
Interactive Schema Translation with Instance-Level Mappings

Philip A. Bernstein
Microsoft Research, USA

philbe@microsoft.com

Sergey Melnik
Microsoft Research, USA
melnik@microsoft.com

Peter Mork∗

Microsoft Research, USA
pmork@cs.washington.edu

Abstract
We demonstrate a prototype that translates
schemas from a source metamodel (e.g., OO, re-
lational, XML) to a target metamodel. The pro-
totype is integrated with Microsoft Visual Stu-
dio 2005 to generate relational schemas from an
object-oriented design. It has four novel features.
First, it produces instance mappings to round-trip
the data between the source schema and the gener-
ated target schema. It compiles the instance map-
pings into SQL views to reassemble the objects
stored in relational tables. Second, it offers in-
teractive editing, i.e., incremental modifications
of the source schema yield incremental modifica-
tions of the target schema. Third, it incorporates
a novel mechanism for mapping inheritance hi-
erarchies to relations, which supports all known
strategies and their combinations. Fourth, it is
integrated with a commercial product featuring
a high-quality user interface. The schema trans-
lation process is driven by high-level rules that
eliminate constructs that are absent from the tar-
get metamodel.

1 Introduction

We present a prototype that translates a source model, such
as an object-oriented schema, into a target model, such as
a relational schema, and produces an executable instance-
level mapping from the source model to the target model.
The mechanism that we developed works with many meta-
models such as ER, SQL, OO, and XSD. Example applica-
tions include translating an interface definition into a SQL
schema to support an object-to-relational mapper, translat-
ing a UML or ER model into a C# interface definition to
support a modeling tool, or translating a SQL schema into
an XML schema for data exchange.

∗Current affiliation: University of Washington, USA

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

We integrated our prototype with the Microsoft Visual
Studio 2005 to support object-to-relational mapping sce-
narios that are common in business applications. Typically,
in such applications the business logic runs on top of an
object model, whereas the actual data is persisted in SQL
databases. To shield the applications from impedance mis-
match and storage management issues, an abstraction layer
is used to translate the data access operations on the ob-
ject model into SQL queries and updates. The mappings
produced by our prototype can be used to drive the abstrac-
tion layer, and to rewrite queries on objects as queries on
relations. The mappings are expressed in a standard logic-
based data transformation language and support a wide
range of alternatives for persisting objects as relations. An
implemented SQL generator compiles the mappings into
SQL views, and can also be used at deployment time to
compile queries rewritten using the mappings into SQL.

Developing an object-to-relational mapping is an inter-
active process, during which the source schema undergoes
revisions, and various mapping options are explored, such
as choosing a horizontal or vertical strategy for mapping
inheritance. Typically, the user (a database designer) wants
to see right away how her design choices affect the target
schema and the generated views. To improve the user expe-
rience in such scenarios, our prototype translates schemas
in a stateful fashion: the target schema is updated incre-
mentally instead of being re-created upon each modifica-
tion. In particular, the graphical layout of the target schema
is preserved during editing of the source schema.

The choice of the inheritance mapping strategy is one of
the main tuning knobs in representing objects as relations.
We developed a novel approach for capturing inheritance
mapping strategies that subsumes and generalizes the stan-
dard techniques. Essentially, it allows the engineer to de-
cide on the number of relations used for representing a sub-
class hierarchy, and to assign each direct or inherited prop-
erty of a class independently to any relation. The proto-
type allows choosing an inheritance mapping strategy on a
per-class basis, and supports any combination of the known
horizontal/vertical/union strategies.

The system translates schemas by first transforming the
source model S into a representation S0 in a universal
metamodel. Then a sequence of rule-based transformations
eliminates from S0 all modeling constructs (e.g., many-to-
many relationships, aggregation, or generalization) that are
absent from the target metamodel, producing in n steps a

1283



model Sn. Finally, Sn is cast into the target metamodel,
thereby producing the output model S ′. This style of model
translation was suggested in [2]. A rule-based implemen-
tation was demonstrated in [1].

The major novel features of our prototype are generation
of instance-level mappings, interactive editing, a general
mechanism for dealing with inheritance, and integration
with a commercial product featuring a high-quality user in-
terface. Instance-level mappings are computed by compos-
ing [5] the elementary data transformations produced upon
eliminating each successive modeling construct.

At Microsoft Research, we are building a model-
management system that helps engineers to develop meta
data applications more effectively using a set of high-
level operations on models and mappings [4]. The task of
schema translation is abstracted as the model-management
operator ModelGen [3]. In the remainder of this proposal
we describe the scope of the demonstration and highlight
some technical details.

2 What is Demonstrated
We demonstrate the key features of the prototype using a
sample business application designed using Microsoft Vi-
sual Studio 2005. Figure 2 shows the screenshot of a
schema containing several business entities, which corre-
spond directly to C# classes deployed in the application.
The schema is presented in the Entity Designer view of
the Microsoft Business Framework, which runs on top of
Visual Studio 2005. The schema defines types for cus-
tomers, (credit card) accounts, which are specialized into
personal and business accounts, and addresses linked to
the accounts. Customers are identified using a compound
key (SSN, DOB). Each customer owns one or more ac-
counts, which are billed to US addresses. Owns is an m:n-
association, while billTo is an aggregation, i.e., US ad-
dresses are existentially dependent on the accounts.

