
Data Sharing in the Hyperion Peer Database System
Patricia Rodríguez-Gianolli1 Maddalena Garzetti4 Lei Jiang1
Anastasios Kementsietsidis3 Iluju Kiringa2 Mehedi Masud2

Renée J. Miller1 John Mylopoulos1

1University of Toronto, Toronto, Canada - {prg,leijiang,miller,jm}@cs.toronto.edu
 2University of Ottawa, Ottawa, Canada - {kiringa, mmasud}@site.uottawa.ca

 3University of Edinburgh, Edinburgh, UK - akements@inf.ed.ac.uk
 4University of Trento, Trento, Italy - garzetti@itc.it

Abstract

This demo presents Hyperion, a prototype system
that supports data sharing for a network of
independent Peer Relational Database
Management Systems (PDBMSs). The nodes of
such a network are assumed to be autonomous
PDBMSs that form acquaintances at run-time, and
manage mapping tables to define value
correspondences among different databases. They
also use distributed Event-Condition-Action
(ECA) rules to enable and coordinate data sharing.
Peers perform local querying and update
processing, and also propagate queries and updates
to their acquainted peers. The demo illustrates the
following key functionalities of Hyperion: (1) the
use of (data level) mapping tables to infer new
metadata as peers dynamically join the network,
(2) the ability to answer queries using data in
acquaintances, and (3) the ability to coordinate
peers through update propagation.

1. Introduction

Peer-to-Peer (P2P) computing has become popular as an
alternative model of distributed computing, compared to
traditional client-server architectures. In P2P computing, no
centralized control is assumed and communication is based
on direct links between nodes, or peers, in a distributed
network.

This paradigm shift aggressively promotes the direct
sharing of data between peers, since each peer is now
assumed to be both a producer and consumer of data.
Within this paradigm, database researchers have sought to
develop techniques for data management, assuming that

peers are (or include) databases [1]. In the Hyperion project
[2], each peer includes a database with its own schema and
data. Peers can join or leave the network at their own
discretion. Moreover, a peer may form an acquaintance
with another peer, for data sharing purposes. Peers belong
to interest groups, such as physicians, medical laboratories
or airline companies. When peers become acquainted,
logical metadata necessary to allow data sharing are
exchanged semi-automatically. These metadata take the
form of mappings, both at the data level and schema level,
and they help to bridge semantic and syntactic
heterogeneities between peers. Metadata at the data level
are expressed as mapping tables [4]. Mapping tables
specify correspondences between data values of acquainted
databases.

Run-time management of metadata provides the basic
layer on top of which higher-level services can be
supported. Our demo offers instances of such services in the
form of query translation and update propagation
mechanisms.

Basic and higher-level services are supported in each
peer by augmenting a conventional (relational) DBMS with
a P2P layer that lets peers use each other’s data, despite the
fact that the underlying databases are heterogeneous. Such a
layer plays the role that interoperability layers play in
traditional multidatabase or federated systems. We call the
DBMSs augmented in this way Peer DBMSs (PDBMSs for
short). Contrary to traditional multidatabase or federated
systems, Hyperion supports a dynamic network of peer
DBMSs that use their P2P layers to coordinate and share
data. Traditional systems do not handle gracefully the
arrival or departure of peers. Adding a peer to an existing
federation often results in the re-organization of the
federated schema and issues of heterogeneity between the
federated peer sources may need to be revisited.

In Hyperion, the interoperability layer addresses
heterogeneity issues between pairs of acquaintances.
Moreover, the system is able to leverage at run-time, pair-
wise acquainted peers in order to support data sharing
among peers that are indirectly connected in the network.

Another distinguishing characteristic of Hyperion is that
it addresses the problem of sharing data at the data level (in

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1291

terms of mapping tables) between heterogeneous sources.
This means that the mechanisms supported by Hyperion are
driven by correspondences between data values, rather than
schema information, for data sharing. In this respect, data
sharing stands in contrast to mechanisms used for data
integration [9] and data exchange [10] that define the
relationships between sources in terms of mappings at the
schema level. Different logical interpretations of schema
mappings have been used in P2P projects (Piazza [7], coDB
[11], Hyper [12], etc.) and in many integration and
exchange projects (Information Manifold [13], Clio [14]).
However, data sharing deals with the exchange of data that
may represent different real world domains where mappings
cannot always be specified at the schema level.

