
BibFinder/StatMiner: Effectively Mining and Using
Coverage and Overlap Statistics in Data Integration∗

Zaiqing Nie Subbarao Kambhampati Thomas Hernandez

Department of Computer Science and Engineering
Arizona State University,Tempe, AZ 85287-5406

{nie, rao, th}@asu.edu

Abstract

Recent work in data integration has shown the im-
portance of statistical information about the cover-
age and overlap of sources for efficient query pro-
cessing. Despite this recognition there are no ef-
fective approaches for learning the needed statis-
tics. In this paper we present StatMiner, a sys-
tem for estimating the coverage and overlap statis-
tics while keeping the needed statistics tightly un-
der control. StatMiner uses a hierarchical classi-
fication of the queries, and threshold based vari-
ants of familiar data mining techniques to dynam-
ically decide the level of resolution at which to
learn the statistics. We will demonstrate the ma-
jor functionalities of StatMiner and the effective-
ness of the learned statistics inBibFinder, a pub-
licly available computer science bibliography me-
diator we developed. The sources thatBibFinder
integrates are autonomous and can have uncon-
trolled coverage and overlap. An important fo-
cus inBibFinderwas thus to mine coverage and
overlap statistics about these sources and to ex-
ploit them to improve query processing.

1 Introduction
With the vast number of autonomous information sources
available on the Internet today, users have access to a large
variety of data sources. Data integration systems are be-
ing developed to provide a uniform interface to a multi-
tude of information sources, query the relevant sources au-
tomatically and restructure the information from different

∗This research is supported in part by the NSF grant IRI-9801676 and
the ASU ET-I3 initiative grant ECR A601. We thank Ullas Nambiar, Sree-
lakshmi Vaddi for comments as well as help in a previous implementation
of Statminer, and Louiqa Raschid, Huan Liu, K. Selcuk Candan for many
helpful critiques.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

Figure 1:The BibFinder User Interface

Figure 2:Bibfinder/StatMiner Architecture

sources. In a data integration scenario, the user interacts
with a mediator system via a mediated schema. A medi-
ated schema is a set of virtual relations, which are effec-
tively stored across multiple and potentially overlapping
data sources, each of which may only contain a partial ex-
tension of the relation. Query optimization in data inte-
gration thus requires the ability to figure out what sources
are most relevant to the given query, and in what order
those sources should be accessed [FKL97, NLF99, NK01,
DH02]. For this purpose, the query optimizer needs access
to statistics about the coverage of the individual sources
with respect to the given query, as well as the degree to
which the answers they export overlap. We illustrate the

need for these statistics with an example.

BibFinder Example: We have been developingBibFinder
(http://rakaposhi.eas.asu.edu/bibfinder, Figure 1), a pub-
licly available computer science bibliography mediator.
BibFinderintegrates several online Computer Science bib-
liography sources. It currently coversCSB, DBLP, Net-
work Bibliography, ACM Digital Library, ScienceDirect,
andCiteSeer. Plans are underway to add several additional
sources includingIEEE XploreandComputational Geom-
etry Bibliography.

The sources integrated byBibFinder are autonomous
and partially overlapping. By combining the sources,
BibFindercan present a unified and more complete view
to the user. However it also brings some interesting opti-
mization challenges. Let us assume that the global schema
exported byBibFinderincludes just the relation:

paper(title, author, conference/journal, year)
Each of the individual sources only export a subset of the
global relation. For example,Network Bibliographyonly
contains publications in Networks,DBLP gives more em-
phasis on Database related publications, whileScienceDi-
rect only has archival journal publications etc. To effi-
ciently answer users’ queries,BibFinderneeds to find and
access the most relevant subset of the sources for the given
query. Suppose, the user asks a selection query:
Q(title,author) :− paper(title, author, conf/journal, year),

conf=“AAAI”.
To answer this query efficiently,BibFinderneeds to know
thecoverageof each sourceS with respect to the queryQ,
i.e. P (S|Q), the probability that a random answer tuple for
queryQ belongs to sourceS. Given this information, we
can rank all the sources in descending order ofP (S|Q).
The first source in the ranking is the one thatBibFinder
should access first while answering queryQ. Although
ranking seems to provide the complete order in which to
access the sources, this is unfortunately not true in general.
It is quite possible that the two sources with the highest
coverage with respect toQ happen to mirror each others’
contents. Clearly, calling both sources is not going to give
any more information than calling just one source. There-
fore, after we access the sourceS′ with the maximum cov-
erageP (S′|Q), we need to access as the second source, the
sourceS′′ that has the highestresidual coverage(i.e., pro-
vides the maximum number of those answers that are not
provided by the first sourceS′). Specifically we need to
pick the sourceS′′ that has next highest coverage w.r.t.Q
but has minimaloverlap(common tuples) withS′.