Figure 3 shows the relational schema generated by our
prototype from the source schema of Figure 2. The re-
lational schema is shown in the Data Source view of the
Business Intelligence Development Studio, a part of SQL
Server 2005 that runs in Visual Studio 2005.1 Under the
default settings,

• m:n-associations are translated into join ta-
bles (so association owns becomes a join table
JT Customer owns)

• aggregation is translated into inverse attributes
(hence, billTo becomes an inverse attribute In-
verse Account billTo Account AccountNo of Address)

• unique keys are added whenever source entities lack
keys (so table Address contains an oid attribute)

• each entity is turned into a relation that stores its
non-inherited properties and inherited keys (e.g., ta-
ble BusinessAccount stores CompanyName, but not
the inherited AnnualFee).

1The user interface shown in Figures 2 and 3 is subject to change prior
to the official release of the Visual Studio 2005 and SQL Server 2005
products.

We demonstrate how interactive modifications result in
incremental updates to the target schema. For example, re-
naming the property AccountNo in the source schema
results in renaming of the corresponding relational at-
tributes and constraints in the tables JT Customer owns,
Account, BusinessAccount, and Address. As another ex-
ample, changing the association-end multiplicity on owns
from 0..n (“ZeroOrMany”) to 0..1 (“ZeroOrOne”) replaces
the join table JT Customer owns in the target schema by
attribute owns Account AccountNo in the Customer table.

We show how the default settings can be changed to ob-
tain a wide range of object-to-relational mappings. For ex-
ample, in the scenario shown in Figures 2 and 3 the source
schema is annotated such that no table USAddress is gener-
ated: USAddress and Address objects share the table
Address and are distinguished using a flag attribute EType.

Under the default strategy, retrieving objects of type
BusinessAccount requires a join of the tables Account
and BusinessAccount. If most accounts are business ac-
counts, the join can be avoided by storing all direct in-
stances of the BusinessAccount class in one self-
contained table,

BusinessAccount(AccountNo, APR, AnnualFee,
CompanyName, CompanyAddress)

while the direct instances of Account and
PersonalAccount are stored in the table Account.
We show how this and other strategies can be selected by
annotating the source schema.

We illustrate the effect of choosing different strategies
on the generated mappings and SQL views. For example,
the Customer objects can be reconstructed using the fol-
lowing view on the relational schema of Figure 3:

CREATE VIEW CustomerView AS
SELECT T1.SNN, T1.DOB, ..., T5.AccountNo, T5.APR, ...
FROM Customer T1 LEFT OUTER JOIN
(SELECT T3.*, T4.*
FROM Customer T3, JT Customer owns T2, Account T4
WHERE T4.AccountNo = T2.To Account AccountNo AND

T3.DOB = T2.From Customer DOB AND
T3.SSN = T2.From Customer SSN) T5

ON T1.SSN = T5.SSN AND T1.DOB = T5.DOB

If we use the above-mentioned strategy for mapping
BusinessAccounts to a self-contained table, we ob-
tain a different view definition, in which Accounts are
retrieved as a union of Account and BusinessAccount tables:

CREATE VIEW CustomerView AS
SELECT T1.SNN, T1.DOB, ..., T7.AccountNo, T7.APR, ...
FROM Customer T1 LEFT OUTER JOIN
(SELECT T3.*, T6.*
FROM Customer T3, JT Customer owns T2,

((SELECT T4.AccountNo FROM Account T4
WHERE T4.EType IN (’Account’, ’PersonalAccount’))

UNION (SELECT T5.AccountNo
FROM BusinessAccount T5)) T6

WHERE T6.AccountNo = T2.To Account AccountNo AND
T3.DOB = T2.From Customer DOB AND
T3.SSN = T2.From Customer SSN) T7

ON T1.SSN = T7.SSN AND T1.DOB = T7.DOB

1284



3 Technology in Spotlight

In the remaining space, we briefly outline the key ideas be-
hind two of the novel techniques implemented in the proto-
type: generation of instance-level mappings and a general
approach for supporting inheritance.

3.1 Constructing Mappings by Way of Composition

The source schema S0 represented in a universal meta-
model is translated into the target schema Sn using a se-
ries of transformations. Each transformation takes as in-
put the current snapshot Si of the schema and produces
as output schema Si+1 and the mapping mi+1 between
Si and Si+1. The final mapping m between S0 and Sn

is obtained by composing the intermediate mappings as
m = m1 ◦ m2 ◦ · · · ◦ mn.

In general, mapping composition is a hard problem [5].
In the case of schema translation we exploit the fact that
each mapping mi is given by a combination of two view
definitions. The forward view f(mi) defines Si as a view
of Si−1, whereas the backward view b(mi) defines Si−1

as a view of Si. Hence, m is given by views f(m) and
b(m) such that f(m) = f1(m) ◦ · · · ◦ fn(m) and b(m) =
bn(m) ◦ · · · ◦ b1(m). Views f(m) and b(m) are computed
using standard view unfolding algorithms.