2. System Architecture

The logical architecture of Hyperion, inspired by [8], is
presented in Figure 1. A Hyperion P2P Database Network
consists of a set of peer nodes which participate in data
sharing by clustering themselves into interest groups
(dashed ovals in Figure 1) and establishing pair-wise
acquaintances between them (arrows connecting nodes in
Figure 1). We assume that all peer nodes have identical
architectures, that is: each peer node conforms to the
Hyperion Peer Database System architecture.

A Hyperion P2P Database Network

Peer Node in a Hyperion Network

Acquaintance Link

Interest Group

A Hyperion Peer Database System

Acquaintance
Service

Peer Manager

Query
Service

ECA Rules
Service

P2P Layer

Local DB
Layer

RDBMS

P2P User Interface

Local
Sources

Mapping
Tables +

ECA Rules

A Hyperion P2P Database Network

Peer Node in a Hyperion Network

Acquaintance Link

Interest Group

A Hyperion P2P Database Network

Peer Node in a Hyperion Network

Acquaintance Link

Interest Group

A Hyperion Peer Database System

Acquaintance
Service

Peer Manager

Query
Service

ECA Rules
Service

P2P Layer

Local DB
Layer

RDBMS

P2P User Interface

Local
Sources

Mapping
Tables +

ECA Rules

A Hyperion Peer Database System

Acquaintance
Service

Peer Manager

Query
Service

ECA Rules
Service

P2P Layer

Local DB
Layer

RDBMS

P2P User Interface

Local
Sources

Mapping
Tables +

ECA Rules

Figure 1: Logical Architecture of Hyperion

A Hyperion Peer Database System consists of a P2P

Layer and a Local Database Layer. The former facilitates
peer-to-peer data sharing by taking data residing in
acquainted peers and resolving the semantic heterogeneity
using mapping tables and ECA rules. The latter
encompasses typical local database functionality, such as
managing access (queries and updates) to local data sources
and the collection of mapping tables and ECA rules that
relate local data to data residing in acquainted peers.

The P2P Layer uses the following modules:
• P2P User Interface: this is the interface where queries

are posed to the system. Queries may be either local or
global, meaning that data should be locally retrieved or
both locally retrieved and complemented with
additional data from acquainted peers. We assume that

the user is unaware of schemas of remote PDBMSs and
formulates his queries only in terms of the local
schemas. Finally, this interface is also used to specify
distributed ECA rules describing the patterns of data
coordination between acquainted peers.

• Peer Manager: this module handles a set of extensible
services offered by a peer node. A service encapsulates
a piece of distributed computation performed by the
peer on behalf of its acquaintances. Following an ad-
hoc P2P application pattern, each service implements
its own messaging system to carry out local or remote
requests.

• Acquaintance Service: this module manages the
exchange of public schemas, mapping tables, and
coordination rules between new acquaintances and the
inference of new mappings.

• Query Service: this module provides the ability to
execute local and global queries. Local queries are
executed as in traditional DBMSs; global ones are
executed by applying query rewriting in terms of the
schemas and mapping tables of acquainted peers
(please refer to Section 3 for details).

• Peer Coordination Service: this module manages and
executes distributed ECA rules in order to enforce
consistency policies and coordinate updates between
peers. Our rule mechanism decomposes each rule into
sub-rules, one for each peer involved in the rule's event
expression. See [3] for details.

3. Algorithms

Our demonstration illustrates a number of new algorithms
used to achieve P2P data sharing. First, we present an
acquaintance-time algorithm that infers new mapping tables
from existing ones. This algorithm is based on an
optimized, distributed semi-join-like strategy that respects
the semantics of mapping tables. Second, we illustrate our
query translation algorithm which may use potentially large
mapping tables. Once computed, query translations are
stored for reuse within other computations. Finally, we
illustrate Hyperion's update mechanism which permits local
updates to be translated (using mapping tables) and
propagated to acquaintances. The Hyperion prototype
implements execution semantics for distributed ECA rules
[3].

