
AReNA: Adaptive Distributed Catalog Infrastructure Based On
Relevance Networks

Vladimir Zadorozhny
University of Pittsburgh

Pittsburgh, PA

vladimir@sis.pitt.edu

Avigdor Gal
Technion - IIT

Haifa, Israel

avigal@ie.technion.ac.il

Louiqa Raschid
University of Maryland

College Park, MD

louiqa@umiacs.umd.edu

Qiang Ye
University of Pittsburgh

Pittsburgh, PA

qye@sis.pitt.edu

1 Introduction

Wide area applications (WAAs) utilize a WAN infrastruc-
ture (e.g., the Internet) to connect a federation of hundreds
of servers with tens of thousands of clients. Earlier gen-
erations of WAA relied on Web accessible sources and
the http protocol for data delivery. Recent developments
such as the PlanetLab [8] testbed is now demonstrating an
emerging class of data- and compute- intensive wide area
applications.

One of the many challenging characteristics of WAA
[14] involves the availability of several alternative data
sources for a given query. This may be due to mirror sites,
or more commonly, the overlap of content in specific ap-
plication domains. For example, in scientific environments
users may choose to access raw datasets, or they may be
able to re-use the cached results of prior queries. Choos-
ing among alternative data sources depends on access costs,
coverage, rate of data delivery, outpt quality, etc. For ex-
ample, a Performance Target (PT) [13] query optimizer
may optimistically allow the selection of potentially noisy
sources whose latencies range from excellent to poor since
there is some expectation of meeting a performance tar-
get when there is no delay. A conservative strategy would
avoid such a source since there was some expectation of
missing the target.

Access costs are know to exhibit transient behavior. The
unpredictable behavior of a dynamic WAN [9, 11] results
in a wide variability in access latency (end-to-end delay).
Variation in access latency may depend on many factors
including the topology of the client and the remote server,
the network and server workloads, which are often affected
by the time of day and day of week, and points of conges-
tion between clients and servers [9]. While there are many
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accurate models for predicting latencies based on network
topology and characteristics, e.g., Internet distance and
points of congestion [3, 7, 9, 11], these models were typ-
ically designed to test network behavior. They were not
designed to support scalable mediators in the presence of
a large number of clients and servers. To this end, there
is a need for comprehensive information on replica sites,
coverage at these sites, and access latencies. Maintain-
ing such information Should be scalable to the large num-
ber of clients and servers for WAA. Therefore, we pro-
pose a distributed catalog and in this demonstration, we
discuss collecting and managing latency information with
AReNA. AReNA is complementary to the BibFinder project
[6] which learns statistics on source coverage information
for the bibliographic domain, but does not provide cost or
delay information. We expect to integrate these two cata-
logs in the future.

AReNA obtains latency information through passive per-
formance monitoring. Individual Latency Profiles (iLPs)
represent time-dependent latency distributions between in-
dividual clients and servers. AReNA aggregates perfor-
mance information into aggregate Latency Profiles (aLPs)
in order to make latency predictions scalable for groups of
clients and servers. We use measures such as mutual in-
formation and correlation to find similarity relationships
among iLPs. Once similarity relations have been estab-
lished, we allow either automatic or manual constructions
of aLPs. To allow efficient manual intervention, AReNA
offers a unique feature of dynamically analyzing and visu-
alizing meaningful relationships using Relevance Networks
(RN) [1]. We adopt RNs as a management tool, to manage
large numbers of iLPs, and to allow the tuning of size and
relationship strength in grouping iLPs, so as to make pre-
dictions and to provide scalable maintenance.

2 Architecture: iLPs and aLPs

Figure 1 presents the AReNA (Adaptive Relevance Network
Architecture) environment. There are three types of nodes,
namely clients, content servers, and performance monitors
(PMs). Clients continuously download data from content
servers and passively construct individual iLPs. Given a
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Figure 1: AReNA environment

client c and a server s, an iLP characterizes the end-to-
end delay for a request from server s. Due to the stochas-
tic nature of the network, iLP is a random variable repre-
sented as a latency probability distribution. An iLP is a
time varying distribution that can still show some regular-
ity, such as a repetitive latency pattern, where similar laten-
cies may be observed at the same time of day and day of
week. For example, consider Figure 2, illustrating the re-
sult of passive latency information collection, grouped by
day of week (Day) and time of Day (Time). Based on this
figure, it seems that the iLP should be modeled to have time
or day significance. In our experiments we observed iLPs
with varying levels of noise and time and day significance.

Figure 2: Latency distribution grouped by Day and Time

PMs manage large collections of iLPs; this is done by
aggregating iLPs into a smaller number of aLP s. These
aggregated profiles combine a set of n iLP s. PMs then
manage aLPs and their associated iLPs. PMs form an over-
lay network similar in spirit to the control and measurement
overlays of the MCoop architecture [10]. Clients consult
PMs to obtain a prediction. The scope of an aLP is de-
picted in Figure 1 by ellipses, where each ellipse contains
clients and servers for which an aLP could be constructed.
It is worth noting that some aLPs overlap. This illustrates
a situation where a client may belong to one aLP for some
servers and to another aLP for a different set of servers. The
number and placement of PMs should maximize scalabil-
ity of performance monitoring and minimize uncertainty in
latency estimation.

AReNA constructs an aLP using non-randomly associ-

ated with each other; this ensures that the grouping ben-
efits the prediction ability of the aLP. For this grouping,
AReNA relies on information theoretic and statistical simi-
larity measures computed for the pair-wise associations of
iLPs. AReNA utilizes two similarity measures, namely mu-
tual information [2] and correlation [5]. A higher mutual
information (or correlation) between two iLP s means that
these iLP s are non-randomly associated. Conversely, a
mutual information of zero means that the joint distribu-
tion of iLP s holds no more information than their indi-
vidual distributions. In general, there is no straightforward
relationship between correlation and MI [4]. While corre-
lation captures linear dependence, mutual information is a
general dependence measure.

