
XQueC: Pushing Queries to Compressed XML Data

Andrei Arion

INRIA

Angela Bonifati

Icar CNR

Gianni Costa

Icar CNR

Sandra D’Aguanno

INRIA

Ioana Manolescu

INRIA

Andrea Pugliese

Deis UNICAL

1 Introduction

Initially proposed as a data interchange format, XML aims
also at becoming a format for data storage and manage-
ment. However, XML documents in their textual form are
rather verbose and tend to predate disk space, due to the
textual and repetitive nature of the XML tags and of sev-
eral XML types.

One solution to this space occupancy problem consists
of compressing XML. The XMill project [7] proposed
an XML-specific compression method: it compresses the
structure (XML tags) separately from the content (data
nodes, leaves of the XML tree), which is squeezed into a
set of semantically uniformcontainers: for example, one
container stores the text values of all<URL> elements
in the document, another container stores all<phoneNo>

etc. Each container is again separately compressed, by
using the best suited compression algorithm; thus, XMill
makes maximal use of inherent structure commonalities
among semantically similar items. However, an XMill-
compressed document is opaque to a query processor: thus,
one must fully decompress a full chunk of data before be-
ing able to query it. The XGrind project [9] pioneered the
field of query processing on compressed XML documents.
XGrind does not separate data from structure: an XGrind-
compressed XML document is still an XML document,
whose tags have been dictionary-encoded, and whose data
nodes have been compressed using the Huffmann algo-
rithm [6] and left at their place in the document. XGrind’s
query processor can be considered an extended SAX parser,
which can handleexact-match and prefix-match querieson
compressed values andpartial-match and range queries
on decompressed values. However, XGrind does not sup-
port several operations in the compressed domain such as
non-equality selections, joins, aggregations, nested queries
or (construct) operations. Such operations occur in many
XML query scenarios, as illustrated by XML benchmarks
(e.g., all but the first two of the 20 queries in XMark [8]).

Also, XGrind uses a fixedroot-to-leaf navigation strat-
egy, which is clearly insufficient to provide for interest-
ing alternative evaluation strategies, as it was done in
existing works on querying compressed relational data
(e.g., [4], [11]). These works considered evaluating arbi-
trary SQL queries on compressed data, by comparing (in
the traditional framework of cost-based optimization) many
query evaluation alternatives, including compression / de-

Comp.
Utilities

XQueC
query

processor

XQueC loader &
compressor
Huffman, ALM,
...

Optimizer

Executor

Query
Parser

compressed
repository

XQueC

Compressed
containers

XQueC
Stats

XQueC
DataGuide

XQuec

Indexes

Structure
Tree

XQuery
query results

XML query

������
������

������
���

������������������������������������

������������������������������������

�������
�������
�������

�����
�����
�����

Figure 1: Architecture of the XQueC prototype.

compression at several possible points.
The XQueC systemsolves all the above-mentioned prob-
lems. Our system compresses XML data and queries it as
much as possible under its compressed form, covering all
real-life, complex classes of queries. The XQueC system
adheres to the following approach:
(I) XQueC takes advantage of the XMill principle of com-
pressing separately data and structure for efficiently query-
ing compressed data.
(II) It adopts a simple storage model suitable for com-
pressed XML, and a set of access support structures, allow-
ing for many evaluation alternatives for complex XQuery
query. Several storage methods are possible; we view ours
as a simple choice for making a proof of concept.
(III) XQueC seamlessly extends a simple algebra for evalu-
ating XML queries to include compression and decompres-
sion. This algebra is exploited by a comprehensive cost-
based optimizer, able to devise query evaluation methods
that freely mix regular operator and compression-relevant
ones.

The purpose of the demo is to demonstrate the above
features on several XML data sets (see Section 4), among
which, the XMark documents [8]. In the following sec-
tions, we will use these documents for describing XQueC.
A simplified structural outline of these documents is de-
picted in Figure 2. Each document describes an auction
site, with people and open auctions (dashed lines represent
IDREFs pointing to IDs and plain lines connect the other
XML items).

site

*

category

people
*

id

person

profile

name
homepage

creditcard

income
interest

country

province

zip

city

address
itemref*

closed_auction

seller

person

buyer
date

price

person

closed_auctions
*

......

Figure 2: Simplified summary of the XMark XML docu-
ments.

Our description of XQueC follows its architecture, de-
picted in Figure 1. It contains the following modules:
(1) The loader and compressorconverts XML documents
in a compressed, yet queryable format.
(2) Thecompressed repositorystores the compressed docu-
ments and provides: (i) access methods to this compressed
data, and (ii) a set of compression-specific utilities that en-
able, e.g., the comparison of two compressed values.
(3) The query processoroptimizes and evaluates XQuery
queries over the compressed documents. Its complete set
of physical operators allows for efficient evaluation over
the compressed repository.

