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Abstract

A common query against large protein and gene
sequence data sets is to locate targets that are
similar to an input query sequence. The cur-
rent set of popular search tools, such as BLAST,
employ heuristics to improve the speed of such
searches. However, such heuristics can some-
times miss targets, which in many cases is unde-
sirable. The alternative to BLAST is to use an
accurate algorithm, such as the Smith-Waterman
(S-W) algorithm. However, these accurate algo-
rithms are computationally very expensive, which
limits their use in practice. This paper takes on the
challenge of designing an accurate and efficient
algorithm for evaluating local-alignment searches.

To meet this goal, we propose a novel search al-
gorithm, called OASIS. This algorithm employs
a dynamic programming A*-search driven by a
suffix-tree index that is built on the input data set.
We experimentally evaluate OASIS and demon-
strate that for an important class of searches, in
which the query sequence lengths are small, OA-
SIS is more than an order of magnitude faster than
S-W. In addition, the speed of OASIS is compa-
rable to BLAST. Furthermore, OASIS returns re-
sults in decreasing order of the matching score,
making it possible to use OASIS in an online set-
ting. Consequently, we believe that it may now
be practically feasible to query large biological se-
quence data sets using an accurate local-alignment
search algorithm.
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1 Introduction

In the new and emerging area of functional genomics and
proteomics, scientists often have to query biological se-
quences. Frequently, the scientist has a protein or nu-
cleotide sequence that they want to match against a target
database of known sequences. A common technique for
determining a match is to compute a local alignment score
between the query and a target sequence, with a high score
implying that the two sequences are biologically related.

BLAST [1–3] is a popular tool for evaluating local se-
quence alignments. In BLAST, the input query is trans-
formed into a set of fixed-length words that are matched
against the database. These preliminary matches are then
extended to the left and the right to determine whether they
meet a user-specified score criteria, using some ceiling on
the probability that such a match would occur by chance.
While this heuristic filter has been well optimized to reduce
the chances of missing any matching results, it is not 100%
accurate. Consequently, some matching results that meet
the specified score criteria may not be returned as part of
the result. Given the high-stakes and cost involved in many
life sciences experiments, such as drug discovery or gain-
ing a better understanding of the causes of a disease, it is
natural to wonder if it is possible to design a fast and accu-
rate algorithm for local sequence alignment that is guaran-
teed to not miss any target matches given some similarity
metric.

There are a few known algorithms for accurately iden-
tifying local alignments [34, 36], but these algorithms are
computationally very expensive, limiting their use in prac-
tice. The most popular of these accurate search algo-
rithms is the Smith-Waterman (S-W) algorithm [36]. S-
W has been shown to be considerably more sensitive than
BLAST [28, 35] in many cases, such as when a scientist is
looking for a distant homology match. In such cases, often
the scientist has to try a number of different BLAST queries
with different parameters (such as the E-value). This pro-
cess can be very cumbersome, and often requires a great
deal of experience to get a feel for the “right” values of
BLAST parameters. In such cases the use of S-W is desir-
able. However, the prohibitively high computational cost



of S-W has prevented its wide-spread use, especially for
large data sets. Attempts have been made to address this
performance issue by building special hardware to evaluate
S-W [13, 35], but specialized hardware tends to be expen-
sive as compared with commodity microprocessors.

In this paper, we take a novel approach to this prob-
lem. We design an algorithm called OASIS (an Online and
Accurate Search technique for Inferring local-alignments
on Sequences) for fast and accurate local alignment
searches on sequences. OASIS can run on commodity mi-
croprocessors, and like S-W, it is an accurate algorithm.

OASIS employs a dynamic programming search tech-
nique which is driven by traversing a suffix tree index con-
structed on the sequence data set. By carefully managing
the layout of the suffix tree in disk blocks, OASIS can be
efficient even on large data sets. Furthermore, the OASIS
search technique employs a best-first (A*) search strategy
as it descends the suffix tree. As partial matches are com-
puted, the search also computes an upper-bound on the cost
of matching the remaining portion of the query. At any
point in the search, OASIS picks the path capable of pro-
ducing the highest scoring alignment. This design guaran-
tees that OASIS will return alignments in the order of the
alignment score. This online characteristic is ideal when
the scientist wants to abort the query after seeing the top
few matches. In contrast, both BLAST and S-W must com-
pute the entire query before presenting any results.