Given that sources tend to be autonomous in a data in-
tegration scenario and that the mediation may or may not
be authorized, it is impractical to assume that the sources
will automatically export coverage and overlap statistics.
Consequently, data integration systems should be able to
learn the necessary statistics. Although previous work has
addressed the issue of how to model these statistics (c.f.
[FKL97]), and how tousethem as part of query optimiza-
tion (c.f. [NLF99],[NK01],[DH02]), there has not been any
work on effectively learning the statistics in the first place.

In our research, we address the problem of learning the
coverage and overlap statistics for sources with respect to
user queries. A naive approach may involve learning the

coverages and overlaps of all sources with respect to all
queries. This will necessitateNq ∗ 2NS different statistics,
whereNq is the number of different queries that the medi-
ator needs to handle andNS is the number of data sources
that are integrated by the mediator. An important challenge
is to keep the number of statistics under control, while still
retaining their advantages in query optimization.

We will demonstrateStatMiner (see Figure 2), a statis-
tics mining module for web based data integration.Stat-
Miner is being applied toBibFinder to help users find
CS papers efficiently. StatMiner comprises of a set of
connected techniques that estimate the coverage and over-
lap statistics while keeping the amount of needed statis-
tics tightly under control. Since the number of potential
user queries can be quite high,StatMiner aims to learn
the required statistics forquery classesi.e. groups of
queries. By selectively deciding the level of generality of
the query classes with respect to which the coverage statis-
tics are learned,StatMinercan tightly control the number of
needed statistics (at the expense of loss of accuracy). The
loss of accuracy may not be a critical issue for us as it is
the relativerather than theabsolutevalues of the coverage
statistics that are more important in ranking the sources.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe our approach for modeling coverage and
overlap between sources in terms of query classes. In Sec-
tion 3, we describeStatMiner, which uses this model to
automatically mine source statistics. In Section 4, we de-
scribe what we plan to demonstrate.

2 Modeling Coverage and Overlap w.r.t.
Query Classes

Our approach consists of grouping queries into abstract
classes. In order to better illustrate the novel aspects of
our association rule mining approach, we purposely limit
the queries to just projection and selection queries.

2.1 Classifying Mediator Queries

Since we are considering selection queries, we can classify
the queries in terms of the selected attributes and their
values. To abstract the classes further we assume that
the mediator has access to the so-called “attribute value
hierarchies” for a subset of the attributes of each mediated
relation.

Attribute Value Hierarchies: An AV hierarchy (or at-
tribute value hierarchy) over an attributeA is a hierarchi-
cal classification of the values of the attributeA. The leaf
nodes of the hierarchy correspond to specific concrete val-
ues ofA. For numerical attributes, we can take value ranges
as leaf nodes. While the non-leaf nodes are abstract values
that correspond to the union of values below them. Figure 3
shows the AV hierarchies for the “conference” and “year”
attributes of the “paper” relation.

Note that hierarchies do not have to exist for every
attribute, but rather only for those attributes over which
queries are classified. We call these attributes theclassi-
ficatory attributes . We can choose as the classificatory at-
tributes the bestk attributes whose values differentiate the

