
CMS-ToPSS: Efficient Dissemination of RSS Documents

Milenko Petrovic Haifeng Liu Hans-Arno Jacobsen

University of Toronto
petrovi@eecg.toronto.edu hfliu@cs.toronto.edu jacobsen@eecg.toronto.edu

1 Introduction

Recent years have seen a rise in the number of uncon-
ventional publishing tools on the Internet. Tools such
as wikis, blogs, discussion forums, and web-based con-
tent management systems have experienced tremen-
dous rise in popularity and use; primarily because they
provide something traditional tools do not: easy of use
for non computer-oriented users and they are based
on the idea of “collaboration.” It is estimated, by
pewinternet.org, that 32 million people in the US
read blogs (which represents 27% of the estimated 120
million US Internet users) while 8 million people have
said that they have created blogs.

Web-based collaboration is the common idea for this
new breed of content-management tools. The center
piece of such a tool is a web page that is being used as
an area where multiple users participate in content cre-
ation. More significantly, the collaboration enabling
tool used is the web page itself (accessed through the
all-pervasive web browser).

With these new web applications, there rouse a need
for users to stay informed about changes to the con-
tent. In general, users want to be updated about daily
news headlines of interest to them, or be notified when
there is a reply in a discussion they participate in, or
their favorite web personality has updated his/her blog
(online diary etc.).

RDF Site Summary (RSS), a RDF-based language
for expressing content changes, is an application on
the Web that has grown considerably in popularity.
The RSS specification is so flexible, that any kind of
changes can be described starting from blog updates,
source code changes, forum discussions to database
content changes and others, but it is up to the end
user application to ”understand” what the content is.
Being based on RDF helps RSS to this end, since RDF

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

is a language designed for expressing metadata.
RSS1 is quickly becoming the dominant way to dis-

seminate content update notifications on the Internet.
pewinternet.org reports that 6 million people in the
US use RSS aggregators (a service/application that
monitors large numbers of RSS feeds).2

Web-based content management systems (CMS)
have also grown in popularity mainly because they are
based on the publishing tools just described, but also
because they are much easier to use and maintain than
traditional CMS.3 Like traditional CMS systems, they
provide content access control, user profiles, persistent
storage, web access, RSS authoring, advanced content
management, content routing and taxonomic content
classification.

popular RSS feed

new content

poll for new content

RSS aggregators

Figure 1: Current RSS dissemination architecture

popular RSS feedG−ToPSS broker

new content

subscribe to new content

RSS aggregators

Figure 2: CMS-ToPSS RSS dissemination architecture

Existing RSS systems do not scale well. Anecdo-
tal evidence suggests that websites hosting popular
RSS feeds can be significantly overloaded with useless
network traffic due to the architecture of the current

1web.resource.org/rss/1.0/spec
2Reported by Pew Internet & American Life Project

(www.pewinternet.org), an organization that produces reports
that explore the impact of the Internet on families, communi-
ties, the daily life. Also reported by “RSS at Harvard Law”
(blogs.law.harvard.edu/tech/)

3Mid Market Web CMS Vendors Pull Ahead. Brice Dun-
woodie. CMSwire.com

1279



RSS delivery systems. Figure 1 illustrates the scala-
bility problem. Multiple RSS aggregators continuously
poll numerous RSS feed sites. Anecdotal evidence sug-
gests that the way RSS dissemination is currently done
can severely affect the performance of websites hosting
popular RSS feeds.4

The challenge is to build a data management archi-
tecture that avoids the inherent polling-based design,
supports the rich, on graphs based RDF meta-data
model and query languages, supports efficient filter-
ing of this kind of data, and offers scalability, as more
users publish and expect to stay current with changes
submitted by others.

publication of interests

publications
Broker

RSS browser RSS feed

subscriptions

Figure 3: RDF Site Summary Dissemination System
based on CMS-ToPSS

In this paper, we describe CMS-ToPSS, a novel
extension to content management systems, for scal-
able dissemination of RSS documents, based on the
publish/subscribe model. The extension provides fast
routing and filtering of RSS documents as well as
timely delivery of publications in a scalable manner
using a novel graph-based meta-data filtering algo-
rithm [11]. Figure 3 shows the architecture of CMS-
ToPSS. The new information system architecture sig-
nificantly reduces the number of unnecessary polls of
RSS feed sites (see Figure 2).