There is a basic algorithm in [4] for generating mapping
tables that has the following feature: Mapping tables are
generated on demand, i.e., entire tables are generated in
each step from existing ones. The input to the algorithm is
(1) a path P,P1,P2,…,Pn,P' of peers going from a peer P to
a peer P' over intermediary peers such that there is a set of
mapping tables between two consecutive peers on the path,
and (2) two subsets U and U' of attributes of P and P',
respectively. The output of the algorithm is a set of
mapping tables linking peers P and P'. A naïve algorithm

1292

works as follows: peer P forwards all the mappings between
itself and P1 to the latter which uses its own mappings and
the mappings received from P to compute the mappings
between P and P2. Then, P1 sends the resulting mappings
between P and P2 to P2. This computation is repeated until
the penultimate peer Pn is reached, at which point Pn
computes mappings between P and P' and sends them back
to P. However, this algorithm has two major drawbacks:
first, the algorithm can forward mapping tables between the
peers that might prove to be useless for the computation and
second, the algorithm fails to take advantage of the
distributed nature of the system since it utilizes the
resources of one peer at a time. An improved algorithm is
described in [4] to remediate these drawbacks. The
improved algorithm consists of an information gathering
phase during which information is collected to help in a
subsequent computation phase that streams computed
mappings between peers.

The algorithm for query translation using multiple
mapping tables is described in [5]. The algorithm supports
Select-Project-Join queries, where the selection formula is
positive. To translate a query, the algorithm represents the
query as a T-Query. A T-query is a tabular representation of
the query. This representation is used because of uniformity
with the representation of mapping tables. The paper [5]
presents algorithms to compute both sound and complete
translations of a query.

3.1 An Example

As an example of a domain that Hyperion can be applied to,
consider a physician prescribing medications. The
prescribing physician may need to know what medications
her patient is taking, what the patient's white blood cell
count is, and other details of the patient's medical history.
This information may be stored not only in the prescribing
physician's database but also in the database of an
associated specialist physician, medical laboratory, or
pharmacy.

Figure 3 shows partial instances of databases for this
scenario. Peer databases belong to physicians, hospitals,
medical laboratories and pharmacies. Acquaintances are
established between associated physicians, between
physicians and associated laboratories, and so on. The
example databases shown are those of a family physician
Dr. F and a medical laboratory Lab A, whose database
schemas are as follows:

Dr_Patients(ohip,name,primarydr)
Dr_Tests(tid, type, class, test, result, ohip)
LabA_Patients (pid, name, referring)
LabA_Results (testid, test, result, pid)

Call these databases DrF_DB and LabA_DB. Figure 4
shows examples of mapping tables used to map data
between the peer databases. For each row in these tables,
the value on the left side of the double vertical bar is

mapped to the value on the right side. Based on the
mapping tables, acquainted peers can use the contents of
each other's databases to answer queries. In our example, a
user intending to find out the results of any test of white
blood cell count for L. Davidson could issue the query:

select result
from DrF_Tests
where ohip="5017266094NE" AND test="whitebloodcount"

Goldbach
F

A. Lucas
L. Davidson

2330447896GA
5017266094NE

PrimarydrNameOhip

5017266094NE
3074550527GA

9755 c/mcL
14.6 g/dL

whitebloodcount
hemoglobin

hem
hem

H6117
H8250

ohipresulttestclasstid

BartonGonzalez359-00-4711

JensenL. Davidson243-23-6572

referringnamepid

243-23-657212.5 g/dLC05180154521

243-23-65726339 c/mcLC04275124520

Pidresulttesttestid

(a) DrF_Patients Instance

(b) DrF_Tests Instance

(c) LabA_Patients Instance

(d) LabA_Results Instance

Figure 3: Instances of two databases

Goldbach
F

A. Lucas
L. Davidson

2330447896GA
5017266094NE

PrimarydrNameOhip

5017266094NE
3074550527GA

9755 c/mcL
14.6 g/dL

whitebloodcount
hemoglobin

hem
hem

H6117
H8250

ohipresulttestclasstid

BartonGonzalez359-00-4711

JensenL. Davidson243-23-6572

referringnamepid

243-23-657212.5 g/dLC05180154521

243-23-65726339 c/mcLC04275124520

Pidresulttesttestid

(a) DrF_Patients Instance

(b) DrF_Tests Instance

(c) LabA_Patients Instance

(d) LabA_Results Instance

Figure 3: Instances of two databases

Using the mapping tables, this query is expressed in

terms of the LabA database schema as follows:

select result
from LabA_Results
where pid="242-23-6572" AND test="C0427512"

DrF.ohip LabA.pid

5017266094NE 243-23-6572
2330447896GA 388-17-8848

DrF.test LabA.test

hemoglobin C0518015
whitebloodcount C0427512

Figure 4: Mapping Tables

4. Demonstration

We implemented a prototype of our Hyperion System on
top of JXTA [6]. JXTA is an open network computing

1293

platform for P2P computing. It provides a common set of
protocols and an open source reference implementation for
developing P2P applications. We used MySQL as our
DBMS for the Local DB Layer.

