computation cannot be
avoided. Thus, any XQuery implementation will face
this complexity.

4 Demonstration Setup

Our system operates in a front-end/back-end fashion.
The front-end, the Pathfinder compiler, parses incom-
ing XQuery expressions and translates them into a re-
lational algebra expression tree, represented in terms
of a MIL2 program. The code is shipped to a Mon-
etDB server that then executes the entire query and
serializes the encoding of the result.

The demonstration features both of these compo-
nents, with various interesting hooks to trace the exe-
cution of XQuery expressions on our relational back-
end. Our system implements the W3C October 2004
working drafts [1], including schema import, static typ-
ing, and full axis features.

The compiler provides facilities to look “under the
hood” of relational XQuery compilation. An output
of type-annotated XQuery Core expression equivalents
demonstrates optimization techniques applied to the
incoming XQuery code before compiling it into rela-
tional algebra. A graphical output of relational query
plans at different compilation stages (much like the
plan in Figure 5) illustrates the loop-lifting concept.
Relational plans may be traced to reveal the result
computed for any subexpression.

Our demonstration system will be pre-loaded with
XMark [10] instances of different sizes up to 1.1 GB.
The query texts for the 20 benchmark queries will be
ready to run, but users may as well state their own ad
hoc queries.

The Pathfinder compiler is available in open source
as part of the MonetDB/XQuery implementation via
http://pathfinder-xquery.org/.

2MIL stands for MonetDB Interpreter Language

πiter:outer,pos:pos1,item

%pos1:iter,pos/outer

oniter=inner

πiter,pos,item:res

CC
CC

C

⊕res:(item,item1)

oniter=iter1

πiter1:iter,item1:item

CC
CC

C

×
CC

CC

pos item
1 100

CC
C

πiter:inner
{{

{{
{

{{
{{

{

×
{{

{{

pos
1

{{
{

πiter:inner,item

CC
CC

%inner:iter,pos

iter pos item
1 1 10
1 2 20

mmmmmmmmm

πinner,outer:iter

VVVVVVVVVV

Figure 5: Relational query plan that evaluates the
query for $v in (10,20) return $v + 100.

References
[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Flo-

rescu, J. Robie, and J. Siméon. XQuery 1.0: An XML
Query Language. World Wide Web Consortium, Oc-
tober 2004. http://www.w3.org/TR/xquery/.

[2] P. Boncz. Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications. PhD thesis, Uni-
versity of Amsterdam, The Netherlands, May 2002.

[3] P. Boncz, T. Grust, S. Manegold, J. Rittinger, and
J. Teubner. Pathfinder: Relational XQuery Over
Multi-Gigabyte XML Inputs In Interactive Time.
Technical Report INS-E0503, CWI, Amsterdam, The
Netherlands, March 2005.

[4] T. Grust. Accelerating XPath Location Steps. In
Proc. of the 21st Int’l ACM SIGMOD Conf. on Man-
agement of Data, pages 109–120, Madison, Wisconsin,
USA, June 2002.

[5] T. Grust. Purely Relational FLWORs. In Proc. of
the ACM SIGMOD/PODS 2nd Int’l Workshop on
XQuery Implementation, Experience and Perspectives
(XIME-P), Baltimore, MD, USA, June 2005.

[6] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In Proc. of the 30th Int’l Conference on Very
Large Data Bases, Toronto, Canada, August 2004.

[7] T. Grust, M. van Keulen, and J. Teubner. Staircase
Join: Teach a Relational DBMS to Watch its Axis
Steps. In Proc. of the 29th Int’l Conference on Very
Large Databases, Berlin, Germany, September 2003.

[8] X-Hive/DB. http://www.x-hive.com/.

[9] S. Mayer, T. Grust, M. van Keulen, and J. Teub-
ner. An Injection of Tree Awareness: Adding Staircase
Join to PostgreSQL. In Proc. of the 30th Int’l Con-
ference on Very Large Data Bases, pages 1305–1308,
Toronto, Canada, August 2004.

[10] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark
for XML Data Management. In Proc. of the 28th Int’l
Conference on Very Large Databases, pages 974–985,
Hong Kong, China, August 2002.

1325