The rest of this paper is organized as follows. In sec-
tion 2, we motivate the choice of our storage structures for
compressed XML, and of the compression algorithms em-
ployed. Section 3 describes the XQueC query processor,
its set of physical operators, and outline its optimization al-
gorithm. Section 4 briefly presents the demonstration sce-
nario we intend to show.

2 Compressing XML documents in a
queryable format

In this section, we first present the principles behind our
approach for storing compressed XML documents, and the
resulting storage model. Then, we discuss our choice of
compression algorithms.

2.1 Compression principles

Our approach for compressing XML was guided by the fol-
lowing principles:

Enable a full-fledged algebraic exploration
of alternative query evaluation plans (QEPs), in-
cluding top-down, bottom-up, and direct (index-
based) access to a given node in the document.

To that purpose, we follow the XMill principle ofcom-
pressing content separately from structure. As we will
see, this separation provides the basis for alternative QEPs.
In particular, value containers fullfill a double role: com-
pressed storage, and access support structure (index).

Allow, among other evaluation strategies,
processing full XQuery on the compressed doc-
uments (also termedlazy decompressionin [4]).

This has two consequences. First, w.r.t. XMill, we use a
fine-grained compressionwithin the container, i.e. com-
press each leaf data node individually; to that purpose,
the document storagehas to be organized at a fine gran-
ularity, as opposed to storing full containers as “blobs”,
as done in XMill. While applying fine-grained compres-
sion, data items of the same type are compressed using the
same algorithm. Thus, we can benefit from the data com-
monalities and provide the access to each compressed data
item at the same time. Fine-grained compression has been
proved beneficial also in the context of compressed rela-
tional databases [11]. Second, in order to perform compar-
isons of the formx1 < x2 without having to decompress
x1 and x2, we choose to supportorder-preserving com-
pression algorithms, as well as order-agnostic ones (unlike
XGrind and XMill). A compression algorithmcomp pre-
serves order if for anyx1, x2, comp(x1) < comp(x2) iff
x1 < x2. In the sequel, we will adopt the following short
notationx1

c for a compressed valuecomp(x1).

2.2 Compressed storage structures

The XQuec loader and compressor parses an XML docu-
ment and splits it into several data structures, summarized
in Figure 1.
Node name dictionary: We use a dictionary to encode
the element and attribute names present in an XML docu-
ment. Thus, if there areNt distinct names, we assign to
each of them a bit string of lengthlog2(Nt). For example,
the XMark documents use92 distinct names, which we en-
code on7 bits, for example:
site: 0000000 | regions: 0000001 | categories: 0000010
Structure tree: We assign to each non-value XML node
(element or attribute) an unique integer ID, reflecting the
order of nodes in the document. The structure tree is stored
as a sequence ofnode records, where each record contains:
its own ID, the corresponding tag code; the IDs of its chil-
dren; and (redundantly) the ID of its parent. For better
query performance, as an access support structure, we con-
struct and store a B+ search tree on top of the sequence of
node records.
Value containers: All data values found under
the same root-to-leaf path expression in the docu-
ment, like site/open auctions/ open auction/interval/start,
site/people/person/homepage etc., are stored together into
homogeneous containers. In general, we may store in a
container values found under several distinct paths, e.g.,
auction start and end dates. A container is a sequence of
container records, each one consisting of: a compressed
value, and a pointer to parent of this value in the structure
tree. Records are placed in the order dictated by the orig-
inal data values, to enable fast binary search. A sample
container instance is:
site/open auctions/open auction/interval/start:
(“Jan 01, 2002”)c | 90 || (“Mar 10, 2002”)c | 7 ||
(“Aug 05, 2002”)c | 12 || (“Oct 12, 2002”)c | 9 ||
We also extend thenode recordof each container entry’s
parents with a pointer to the entry, as shown in Figure 3.

�����
�����
�����
�����

�����
�����
�����
��������
���
���
���
���

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

T1

T2

T4T3

T5

C2

C3

T2

T4T3

T2

T4T3

T1

73 3,7C1

0001001

1101000

Header

STRUCTURE TREE

CONTAINERS

DATAGUIDE

Figure 3: Storage structures in the XQueC repository.

Dataguide: The loader also constructs, as a redundant ac-
cess support structure, astrongdataguide of the XML doc-
ument. A dataguide [5] is a structural summary represent-
ing all possible paths in the document; for tree-structured
XML documents, it will always have less nodes than the
document (typically by orders of magnitude). A dataguide
of the auction documents can be derived from Figure 2, by
(i) omitting the dashed edges, which brings it to a tree form,
and (ii) storing in each non-leaf node in Figure 3, accessi-
ble in this tree by a pathp, for examplesite/people/person,
the list of nodes accessible in the XML document by the
pathp. Finally, the leaf nodes of our dataguide point to
the corresponding value containers. Note that while Fig-
ure 3 depicts a complete dataguide, in the presence of query
workload information, we may prune the parts that are
never accessed by queries.

