
Schema-driven Customization of Web Services

S. Abiteboul
INRIA

B. Amann
Cedric-CNAM

J. Baumgarten
INRIA

O. Benjelloun
INRIA

F. Dang Ngoc
INRIA

T. Milo �

INRIA

1 Introduction

XML is becoming the universal format for data ex-
change between applications. Recently, the use of
XML documents, where some of the data is given ex-
plicitly, while other parts are de�ned by programs that
generate the relevant data, started gaining popular-
ity [7, 8, 3]. We refer to such documents as inten-
sional documents. We call Materialization the process
of invoking some of the programs included in an XML
document and replacing them by their results. We
are particularly interested here in documents where
the intensional part is given by embedding calls to
Web services inside the documents. Web services [11]
are emerging as a standard mean of publishing and
accessing data on the Web, by providing a standard
XML-based protocol to invoke remote programs over
the Web (SOAP), along with a standard language to
describe them (WSDL). Consequently, they furnish
a uniform framework for describing intensional XML
data, and were adopted for instance in [7, 8, 3]. The
goal of this demonstration is to advocate for the ex-
change of such intensional XML documents between
applications, and to illustrate the new possibilities and
the great exibility they bring to application design.

The demonstrated software was developed in the
context of Active XML [3, 1, 9, 2], a peer-to-peer
system that natively supports intensional documents
and the declarative speci�cation of Web services us-
ing XQuery [12]. We propose a new approach that
allows one to control and customize the exchange of
intensional documents between Active XML peers, but
the same principles can be employed for exchanges be-
tween arbitrary Web applications.

When exchanged between two applications, inten-
sional documents have a crucial property: since Web
services can be called from anywhere on the Web, data

� On sabbatical from Tel-Aviv University.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

can either be materialized before sending, or sent in
its intensional form, thus leaving to the receiver the
freedom to materialize the data if and when needed.
More generally, a hybrid approach can be adopted,
where some data is materialized by the sender before
the document is sent, and some by the receiver. This
choice may be inuenced by various parameters, such
as performance, capabilities, and security considera-
tions. For instance, if communication is expensive,
deferring the materialization to the receiver is prefer-
able. On the other hand, a particular receiver may
not be capable of invoking some service calls due, for
instance, to limited access rights or security consider-
ations. Therefore, this particular portion of the data
needs to be materialized by the sender.

For purely extensional data, schemas (like DTD's or
XML Schemas) are used to specify the desired format
of the exchanged data. Similarly, we proposed in [9] to
control the exchange of intensional data, and in partic-
ular the invocation of calls, using an extension of XML
Schema we introduced, called XML Schemaint. The
novelty is that these schemas do not only describe the
required structure of standard extensional XML data,
but also entail information about which parts of the
data are allowed to be intensional, and which service
calls may appear where in the documents.

Before sending a document, the sender must check if
the data, in its current structure, matches the schema
expected by the receiver. If not, the sender must per-
form the necessary service calls to transform the data
into the desired structure, if possible. We call the se-
quence of these invoked calls a rewriting. A set of novel
algorithms that allow the sender to determine, stati-
cally or dynamically, the required rewriting sequence
is provided in [9]. We argue that this new, dynamic,
data exchange paradigm allows for great exibility in
application design, and in particular in the customiza-
tion and use of Web services.

Indeed, rather than building for each client a par-
ticular Web service that �ts its needs/capabilities, the
same service can be adapted to di�erent purposes by
adjusting { automatically via rewriting and without
additional programming e�ort { the intensional output
(resp. input) parameters to the client's (resp. service
provider's) requirements. The demo proposed here
aims at showing the power of this new data exchange



paradigm and, in particular, the role played by in-
tensional XML documents, XML Schemaint schemas,
and our document rewriting algorithms, in the devel-
opment of customizable Web services.
Demonstration highlights We will demonstrate a
peer-to-peer news publication and syndication system,
and show how Web services provided by various peers
can easily be customized using the above concepts.
We consider the following setting: A number of news
sources (newspaper websites, but also individual \we-
blogs") regularly publish some news stories. They
share this information with others in a standard XML
format, called RSS [10]. Clients can periodically re-
trieve news from the sources they are interested in, or
subscribe to news feeds. So called aggregators are a
special kind of peers who know of many news sources
and let other clients ask queries and/or discover new
sources. They also relay queries to other news sources
and/or aggregators to answer a query.