RT,02 AI,RT

SIGMOD,RT ICDE,RT DB,02 AAAI,RT AI,01 ECP,RT

RT,01

SIGMOD01 ICDE02ICDE01 AAAI01

DB,01

ECP01

RT,RT

DB,RT

AI

SIGMOD ICDE AAAI

RT

2001

ECP

2002

RT

DB

AV Hierarchy for the Conference Attribute AV Hierarchy for the Year Attribute

SIGMOD02 ECP02 AAAI02

AI,02

Query Class Hierarchy

Figure 3: AV Hierarchies and the Corresponding Query Class
Hierarchy

sources the most, where the numberk is decided based on a
tradeoff between prediction performance versus computa-
tional complexity of learning the statistics by using thesek
attributes. The selection of the classificatory attributes may
either be done by the mediator designer or using automated
techniques. The AV hierarchies themselves can either be
hand-coded by the designer, or can be learned automati-
cally (see Section 3).
Query Classes:Since we focus on selection queries, a typ-
ical query will have values of some set of attributes bound.
We group such queries into query classes using the AV hi-
erarchies of the classificatory attributes. A queryfeature is
defined as the assignment of a classificatory attribute to a
specific value from its AV hierarchy. A feature is “abstract”
if the attribute is assigned an abstract (non-leaf) value from
its AV hierarchy. Sets of features are used to define query
classes. Specifically, a query class is a set of (selection)
queries that all share a particular set of features. The space
of query classes is just the cartesian product of the AV hi-
erarchies of all the classificatory attributes. Specifically, let
Hi be the set of features derived from the AV hierarchy of
the ith classificatory attribute. Then the set of all query
classes (calledclassSet) is simplyH1 × H2 × ... × Hn.
The AV hierarchies induce subsumption relations among
the query classes. A classCi is subsumed by classCj if
every feature inCi is equal to, or a specialization of, the
same dimension feature inCj . A query Q belongs to a
classC if the values of the classificatory attributes inQ
are equal to or are specializations of the features defining
C. Figure 3 shows an example class hierarchy for a very
simple mediator with the two example AV hierarchies. The
query classes are shown at the bottom, along with the sub-
sumption relations between the classes.
Query List: We assume the mediator maintains a query
list QList, which keeps track of the user queries and their
access frequency. We useFRQ to denote the access fre-
quency of a queryQ, andFR to denote the total frequency
of the all the queries in QList. Thequery probabilityof a
queryQ, denoted byP (Q), is the probability that a random
query posed to the mediator is the queryQ. It can be com-
puted using the formula:P (Q) = FRQ

FR . Theclass proba-
bility of a classC, denoted byP (C), is the probability that
a random query posed to the mediator is subsumed by the
classC. It can be computed as:P (C) =

∑
Q∈C P (Q).

2.2 Source Coverage and Overlap w.r.t. Query Classes

Thecoverageof a data sourceS with respect to a classC,
denoted byP (S|C), is the probability that a random tuple
belonging to classC is present in sourceS. We assume
that the union of contents of the available sources within
the system covers 100% of the class. In other words, cov-
erage is measured relative to the available sources. The
overlapamong a set̂S of sources with respect to a classC,
denoted byP (Ŝ|C), is the probability that a random tuple
belonging to the classC is present in each sourceS ∈ Ŝ.

The coverage and overlap can be conveniently computed
using an association rule mining approach. Specifically,
we are interested in the class-source association rules of
the formC → Ŝ, whereC is a query class, and̂S is a
(possibly singleton) set of data sources. The overlap (or
coverage when̂S is a singleton) statisticP (Ŝ|C) is simply
the “confidence” of such an association rule1. Examples of
such association rules include:AAAI → S1, AI → S1,
AI&2001 → S1 and2001 → S1 ∧ S2.

3 The StatMiner Architecture
In StatMiner(see Figure 2), the frequent query classes are
discovered by using the DFC, an algorithm we developed to
efficiently identify the query classes with sufficiently large
support (for more information see [NK02]), and the cov-
erage and overlap statistics using a variant of the Apriori
algorithm [AS94]. The resolution of the learned statistics
is controlled in an adaptive manner with the help of two
thresholds. A thresholdτc is used to decide whether a query
class has large enough support to be remembered. When a
particular query class doesn’t satisfy the minimum support
threshold,StatMiner, in effect, stores statistics only with
respect to some abstraction (generalization) of that class.
Another thresholdτo is used to decide whether or not the
overlap statistics between a set of sources and a remem-
bered query class should be stored.

Specifically,StatMinerautomatically builds AV hierar-
chies using an agglomerative hierarchical clustering algo-
rithm (for more information see [NK02]) from the query
list maintained by the mediator. The basic idea of gen-
erating an AV hierarchy is to cluster similar attribute val-
ues into classes in terms of the coverage and overlap statis-
tics of their corresponding selection queries binding these
values. Then the problem of finding similar attribute val-
ues becomes the problem of clustering similar selection
queries. In order to cluster similar queries, we define a
distance function to measure the distance between a pair of
selection queries (Q1, Q2).

d(Q1, Q2) =

√∑

i

[P (Ŝi|Q1)− P (Ŝi|Q2)]2

1Support and confidence are two measures of a rule’s significance. The
support of the ruleC → Ŝ (denoted byP (C∩Ŝ)) refers to the percentage
of the tuples in the global relation that are common to all the sources
in set Ŝ and belong to classC. The confidence of the rule (denoted by

P (Ŝ|C) =
P (C∩Ŝ)

P (C)
) refers to the percentage of the tuples in the classC

that are common to all the sources insourceSet Ŝ.

whereŜi denotes theith source set. The interpretation of
the distance function is that we consider two queries similar
if their source coverage and overlap statistics are similar.

Using DFC we then classify user queries based on the
learned AV Hierarchies and dynamically identify frequent
classes for which the class probability is above the speci-
fied thresholdτc. We learn and store statistics in the media-
tor’s main memory only with respect to these identified fre-
quent classes. When the mediator, in our caseBibFinder,
encounters a new user query, it maps the query to one of
the query classes for which statistics are available. Since
we use thresholds to control the set of query classes for
which statistics are maintained, it is possible that there is
no query class that exactly matches the user query. In this
case, we map the query to the nearest abstract query class
for which statistics are available. The loss of accuracy in
statistics entailed by this step should be seen as the cost we
pay for keeping the amount of stored statistics low. Once
the query class corresponding to the user query is deter-
mined, the mediator uses the learned coverage and overlap
statistics to rank the data sources that are most relevant to
answering the query.