Other indexes and statistics: When loading a document,
other indexes and/or statistics can be created, either on the
value containers, or on the structure tree. Our loader proto-
type currently gathers simple fan-out and cardinality statis-
tics (e.g. number ofperson elements).
Storage alternatives: There are many ways to store XML
in general [1]. Any storage mechanism for XML can be
seamlessly adopted in XQueC, as long as it allows the
presence of containers and the facilities to access container
items. Our proposed storage structure is thesimplest and
most compactone that fullfils the principles listed at the
beginning of section 2. To measure the occupancy of our
structures, we have used a set of documents produced by
means of thexmlgengenerator of the XMark project and
ranged from 115KB to 46MB. They have been reduced by
an average factor of 60% after compression (these figures
include all the above access support structures).

2.3 Container compression algorithms

If we want to enable comparison on compressed values di-
rectly, the same compressed algorithm should be used for
both items to be compared; therefore, we make the choice
of compression algorithms once per data type (assuming
only values of similar types are compared; otherwise, de-
compression and type cast are required).

Compression of numerical attributes is not crucial for
XML; in XQueC, we have chosen to encode numbers by
means of a simple bit-encoding scheme. String compres-
sion instead can strongly impact performances already in
the context of database compression and increasingly in the
XML context. We had initially three choices for encod-
ing strings in an order-preserving manner: the Arithmetic,

Hu-Tucker, and ALM algorithms [2]. Dictionary-based en-
coding has demonstrated its effectiveness w.r.t. other non-
dictionary approaches while ALM has outperformed Hu-
Tucker. The former being both dictionary-based and effi-
cient, is a good choice for our system. For order-agnostic
compression, we have chosen the non-adaptive version of
the Huffmann algorithm [6].

3 Evaluating XML queries over compressed
data

The XQueC Query Processor consists of aquery parser,
which is standard, anoptimizerandevaluator. The opti-
mizer uses a regular set of logical operators, and the phys-
ical operators which we describe next. Also, the optimizer
translates XPath expressions using the// axis into parent-
child ones, using our structure dataguide.

3.1 XQueC physical operators

These operators can be divided in three classes: compres-
sion and decompression, data access operators and regular
operators like./ (join) or σ (selection), which have been
programmed to uniformly operate on compressed and on
uncompressed data.
Compression / decompression operators: To account
for the compression applied on attributes in an XQueC re-
sult set, we enhance the column metadata of the result set
(in JDBC style) with itscompression status: a token in-
dicating its compression algorithm (if any),∅ otherwise.
To modify as desired the compression status of a set of
tuples, we use two generic operators:comp(attrs, algo)
anddecomp(attrs, algo), whereattrs is a list of attributes
present in the operator input, andalgo is the compression
algorithm to be used.comp performs the compression of
attributes of the input tuples, anddecomp the opposite.
Data access operators: This library includes the fol-
lowing access operators for thestructure tree: rootacc(d)
operator, which, given a document name d, returns
the node record of d’s root; theparacc(ListID) and
childacc(ListID) operators take as input a list of node IDs
and, using the structure tree and the B+ tree index on them,
return the node records of the children, resp. parents of the
input nodes; thedgacc(d, p) operator takes as parameters
the name of a documentd and a pathp and returns the list
of pointers to the node records for the elements/attributes
found ind under pathp (indexed access). Then, there are
two specialized operators for thecontainers: an operator
that makes a sequential scan of the container ,contscan(p),
which accesses the container records identified by the root-
to-leaf path expressionp; the contacc(p, θ, xc) operator
that takes as parameters a root-to-leaf parent-child path ex-
pressionp, e.g., auction/people/person/name, a compari-
son operatorθ like =, 6=, <, ≤, and a compressed value
xc. The result ofcontacc(p, θ, xc) is the set of container
records associated top, whose encapsulated compressed
valuesvalc satisfyvalc θ xc. If the compression on the
container forp preserves order, thenxc can be directly used

as a search key (whenθ is =, <, ≤) to find the qualifying
records. Thus, with order-preserving compression, the con-
tainers act like indexes, allowing for efficient search.