In querying biological sequences, search tools often dis-
tinguish between long queries and short queries [6]. For ex-
ample, BLAST classifies queries on nucleotide databases
into short and long queries, with short queries being less
than 20 symbols in length. Similarly, queries on protein
databases are classified into short and long queries, with
short queries being less than 15 symbols long.

Short query sequences are often used in practice; for ex-
ample, queries using peptides, which are short protein se-
quences, are often used to find matching proteins that have
a similar peptide [6]. OASIS is especially suitable in such
cases. In this paper, we compare OASIS with S-W using
an actual protein data set, and show that for short query
sequences, OASIS is at least an order of magnitude faster
than S-W.

We also compare the performance of OASIS with the
popular heuristic search tool BLAST, and show that the
performance of OASIS is often comparable to BLAST.

Finally, we experimentally evaluate the online charac-
teristics of OASIS, and show that OASIS produces the first
set of results very quickly, which makes it ideal for use in
online environments.

The key contribution of this paper is the design and eval-
uation of a novel accurate search algorithm for evaluating
local-alignments. As this paper demonstrates, with OASIS
it may now be practically feasible to accurately evaluate
local-alignments for short query sequences against actual
biological data sets.

The remainder of this paper is organized as follows: We
cover some background information in Section 2, and de-

������� � 	 
 � �  �

������ � � � 
 �  �

�
� ���

�

�

�

Figure 1: Example of Local Alignment

scribe the OASIS algorithm in Section 3. Experimental
evaluations are presented in Section 4, and related work
is discussed in Section 5. Finally Section 6 contains our
conclusions and directions for future work.

2 Background
In this section we present some background material cru-
cial to understanding the OASIS algorithm.

2.1 Local Alignment

Given two sequences of symbols Q = q1q2...qm and T =
t1t2...tn, a local alignment is some way of “lining up” any
two sub-sequences of Q and T . Figure 1 shows an example
of one such local alignment. This figure illustrates the three
types of local alignment operation:

• Replacement with either the same symbol (see label
1 in Figure 1) or a different symbol (see label 2 in
Figure 1).

• Deletion allows us to skip a symbol in the target (see
label 3 in Figure 1).

• Insertion allows us to skip a symbol in the query (see
label 4 in Figure 1).

Alignments are given scores based on the sum of the
scores of each operation involved in the alignment. Ev-
ery operation is generalized to a replacement of ”α → β”,
where insertions are represented as ”− → β” and dele-
tions as ”α → −”. The score of an operation is denoted
S(α → β). An edit matrix S stores the scores, so the cost
of an operation α → β is simply Sα,β . Table 1 shows a
simple unit edit distance matrix.

A C G T –
A 1 -1 -1 -1 -1
C -1 1 -1 -1 -1
G -1 -1 1 -1 -1
T -1 -1 -1 1 -1
– -1 -1 -1 -1 -

Table 1: “Unit” Edit Distance Matrix
2.1.1 Notations

Throughout this presentation, we use the notations intro-
duced above. Q will be used to represent an input query of
length m, and qi will represent the ith symbol in the query



sequence. Similarly, T will be used to represent the target
sequence of length n, and tj will represent the jth symbol.

2.2 Smith-Waterman (S-W) Algorithm

The Smith-Waterman algorithm [36] finds the local align-
ment between two sequences with the maximum possible
score using a dynamic programming approach that runs in
O(mn) time. This algorithm generates an m by n matrix
G, where each entry Gi,j stores the score of the maximum
alignment between a query (Q) and target (T ) ending at qi

and tj . Each entry Gi,j is computed as follows:

Gi,j = max




0 “start over”
Gi−1,j−1 + S(qi → tj) Replacement
Gi−1,j + S(qi → −) Insertion
Gi,j−1 + S(− → tj) Deletion




(1)

For example, consider a query Q = TACG against a tar-
get T = AGTACGCCTAG. Table 2 outlines the execution
of S-W, using the edit matrix shown in Table 1. In this ex-
ample,↖ indicates that a replacement produced the maxi-
mum score,← indicates deletion, and ↑ indicates insertion.
The bold score entry indicates the maximum score align-
ment. By backtracking using the bold arrows, we uncover
the highest scoring alignment, TACG→ TACG, which has
a score of 4.