To illustrate the effectiveness of the system, we
extend an existing open-source web-based content-
management system, Drupal (drupal.org) to use
CMS-ToPSS in a manner that is transparent to end
users, yet providing an efficient content-routing archi-
tecture.

2 Related Work

Use of the publish/subscribe communication model
for selective information dissemination has been stud-
ied extensively. Existing publish/subscribe systems
[8, 1, 5, 3] use attribute-value pairs to represent pub-
lications, while conjunctions of predicates with stan-
dard relational operators are used to represent sub-
scriptions. Systems such as those described in [2, 6]
use XML to express publications and XPath as the
subscription language. CMS-ToPSS uses a new graph-
based matching algorithm [11] that allows fast filtering
of graph-based subscription languages such as those
based on RDF which are necessary for filtering of RSS

4InfoWorld RSS growing pains. Chad Dickerson. CTO Con-
nection, infoworld.com

documents.
OPS [12] uses a very general subgraph isomorphism

algorithm for matching over RDF graphs. However,
this approach, as we have shown [11], unnecessarily
increases the matching complexity.

Racer [9] is a publish/subscribe system based on
a description logics inference engine. Racer does not
scale as well as CMS-ToPSS (matching times are in
the order of 10s of seconds even for very simple sub-
scriptions vs. 10s of milliseconds for G-ToPSS), but it
does have more powerful inference capabilities.

CREAM [4] is an event-based middleware plat-
form for distributed heterogeneous event-based appli-
cations. Its event dissemination service is based on
the publish/subscribe model. Similar to other pub-
lish/subscribe systems, the subscription and publica-
tion model in CREAM, is based on attribute-value
pairs. Attributes and values can be associated with
semantic information from an ontology. Unlike CMS-
ToPSS, which uses RDF, ontology and data are repre-
sented in a CREAM-specific data model.

3 System Architecture

CMS-ToPSS employs the publish/subscribe, data-
centric communication model [7]. There are three
main entities in this model: publishers, subscribers
and brokers. Publishers send all data to a broker (or a
network of brokers). Subscribers register with the bro-
ker their interest in receiving specific data. The role of
the broker is to mediate communication between the
publishers and the subscribers by matching the pub-
lished data with the interests of the subscribers. This
way the subscribers do not need to know who is pub-
lishing the data, as long as the data meets their spe-
cific interest, and the publishers do not need to know
who are the ultimate receivers of their publications.
This provides decoupling of senders and receivers of
data both in space and time, which makes the pub-
lish/subscribe paradigm particularly well suited for
structuring of large and dynamic distributed systems
such as RSS feed dissemination for example.

A CMS-ToPSS broker relies on G-ToPSS [11] to
perform RDF filtering. G-ToPSS is based on the fol-
lowing data model consisting of three components:
publications, subscriptions and an ontology.

A publication is represented as a directed labeled
graph. We interpret the graph as a set of RDF triples
(subject, property, object). Each triple is represented
by a node-edge-node link (as shown in Figure 4).
Subject and property are URI references, while object
is either an URI reference or a literal. In all, a publi-
cation is a directed graph where the vertices represent
subjects and objects and edges between them repre-
sent properties.

The following illustrates a publication about one
paper published in the 2001 SIGMOD conference ex-
pressed in G-ToPSS publication language (a simplified

1280



Subject Object
property

Figure 4: RDF triple graph

RDF serialization):

BEGIN ID Publication1
(uri:ArnoPaper,uri:author,lit:Jacobsen)
(uri:ArnoPaper,uri:title,lit:FastFilter)
(uri:ArnoPaper,uri:conference,uri:SIGMOD)
(uri:SIGMOD,uri:location,lit:California)
(uri:SIGMOD,uri:year,lit:2001)

A subscription is a directed graph pattern specify-
ing the structure of the publication graph with op-
tional constraints on some vertices. A subscription
is represented by a set of 5-tuples (subject, property,
object, constraintSet(subject), constraintSet(object)).
Constraint sets can be empty.