We will show that when the Web services pro-
vided by the news sources/aggregators exchange in-
tensional documents (controlled by the schemas men-
tioned above), the same service, e.g. querying, can be
easily customized to be used by distinct kinds of par-
ticipants, e.g. various client types or aggregators, with
di�erent requirements on the type of the input/output.
Interactions between peers (including the exchange
and rewriting of intensional data) will be tracked by a
distributed logging system and displayed to illustrate
the system's underlying computation.

The demonstrated news application is implemented
on top of the Active XML system [3], which was
demonstrated in VLDB'02 [1] and is not the focus of
the current demonstration. Indeed, the most signi�-
cant module for our demonstration is a new Schema
Enforcementmodule, that controls the rewriting of the
intensional data exchanged between the de�ned Web
services and permits their seamless customization.

The remaining of this paper is structured as fol-
lows. Section 2 briey describes intensional docu-
ments, schemas, and rewritings. Section 3 illustrates,
through the news syndication demonstration scenario,
how Web services exchanging intensional data are cus-
tomized. Section 4 describes the implementation.

This work is clearly related to topics such as view
materialization and data conversion, (e.g. [6, 4]). A re-
view of related work is omitted here for space reasons,
but can be found in [9].

2 Exchanging intensional XML data

In this section, we briey introduce intensional docu-
ments, and outline the role of schemas and rewritings
in the exchange of such documents.

The following is a fragment of an intensional XML
document containing information on news channels.
It provides, for each channel, its title and a list of
news items. The data format is inspired by RSS

[10]. In the �rst channel, the news items are given
intensionally: the <sc> element represents a call to
the getNewsAbout service of source scripting.com.
When this web service is invoked, the returned news
items are inserted into the document, replacing the
<sc> element. In the second channel, the news items
are given explicitly, except for the news story which
is de�ned by a call to the getStory service. The full
syntax, omitted here for space reasons, uses a partic-
ular namespace to di�erentiate service calls from the
rest of data, and provides all the necessary parameters
to invoke the services using SOAP.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<rss version="0.91">
<channel>
<title>Scripting news</title>
<items>
<sc>scripting.com/getNewsAbout("tech")</sc>

</items>
</channel>
<channel>
<title>Slashdot</title>
<items>
<item id="cx_ah_0218">
<title>Google goes Blog-Crazy</title>
<pubDate>Feb 18, 2003 10:36:03 GMT</pubDate>
<description>
Google just acquired Pyra labs, the company
that makes Blogger.

</description>
<sc>slashdot.org/getStory("cx_ah_0218")</sc>

</item> ...
</items>

</channel> ...
</rss>

We assume here that slashdot.org returns a <story>
element with a textual content, while scripting.com
returns a sequence of <item> elements with the above
structure. This type information is typically provided
by the WSDL description of Web services.

The following is a fragment of the XML Schemaint
describing the structure of such a document. The syn-
tax is a natural extension of XML Schema [12], allow-
ing to specify what type of service calls can appear in
the intensional document, and where.

<xs:element name="channel">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="items" type="ItemList"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="ItemList">
<xs:sequence>
<xs:choice>
<xsi:serviceCallPattern ref="News"/>
<xs:element name="item" type="Item"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name="Item">
<xs:sequence>
<xs:element name="title" type="xs:string"/>



<xs:element ref="pubDate" type="xs:dateTime"/>
<xs:element ref="description" type="xs:string"/>
<xs:choice>

<xsi:serviceCall to="slashdot.org/getStory"/>
<xs:element name="story" type="xs:string"/>

</xs:choice>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN"/>

</xs:complexType>

This schema states that a <channel> element has
two sub-elements: <title> and <items>. Items are
given either explicitly, as <item> elements or inten-
sionally, by a service call matching the News service
call pattern. The latter, whose de�nition is omitted
here for space reasons, allows to use any service call
that returns a sequence of news <item> elements of
the correct type. The <story> element can also be
given either explicitly or intensionally, as a call to the
getStory service of slashdot.org. Observe the dif-
ference in the de�nition of the service calls in Item
and ItemList. The former states that the Item ele-
ment may only contain a call to a particular service
call (slashdot.org/getStory). The latter allows the
use of any service call obeying the referenced pattern.