In the demo, we demonstrate the main functionalities of
our prototype running several peers simultaneously.
Specifically, the prototype provides the necessary
functionality to form interest groups dynamically. Peers can
only communicate and share data with each other after they
are acquainted. An acquaintance is an abstraction of a
communication channel between peers. Peers can establish
acquaintances within and across interest groups. Once two
peers are acquainted with each other, they can share and
exchange data by using each other's services. A service
encapsulates a piece of distributed computation offered by
the peer on which it is running. Using the Acquaintance,
Query and Update services, we demonstrate how queries
and updates propagate in the system by following the
connectivity graph of acquainted peers.

Figure 5: Querying Interface

The following assumptions are made for the

demonstration:
• Each peer node is equipped with a library of schemas

(and their corresponding databases) and initial mapping
tables at acquaintance time.

• Peers are using both the bulk generation of mapping
tables as well as the streaming version of the algorithm.

We expect viewers to be able to see newly generated
mappings being streamed back to the peer that initiates a
mapping table inference. They will also be able to pose
queries and get back answers accumulated from peers

throughout the Hyperion network. Finally, they can update
data.

As an example, Figure 5 shows the querying interface.
This interface allows a user to write a query for a local peer
database. The system translates queries based on the peer’s
mapping tables. Then the user can send all translated
queries by clicking the send button. A similar interface is
used for update propagation.

References
[1] Special Issue on P2P Data Management. In SIGMOD

Record 32(3), 2003.
[2] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R.

Miller and J. Mylopoulos. The Hyperion Project: from Data
Integration to Data Coordination. In SIGMOD Record 32(3),
2003.

[3] V. Kantere, I. Kiringa, J. Mylopoulos, A. Kementsietsidis
and M. Arenas. Coordinating Peer Databases using ECA
Rules. In DBISP2P, 2003.

[4] A. Kementsietsidis, M. Arenas and R. Miller. Managing
Data in Peer-to-Peer Systems: Semantics and Algorithmic
Issues. In SIGMOD, 2003.

[5] A. Kementsietsidis and M. Arenas. Data Sharing through
Query Translation in Autonomous Systems. In VLDB, 2004.

[6] Project JXTA, 2004. http://www.jxta.org
[7] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N.

Dalvi, X. Dong, Y. Kadiyska, G. Miklau and P. Mork. The
Piazza Peer Data Management Project. In SIGMOD Record,
32(3):47-52, 2003.

[8] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.
Mylopoulos, L. Serafini and I. Zaiharayeu. Data
Management for Peer-to-Peer Computing: A Vision. In
WebDB, 2002.

[9] M. Lenzerini. Data Integration: a Theoretical Perspective. In
PODS, 2002.

[10] R. Fagin, P. Kolaitis, R. Miller and L. Popa. Data Exchange:
Semantics and Query Answering. In ICDT, 2003

[11] E. Franconi, G. Kuper, A. Lopatenko and I. Zaihrayeu.
Queries and Updates in the coDB Peer to Peer Database
System. In VLDB, 2004.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati and
G. Vetere. Hyper: A Framework for Peer-to-Peer Data
Integration on Grids. In ICSNW, 2004.

[13] A. Levy, A. Rajaraman and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB, 1996.

[14] C. Yu and L. Popa. Constraint-Based XML Query Rewriting
for Data Integration. In SIGMOD, 2004.

1294

http://www.jxta.org/
http://www.dis.uniroma1.it/~degiacom/
http://www.dis.uniroma1.it/~lenzerin/
http://www.dis.uniroma1.it/~rosati/
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D673469&CFID=45580336&CFTOKEN=4542153
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D673469&CFID=45580336&CFTOKEN=4542153
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D673469&CFID=45580336&CFTOKEN=4542153
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D673469&CFID=45580336&CFTOKEN=4542153
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D673469&CFID=45580336&CFTOKEN=4542153