Similar to the publication data model, each sub-
scription 5-tuple can be represented as a link starting
from subject node and ending at the object node with
the property as its label. From the publication data
model, we know that each node is labeled with a spe-
cific value. However, in a subscription, we also allow
subject and object to be either a constrained or uncon-
strained variable. The unconstrained variable matches
any specific value of the publication, in the entire do-
main while the constraint variable matches only values
satisfying the constraint. A constraint is represented
as a predicate of the form (?x, op, v) where ?x is the
variable, op is an operator and v is a value.

For example, the following illustrates a subscrip-
tion that specifies interest in a paper published at the
SIGMOD conference after the year 2000 expressed in
the G-ToPSS SQL-like subscription language (GQL),
based on RDQL [10]:

ID Subscription1
SELECT ?z WHERE
(uri:ArnoPaper,uri:author,lit:Jacobsen)
(uri:ArnoPaper,uri:conference,uri:SIGMOD)
(uri:SIGMOD,uri:year,?z)
SUCHTHAT (?z > 2000)

This type of constraint is used for literal value fil-
tering. Similarly, the following subscription is looking
for Arno’s publication in a conference after 1999:
ID Subscription2
SELECT ?x, ?y WHERE
(?y,uri:author,lit:Jacobsen)
(?y,uri:conference,uri:SIGMOD)
(uri:SIGMOD,uri:year,?x)
SUCHTHAT (?y <= Publication) AND (?x > 1999)

There are two variables; the one constraining the
year is a literal value filter; the other is a semantic
constraint which uses a class ontology (see Figure 5).
Only an instance in the publication that is a descen-
dant of the “Publication” class is going to match.

For each 5-tuple (subject, property, object, con-
straintSet(subject), constraintSet(object)) in subscrip-
tion graph GS , if there is at least one triple (sub-
ject, property, object) in publication GP such that the

subject and object nodes are matched and linked by
the same property edge then GP matches GS . The
nodes that match are either the same (i.e., their labels
are lexicographically equal) or the node in GS is a vari-
able for which the value of the node in GP satisfies all
constraints associated with the variable.

For example, the Subscription1 is matched by
the Publication1 since the publication contains the
same RDF triples (ArnoPaper, author, Jacobsen),
((ArnoPaper, conference, SIGMOD), and (2001 >
2000 ), thus (SIGMOD, year,?x(?x > 2000)) is sat-
isfied.

As illustrated in Subscription2, G-ToPSS allows
the use of an ontology to specify taxonomy constraints
on subjects and objects. G-ToPSS uses RDF’s class
taxonomy with the is-a relationship to represent se-
mantic information about a subject or an object that
is available in the ontology. Multiple inheritance is al-
lowed and the only restriction on the taxonomy is that
it must be acyclic.

Publication Department
Publication

Jacobsen’s
Publication

Journal
Conference
Proceedings Technical

Report

TKDE SIGMODWWW

Arno’s
Paper #17

Figure 5: Example Ontology

In Figure 5, we show an example of a class taxon-
omy about an academic bibliography system. Class
“Publications” includes three subclasses: “Journal”,
“Conference Proceeding” and “Technical Report”.
The document instance “Arno’s paper ]17” belongs to
both “Jacobsen’s Publications” and “SIGMOD” pro-
ceedings.

Figure 6: Matching performance

To demonstrate the scalability of CMS-ToPSS, in
Figure 6, we measure the matching time with the in-
creasing number of subscriptions. These results un-
derline the scalability of our approach.

1281



4 Demonstration

The demonstration system consists of two main com-
ponents: Drupal module (a conent management sys-
tem) and the G-ToPSS filtering service. The overall
architecture is shown in Figure 7. The filtering service
reads RSS feeds and GQL queries using XML-RPC
over HTTP. The Drupal module acts as a client to
the filtering service. The module does not require any
changes to Drupal, and any Drupal installation can
experience the benefits of CMS-ToPSS by simply re-
trieving and installing the module.