The validation process of an intensional XML doc-
ument w.r.t. an XML schemaint is similar to that of
regular XML �le w.r.t an XML Schema. The main dif-
ference is that now the embedded service calls have to
match their speci�cation, in terms of service provider
and name, and possibly of the input/output schemas
(in the case of service patterns).

Now, assume that we want to send the above docu-
ment to an application that expects data in the stan-
dard RSS format, where the news items must be given
extensionally, with only the <story> element possi-
bly being intensional. Namely, the received docu-
ments should conform to a similar schema, except that
the ItemList complex type is replaced by a simpler
ItemList2, where the choice construct is omitted and
only <item> elements are allowed. To conform to it,
the sender needs to invoke the �rst call before trans-
mitting the document.

As another example, assume that the above �le
needs to be sent to a \naive" client, which cannot
invoke service calls. The latter expects a fully exten-
sional XML document with a schema similar to the one
given above, but containing extensional ItemList3
and Item3 types, where both choice constructs are
eliminated. To meet this schema, the sender needs to
invoke all the service calls appearing in the document,
plus the new calls that may appear in the answers of
these calls (e.g. for the �rst call).

While the above examples are rather simple {
one could determine by a simple observation of
the document and the target schema which calls
need to be invoked { things may in general be
much more complex. This is mainly because the
relationship between the document and the target
schema may be involved, with the results of the

embedded service calls (as well as their parameters)
containing themselves embedded service calls, and
so on, recursively. Novel algorithms to determine
the appropriate sequence of rewritings to make a
document match the target schema can be found in [9].

Web services with intensional parameters For
standard Web services, WSDL is used to describe the
types of their input/output parameters using XML
Schema. In a similar way, for Web services exchang-
ing intensional data, we propose WSDLint, that relies
on XML Schemaint to describe the types of their in-
tensional input/output parameters. The service cus-
tomization relies on a Schema Enforcement module.
Before calling a service, this module checks if the sup-
plied parameters comply to the schema expected by
the service provider, and if not rewrite them accord-
ingly. Similarly, before answering a service call, the
module checks whether the computed answer conforms
to the schema expected by the client and, if not, tries
to rewrite it to the required structure.

If the service provider knows in advance its poten-
tial clients (and their expected schemas), it can gener-
ate, with practically no programming e�ort, a special
interface for each client, by simply chaining the given
service with a rewriting of its output to the appro-
priate schema. When the client requirements are not
known in advance, or may change with time, a dy-
namic customization can be employed: the caller may
supply the expected schema as one of the input pa-
rameters (either explicitly or intensionally, e.g. by a
look-up to a directory of possible schemas), and the
above rewriting process is applied to the output w.r.t
the supplied schema. In this demo, both kinds of Web
service customizations will be demonstrated.

3 Demonstration scenario

We consider two di�erent kinds of peers: (a) News
sources, and (b) news aggregators. For each one of
them, we present a set of basic Web services, with
intensional output and input parameters, and show
how they can be customized for di�erent clients via
schema-based rewriting. We �rst consider intensional
output, then intensional input parameters.

3.1 Intensional output

News sources provide news stories, using a basic
Web service named getStory, which retrieves a story
based on its identi�er, and has the following signature:

getStory(<xs:simpleType ref="xs:string">) ->
<xs:element name="story" type="xs:string">

News sources also allow users to search for news
items by keywords 1, using the following service:

1More complex query languages, such as the one proposed
by [5] could also be used.



getNewsAbout(<xs:simpleType ref="xs:string">) ->
<xs:complexType ref="ItemList2">

This service returns an RSS-style list of news items
(of the type ItemList2 de�ned in the previous Sec-
tion), where the items are given extensionally, except
for the story, which can be intensional. A fully ex-
tensional variant of this service, aimed for instance
at PDA's that download news for o�-line reading, is
easily provided by employing the Schema Enforcement
module to rewrite the previous output to one that com-
plies to the fully extensional ItemList3 type.