3 The AReNA Demonstration System

Our demonstration emphasizes the data management as-
pects of providing a scalable latency estimation. We
demonstrate that AReNA: 1) captures significant dynamic
non-random associations between iLP s; 2) provides a tool
to construct aLPs to predict latency, and 3) uses RNs to
effectively manage a large number of iLPs and aLPs.

Figure 3 represents a snapshot of the AReNA control
panel. Users can observe the evolution of the distributed
environment that is being monitored via animated Rele-
vance Networks. The animation reflects both the chang-
ing topology and the changing strength of non-random as-
sociation between pairs of iLP s. The AReNA Visualizer
was implemented using Zoomgraph Graph Analyzing and
Visualization Software [15]. In addition to the Visualizer,
AReNA supports data gathering and preparation to populate
and maintain the iLP catalog. It also constructs aLP s and
participates in latency prediction.

3.1 Experiment Data Collection

During the demo presentation we shall use the following
two data collections.
CNRI Handle testbed. The International Digital Ob-
ject Identifier (DOI) Foundation (www.doi.org) and the
community of publishers facilitate the identification and
exchange of intellectual property over the Internet. Their
application exploits the Handle protocol [12] for identify-
ing and locating digital objects. Our testbed included the
DOI server and publisher’s Handle repositories and Web
servers. We gathered latency data over CNRI Handle
testbed during December 2003. We report on the perfor-
mance of 22 clients (2 each on 11 client ASes) accessing
10 servers, yielding 220 iLPs.
PlanetLab testbed. PlanetLab [8] is a globally distributed
wide area testbed for deploying various network services at
the Internet scale. PlanetLab currently consists of 350 ma-
chines, hosted by 150 sites, spanning 20 countries. The ser-
vices experience all the behaviors of the Internet in terms of
paths taken, latency, available bandwidth, connection prop-
erties, network presence and geographical location. All the
PlanetLab machines run a common software package. Our
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Figure 3: AReNA Control Panel

experiment gathered latency data in Summer 2004 for ap-
proximately 1600 iLPs.

3.2 Data Preparation

Based on the timestamp associated with the latency mea-
surement of one iLP , we identify the corresponding la-
tency in the pair, where correspondence is taken to be
the latency with the closest timestamp. Then, we pro-
cess the iLPs and require that they share the same num-
ber of aligned samples (approximately 1000 samples for
each iLP ). This phase is aimed at ensuring comparable
statistical measures when comparing among large numbers
of iLP pairs. Finally, for each pair of iLP s, we calcu-
late correlation and mutual information (MI), resulting in
two measures, (iLP1, iLP2, correlation) and (iLP1, iLP2,
MI).

3.3 RN Generation and Analysis

AReNA computes pair-wise MI and Correlation values for
all iLP pairs. Each iLP pair represents an edge in a com-
plete iLP s relationship graph. AReNA produces a sequence
of such graphs by varying the MI and correlation thresh-
olds, starting from th = 0 with fixed increments. For
each such threshold, AReNA modifies the iLP relationships
graph by discarding edges with MI < th (Corr < th).
Each transformation generates a group of connected sub-
networks. The subnetworks correspond to the MI or Corre-
lation Relevance Networks with respect to a given thresh-
old. The evolution of these graphs and the correponding
RNs are visualized by AReNA.

AReNA maintains several metrics of the RNs repre-
senting the associations among the iLP pairs, for self-
assesment. The metrics include the number of associations
(edges that surpass the threshold), the number of partic-
ipating nodes, the number of relevance networks and the
connectivity (a ratio of the number of edges that surpassed
the threshold to the number of all possible edges). Figure 4
illustrates two of these four metrics for different values of
the MI threshold for CNRI Handle dataset.

Number of Associations vs MI Threshold
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Figure 4: Characteristics of MI Relevance Networks as a
Function of MI Threshold
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Figure 5: Examples of Correlation Relevance Networks generated by AReNA

As the threshold increases, the number of associations
decreases, as is expected. However, the shape of the RN
is surprisingly stable, compared to the change of the MI
threshold. As we increase the threshold from 0.0 to 0.5,
while we observe a steep decrease in the number of asso-
ciations (from 14000+ to 1000+) there is only a single RN.
As we increase the threshold further, the number of rele-
vance networks increases, reaching 3. To summarize, the
key observation is that the MI relevance network is stable
and is characterized by a small number of dominant iLP
clusters.

3.4 Managing Aggregate Latency Profiles with Rele-
vance Networks

AReNA uses RNs to provide a birds-eye view of potential
aLPs. In addition, by observing the changes of the RN, as
the threshold is changed, one can also observe if a cluster
is strongly associated, compared to the entire graph, or to
other clusters. Such management features are valuable to
provide scalable network management tools.

Figure 5 gives an example of correlation RNs gener-
ated by AReNA for three increasing treshould values and
the Hndle data. Each node is a client-server pair (e.g.,
pubs-qew) and an edge between two nodes represents a
non-random association. The thickness of an edge reflects
the strenth of the association. As we increase the threshold,
only the strongly associated RNs survive. Such RNs can be
used to construct an aLP .

3.5 Latency Prediction

After constructing an aLP from a set of iLP s, AReNA im-
proves the prediction quality of an iLP using observations
of other iLP s from the same aLP . We omit details due to
lack of space but we note that our experiments have con-
firmed that high MI and high Correlation can indeed be
used to identify exactly those aLP s (composed on iLP
pairs) with low relative error of prediction.
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