Finally, thevalacc(cr) operator takes as input a set of
container recordscr, and (following their included parent
pointers) returns the node records whose values are incr.
Comparison operators on compressed data:this library
contains the comparison operators (./, σ), which are able to
work uniformly on compressed and uncompressed inputs;
it is the task of the optimizer to (i) determine which one
to use and (ii) make sure that the proper compression / de-
compression steps have been taken so that the attributes to
be compared by./ or σ have the same compression status.
We implement a simple, pipelinedσ physical operator, and
two flavors of join: sort-merge./sort, and hash./hash.
Examples of XMark QEPsAs an example, consider query
Q1 from XMark:

FOR $b IN document(“auction.xml”)/site/people/
person[id=”person0”]

RETURN $b/name/text()
For the sake of clarity, when illustrating query plans we

omitted the classacc of the operator. Figure 4 shows three
QEPs forQ1, applying lazy decompression; to do more
work on uncompressed data, one only needs to push down
somedecomp operators. The first one starts fromid ele-
ments and then navigates up and down toperson andname
elements. We compress the tags appearing inQ1 to their
dictionary encoding, and we give them as parameters to
σtag ’s whenever we need to test an element’s tag. The plan
in Figure 4(b) starts from thename container. Finally, the
third one starts from both containers and performs a join.
Sinceid is an unique key for persons, the plan in Figure 4(a)
is likely to be the best one, and will be identified as such by
the optimizer.

4 Demonstration Highlights

Our demonstration addresses three main issues, regarding
the compressor and the query processor.Compressor: we
will first show the compression ratio and compression time
of different kinds of data, from the regular schema-driven
ones to the irregular ones, with heavy textual content. We
have implemented ALM and Huffman [6] and we will show
figures for both algorithms, revealing that they are as good
as those for unqueryable compressor (i.e. XMill).Query
Processor (1):we will pinpoint the querying time for the
queries of the XML benchmark, and compare them with
the querying time of the same query while executed in a
compression-unaware query processor and in XGrind (only
for the queries of the benchmark supported by the latter).
Query Processor (2):we will draw the querying time for
several XQuery Use Cases [10] and for some of the novel
XPath and XQuery Full-Text Use Cases [10]. In particular,
for the latter we realized that by using ALM, we can nearly
address all the proximity, wildcards and fuzzy-matching
queries.

In any of these cases, the search for a word within a state-
ment is done in the compressed domain and needs less time

(a)

(b) (c)

tag=
"name"c

scan
cont (site/people/

comp("person0",
ALM)

cont (site/people
acc

person/ID,"=")
scan

cont (site/people/

person/name)

σ

decomp
σ

decomp

person/name)

hash

decomp

tag =
σ

person/ID,"=",
c

cont (doc/people/
acc

par

child

child

par

par

par
"ID"

val
"person0"
val =

cc

"person0")

c
c

Figure 4: Sample QEPs for XMark’sQ1.

than in the uncompressed one. As a future development, we
plan to integrate in our framework more sophisticated tex-
tual indexes, which should further improve performances.

All the implementation (compressor and query proces-
sor) of XQueC is done in Java. We use Berkeley DB [3]
to implement our in-house storage system. Berkeley DB
Data Store provides a library of elementary database struc-
ture (hash tables, B+ trees etc.) on top of which any desired
storage can be configured. For our specific storage model,
Berkeley DB seemed to be the most performant, reliable,
and flexible choice for compressed data storage.

The demonstration will be shown on a PC under Linux.
We will use different kinds of synthetic and real XML data.
Besides XMark, we plan to demonstrate it on other signifi-
cant (regular and schema-driven or irregular) datasets.

References
[1] S. Amer-Yahia and M. Fernandez. Overview of existing XML stor-

age techniques. submitted for publication, 2002.

[2] Gennady Antoshenkov. Dictionary-based order-preserving string
compression.VLDB Journal, 6(1):26–39, 1997.

[3] Berkeley DB Data Store.http://www.sleepycat.com/pro-
ducts/data.shtml/ .

[4] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed
database systems. InProc. of ACM SIGMOD Conf., 2000.

[5] R. Goldman and J. Widom. Dataguides: Enabling query formulation
and optimization in semistructured databases. InProc. of the Int’l
VLDB Conf., pages 436–445, 1997.

[6] D. A. Huffman. A Method for Construction of Minimum-
Redundancy Codes. InProc. of the IRE, 1952.

[7] H. Liefke and D. Suciu. XMILL: An efficient compressor for XML
data. InProc. of ACM SIGMOD Conf., 2000.

[8] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and
R. Busse. Xmark: A benchmark for XML data management. In
Proc. of the Int’l VLDB Conf., 2002.

[9] P. Tolani and J. Haritsa. XGRIND: A query-friendly XML compres-
sor. InProc. of the ICDE Conf., 2002.

[10] XQuery (and XPath Full-text) Use Cases.
http://www.w3.org/TR/xmlquery(-full-text)-
use-cases/ .

[11] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The
implementation and performance of compressed databases.ACM
SIGMOD Record, 29(3):55–67, 2000.