A more complex scenario allows readers to specify
a desired output type at call time, as a parameter of
the service call. If a rewriting of the output exists that
matches this schema, it will be applied before sending
the result, otherwise an error message will be returned.

Aggregators act as \super-peers" in the network.
They know a number of news sources they can use
to answer user queries. They also know other ag-
gregators, which can relay the queries to additional
news sources and other aggregators, transitively. Like
news sources, they provide a getNewsAbout Web ser-
vice, but allow for a more intensional output, of type
ItemList. When queried by simple news readers, the
answer is rewritten, depending if the reader is a RSS
customer or a PDA, into a Itemlist2 or Itemlist3
version respectively. On the other hand, when queried
by other aggregators that prefer compact intensional
answers which can be easily forwarded to other aggre-
gators, no rewriting is performed, with the answer re-
maining as intensional as possible, preferably comply-
ing to the type below, which requires the information
to be intensional.

<xs:complexType name="ItemList4">
<xs:sequence>
<xsi:serviceCallPattern ref="News"/>

</xs:sequence>
</xs:complexType>

Note also that aggregators may not all have the
same capabilities. For instance, some may not be able
to recursively invoke the service calls they get in in-
tensional answers. This is captured by having them
supply, as an input parameter, a precise type for the
answer of getNewsAbout, that matches their capabili-
ties (e.g. return me only service calls that return ex-
tensional data).

3.2 Intensional input

So far, we considered the intensional output of ser-
vices. To illustrate the power of intensional input
parameters, we de�ne a continuous version of the
getNewsAbout service provided by news sources and
aggregators. The clients call this service only once,
to subscribe to a news feed. Then, they periodically
get new information that matches their query (A dual

service exists, to un-subscribe). Here, the input pa-
rameter is allowed to be given intensionally, so that
the service provider can probe it, adjusting the answer
to the parameter's current value. For instance, con-
sider a mobile user whose physical location changes,
and wants to get news about the town she is visiting.
The zip-code of this town can be provided by a Web
service running on her device. A call to this service will
be passed as an intensional query parameter, and will
be called by the news source in order to periodically
send her the relevant local information.

4 Implementation

We use the Active XML system [3] as an implementa-
tion platform for de�ning the data and Web services of
the news syndication application. The novel Schema
Enforcement module acts as an XML Schemaint val-
idator. It implements the static and dynamic rewriting
algorithms described in [9].

Each news source/aggregator peer has a browser-
based interface. For news sources, the interface allows
the creation/modi�cation of channels, news stories and
headlines. For aggregators, it allows the peers to man-
age their known news sources and aggregators. Both
interfaces also support �ne-tuning of the input/output
schemas of the provided Web services, and track down
the issued calls/returned answers and the rewriting
process, through a distributed logging mechanism.

References

[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo,
and R. Weber. Active XML: Peer-to-Peer Data and
Web Services Integration (demo). In Proc. of VLDB,
2002.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,
and T. Milo. Dynamic XML documents with distri-
bution and replication. In Proc. of ACM SIGMOD,
2003.

[3] Active XML.
http://www-rocq.inria.fr/verso/Gemo/Projects/axml.

[4] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: a machine-learning
approach. In Proc. of ACM SIGMOD, pages 509{520,
2001.

[5] Edutella. http://edutella.jxta.org.

[6] H. Gupta. Selection of views to materialize in a data
warehouse. In Proc. of ICDT, pages 98{112, 1997.

[7] Apache Jelly.
http://jakarta.apache.org/commons/jelly.

[8] Macromedia Coldfusion MX.
http://www.macromedia.com.

[9] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, and
F. Dang Ngoc. Exchanging Intensional XML Data. In
Proc. of ACM SIGMOD, 2003.

[10] RSS 1.0 Speci�cation. http://purl.org/rss/1.0.

[11] The W3C Web Services Activity.
http://www.w3.org/2002/ws.

[12] The W3C XML Activity. http://www.w3.org/XML.