Details on how we use DFC to efficiently discover the
frequent query classes by using theanti-monotone prop-
erty, and how we use an item set mining algorithm,Apriori,
to discover strongly correlated source sets for all the large
classes can be found in [NK02]. That paper also reports
empirical studies we conducted to evaluate the effective-
ness of theStatMinerapproach.

4 Description of the Demo
In this demo we will showcaseStatMiner’s mining al-
gorithm and show the use of the learned statistics in
BibFinder, which makes use ofStatMinerto learn coverage
and overlap statistics to integrate its bibliography sources.
These sources are partially overlapping both in tuples and
attributes. For example, some sources may have thebib-
texentry for the paper, some may have the pdf file for the
paper, while others may have the abstract. By combining
them, we can present a unified and more complete view
to the user. Since the same paper’s information may be
stored partially and overlappingly over multiple sources,
the testbed will provide an opportunity to exercise and eval-
uate all the StatMiner techniques. InBibFinder, users can
ask selection queries on the following attributes: title, au-
thor, year, and conference/journal.BibFindermaintains a
query list which keeps all the queries asked by the users.
Figure 2 shows howBibFinder interacts withStatMiner.
Our demonstration will focus on the following aspects:

Building AV hierarchies: . StatMinerassumes AV Hierar-
chies to classify the queries, and these hierarchies are dif-
ficult to hand-generate in many scenarios. We will show
how StatMiner can automatically build complex hierar-
chies starting from the query list maintained byBibFinder.
We will show the challenges and solutions of learning AV
hierarchies for different types of attributes. In the context
of BibFinder, we will show how we learn AV hierarchies
for the title attribute, author attribute, year attribute and
conference attributes.

Handling the Space and Accuracy Tradeoff: We will
show that StatMiner can systematically trade time and
space consumption of the statistics computation for ac-
curacy by varying the coverage and overlap thresholds.
We first show how significantly StatMiner can reduce the
number of classes and association rules remembered by
slightly increasing the thresholds. Then we will show that
the learned statistics provide tangible improvements in the
source ranking, and the improvement is proportional to the
type (coverage alone vs. coverage and overlap) and granu-
larity of the learned statistics.

Using the Learned Statistics inBibFinder: We will show
thatBibFindercan significantly reduce both the cost of gen-
erating all the answers and the cost of generating only par-
tial results for most of user queries by using our coverage
and overlap learned statistics. We will also show how the
learned statistics can be used inBibFinderto avoid irrele-
vant or redundant source calls.

5 Conclusion
In this paper, we usedBibFinder to motivate the need for
automatically learning the coverage and overlap statistics
of sources for efficient query processing in a data inte-
gration scenario. We then presented theStatMinerarchi-
tecture for estimating the coverage and overlap statistics
while keeping the needed statistics tightly under control.
The contributions ofStatMiner include: (1) developing a
model for supporting a hierarchical classification of a set
of queries, (2) an approach for estimating the coverage and
overlap statistics using association rule mining techniques,
and (3) a threshold-based modification of the mining tech-
niques for dynamically controlling the resolution of the
learned statistics. We explained howStatMineris used as
a backend to improve the query processing inBibFinder.
Finally, we described the specific capabilities ofStatMiner
andBibFinderthat we plan to demonstrate.

References

[AS94] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms
for Mining Association Rules. InVLDB, Santiago, Chile, 1994.

[DH02] A. Doan and A. Halevy. Efficiently Ordering Plans for
Data Integration. InProceedings of ICDE-2002, 2002.

[FKL97] D. Florescu, D. Koller, and A. Levy. Using probabilistic
information in data integration. InProceeding of the International
Conference on Very Large Data Bases(VLDB) , 1997.

[NK01] Z. Nie and S. Kambhampati. Joint optimization of cost
and coverage of query plans in data integration. In ACM CIKM,
Atlanta, Georgia, November 2001.

[NK02] Z. Nie and S. Kambhampati. Frequency-Based Cover-
age Statistics Mining for Data Integration. ASU CSE TR 02-004.
Dept. of Computer Science & Engg. Arizona State University.
http : //www.public.asu.edu/ ∼ zaiqingn/tech freqc.pdf

[NLF99] F. Naumann, U. Leser, J. Freytag. Quality-driven Inte-
gration of Heterogeneous Information Systems. InVLDB Confer-
ence1999.