G-ToPSS filtering service is accessible via XML-
RPC and can be accessed by any XML-RPC client. G-
ToPSS inputs are publications and subscriptions seri-
alized as RSS feeds. G-ToPSS outputs are notifications
which are also serialized as RSS feeds. Each subscrip-
tion that a user submits is, in fact, a distinct RSS feed
(containing items matching the user’s subscription).

Drupal running on a Web Server

content−changes (RSS)

matching RSSsubscriptions

Web Browser
content (web pages, forum, etc.)

(GQL)

G−ToPSS

CMS−ToPSSuser profile

Figure 7: CMS-ToPSS system architecture

The Drupal module performs both subscribing and
publishing based on user interaction with Drupal
CMS. The module serializes all content changes in
Drupal using RSS and sends them to the G-ToPSS
filter service. The filtering service forwards the doc-
ument to the interested clients which could be other
XML-RPC clients as well as other Drupal modules.
Note that G-ToPSS filtering service can serve multiple
Drupal sites.

In addition to publishing all content changes in
RSS, Drupal module also extends different kinds of
Drupal content with change notification capabilities.
For example, users can subscribe to receive notifica-
tions when they have replies on the discussion forum,
or when a certain web page in Drupal has been up-
dated. The Drupal module registers these kinds of
subscriptions with the G-ToPSS filtering service trans-
parently to the user.

In the demonstration, a user, using a web browser,
accesses a Drupal site that is extended with the mod-
ule described in this paper. The user can choose to
receive notifications for content of her choice (e.g., dis-
cussion forum replies, web page updates etc.) Drupal
supports convenient taxonomic content classification,
which can be directly mapped to a G-ToPSS ontol-
ogy. In this case, the user will get notifications only
when both the content and taxonomic constraints of

her subscription are satisfied. The users can also create
content (e.g., participate in a discussion form or cre-
ate/update a web page) to trigger notifications. The
users’ subscriptions are stored as part of their Drupal
profile. Via the profile web page, users can review their
notification requests as well as see all notifications re-
ceived for those requests.

To demonstrate the query capabilities of G-ToPSS,
we also allow users to subscribe directly on the RSS
content by expressing their subscriptions in G-ToPSS’s
SQL-like subscription language (GQL). The subscrip-
tions and their results are also shown as part of the
user profile.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Ast-
ley, and T. D. Chandra. Matching events in a content-
based subscription system. In PODC, pages 53–61,
1999.

[2] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of infor-
mation. In VLDB, 2000.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-
sign and evaluation of a wide-area event notification
service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

[4] M. Cilia, C. Bornhoevd, and A. P. Buchmann.
CREAM: An Infrastructure for Distributed Heteroge-
neous Event-based Applications. In Proceedings of the
International Conference on Cooperative Information
Systems, pages 482–502, 2003.

[5] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27:827–850, sep 2001.

[6] Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter:
Efficient and scalable filtering of XML documents. In
ICDE, 2002.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-
M. Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[8] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira,
K. Ross, and D. Shasha. Filtering algorithms and im-
plementation for very fast publish/subscribe systems.
In SIGMOD, 2001.

[9] V. Haarslev and R. Moller. Incremental Query An-
swering for Implementing Document Retrieval Ser-
vices. In Proceedings of the International Workshop
on Description Logics, 2003.

[10] L. Mille, A. Seaborne, and A. Reggiori. Three Imple-
mentations of SquishQL, a Simple RDF Query Lan-
guage. In Proceedings of ISWC, 2002.

[11] M. Petrovic, H. Liu, and H.-A. Jacobsen. G-ToPSS -
fast filtering of graph-based metadata. In the 14th
International World Wide Web Conference, Chiba,
Japan, May 2005.

[12] J. Wang, B. Jin, and J. Li. An Ontology-Based Pub-
lish/Subscribe System. In Middleware, 2004.

1282