To illustrate the forward and backward views, consider
Figure 1. The figure shows schematically a transforma-
tion that eliminates m:n-associations. In addition to mod-
ifying the schema, the transformation produces an inter-
mediate instance mapping that expresses the new con-
structs TupleType, from, and to in terms of attr, and vice
versa. (Applying this transformation gives rise to the table
JT Customer owns in Figure 3.)

Mapping composition “links dynamically” the above
transformation with the ones that eliminate aggregation, in-
heritance, and other constructs absent from the relational
model. The output mapping is expressed in a neutral pred-
icate calculus representation that can be compiled into a
suitable language (e.g., SQL in the demonstration).

3.2 Inheritance Mapping Strategies

Eliminating inheritance is by far the most complex transfor-
mation implemented in the prototype. It is driven by a data
structure called an inheritance mapping table that specifies
the target relation for each direct or inherited property of
each class. The rows of such tables correspond to classes,
the columns correspond to relations.

To illustrate, Tables 1 and 2 define two alternatives for
mapping the class hierarchy rooted at Account into two
relations. For example, the last row of Table 1 tells us
how the objects of type BusinessAccount are per-
sisted: APR and AnnualFee are stored in relation Account
only, CompanyName and CompanyAddr are stored in re-
lation BusinessAccount only, and AccountNo is stored in
both relations. To reconstruct the objects, we join the
two relations. The second column of Table 1 tells us
how to populate the relation Account: we take a union of

 ⇒⇒Type1Type1 Type2Type2attrattr
m:nm:n

TupleTypeTupleType
Type1Type1

Type2Type2

fromfrom

toto
1:11:1

1:11:1

Forward view:
TupleType(z) ⇔ ∃x∃y (attr(x, y) ∧ z = Skolem(x, y)) 
from(z, x) ⇔ ∃y (attr(x, y) ∧ z = Skolem(x, y))
to(z, y) ⇔ ∃x (attr(x, y) ∧ z = Skolem(x, y)) 

Backward view:
attr(x, y) ⇔ ∃z (from(z, x) ∧ to(z, y))

 

Figure 1: Eliminating m:n-associations

the objects of types Account, PersonalAccount, and
BusinessAccount. The star in Account* indicates that
the relation needs to have a flag attribute (EType) to disam-
biguate the origin of the tuples.

The known inheritance mapping strategies and their
combinations are supported by varying the number of the
target relations and populating the cells of the table in vari-
ous ways. The only requirement for populating the cells is
that the union of the properties listed in each row covers all
direct and inherited properties of the respective class.

We implemented algorithms for generating the mapping
expressions for an arbitrary assignment of the table cells.
(These mappings are composed with those obtained by
other transformations.) Moreover, we developed mecha-
nisms for populating inheritance mapping tables using sim-
ple tuning knobs exposed to the engineers. For example,
each class can be annotated to use one of the three strate-
gies, called “Own”, “All”, or “None”. “Own” performs
vertical partitioning, the default strategy: each inherited
property is stored in the relation associated with the ances-
tor class that defines it. “All” yields horizontal partition-
ing: the direct instances of the class are stored in one rela-
tion, which contains all of its inherited properties. “None”
means that no relation is created: the data is stored in the
table for the parent class. The strategy selection propagates
down the inheritance hierarchy, unless overridden by an-
other strategy in descendant classes. The mentioned an-
notations exploit the flexibility of the inheritance mapping
tables only partially, yet are easy to communicate to the
engineers.

References
[1] P. Atzeni, P. Cappellari, P. A. Bernstein. ModelGen:

Model Independent Schema Translation (Demo). In
Proc. ICDE, 2005.

[2] P. Atzeni, R. Torlone. Management of Multiple Models
in an Extensible Database Design Tool. In Proc. EDBT,
pages 79–95, 1996.

[3] P. A. Bernstein. Applying Model Management to Clas-
sical Meta Data Problems. In Proc. CIDR, 2003.

[4] S. Melnik, P. A. Bernstein, A. Halevy, E. Rahm. Sup-
porting Executable Mappings in Model Management.
In Proc. ACM SIGMOD, 2005.

[5] A. Nash, P. A. Bernstein, S. Melnik. Composing Map-
pings Given by Embedded Dependencies. In Proc.
PODS, 2005.

1285



 

Figure 2: Screenshot showing a source model (object-oriented schema)

 

Figure 3: Screenshot showing the generated target model (relational schema)

Entity Account* BusinessAccount
Account {AccountNo,APR,AnnualFee}

PersonalAccount {AccountNo,APR,AnnualFee}
BusinessAccount {AccountNo,APR,AnnualFee} {AccountNo,CompanyName,CompanyAddr}

Table 1: Portion of inheritance mapping table used to produce the relational schema of Figure 3

Entity Account* BusinessAccount
Account {AccountNo,APR,AnnualFee}

PersonalAccount {AccountNo,APR,AnnualFee}
BusinessAccount {AccountNo,APR,AnnualFee,CompanyName,CompanyAddr}

Table 2: Alternative inheritance mapping strategy

1286