A G T A C G C C T A G

T 0 0 ↖↖↖1 0 0 0 0 0 ↖1 0 0

A ↖1 0 0 ↖↖↖2 ←1 0 0 0 0 ↖2 ←1

C 0 0 0 ↑1 ↖↖↖3 ←2 ↖1 ↖1 0 ↑1 0

G 0 0 0 0 0 ↖↖↖4 ←3 ←2 ←1 0 ↖2

Table 2: G Matrix Built Using S-W

2.3 Generalized Suffix Tree Structure

In this section, we outline the basics of the suffix tree, the
index structure that is used in OASIS. A suffix tree is a
PATRICIA trie [27] that represents every suffix in the input
sequence. Edges in the tree are labeled with strings from
the alphabet, A, of sequence symbols. Each node can have
only one outgoing edge labeled with a symbol from the
alphabet. Consequently, the branching degree of the tree
is at most |A|, the cardinality of the symbol alphabet. A
compact suffix tree is one in which every node is either the
root, a branching node or a leaf. In practice, this means
that all nodes with only one successor are collapsed into
their parents, creating multi-symbol arcs.

The tree in Figure 2 is an example of a compact suffix
tree built on the sequence T = AGTACGCCTAG. $ is the
terminal symbol, which indicates the last position in the
sequence. Also, in this figure each node contains a num-
ber, followed by a letter denoting if the node is a leaf (L)
or a non-leaf (N). For the non-leaf nodes, the number in
the node label is arbitrary. However for the leaf-nodes, the
number in the node label points to the position in the input
sequence that matches the start of the path to that node. A
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Figure 2: Suffix Tree on the Sequence AGTACGCCTAG

path is simply the concatenation of the strings labeling the
edges traversed. Paths can be defined for both leaf and non-
leaf nodes. For example, in Figure 2, path(8L) = TAG$,
and path(5N) = AG.

The suffix tree structure can also be used to index mul-
tiple sequences by appending the terminal symbol to each
sequence, and building a single suffix tree over the concate-
nated sequences.

2.3.1 Finding Exact Matches in a Suffix Tree

Given a query Q = q1q2...qm, it is straightforward to con-
firm its presence in a sequence T represented in a suffix
tree. It is simply a matter of tracing a path, defined by the
query, from the root of the tree until either the query is con-
sumed, or no match is found. If the query is consumed, this
means that a match has been found; otherwise, the target
does not contain the query as a subsequence. As an exam-
ple, consider the query “TACG” posed against the struc-
ture in Figure 2. Starting from the root, we can match the
first two symbols along the arc 4N, and the subsequent two
symbols on the arc 2L. This indicates that this substring is
present in the target sequence, beginning at position 2 in T .
In general, once a match has been found, its location(s) in
the target sequence can be identified by descending to all
leaf descendants of the matching node.

3 OASIS
The basic idea of the OASIS algorithm is to perform a best-
first search for local alignments, where the expansion of
the nodes in the search space is driven by a suffix tree, and
nodes are expanded in a manner closely related to S-W.

The procedure is outlined in Algorithm 1. OASIS, and
its initialization function, take as input the following pa-
rameters:

• T : a suffix tree built on the sequence database
• Q: a query, q1q2 . . . qm

• S: an arbitrary edit matrix, and
• minScore: a minimum alignment score.



Algorithm 1 OASIS(T,Q, S,minScore)
H,PQ = Initialize(T,Q, S,minScore)
while ¬Empty(PQ) do

searchNode← PQ.Pop()
if searchNode.tag = V IABLE then

for successor ∈ Successors(searchNode.sp)
do

newNode ← Expand(searchNode,
successor, H, Q, S, minScore)
if newNode.tag = V IABLE ∨
newNode.tag = ACCEPTED then

PQ.Add(newNode)
end if

end for
else if searchNode = ACCEPTED then

Return on-line all sequences containing
Path(searchNode.sp)

end if
end while

All alignments with scores greater than or equal to
minScore are returned, in reverse order of score.

Each search node in the OASIS algorithm corresponds
to a node in the suffix tree. Search nodes represent partial
alignments between the query and portions of the database
sequence ending at the path to the corresponding suffix
tree node. Each search node stores scores for alignments
ending at each position in the query, and we compute the
maximum score that is possible for aligning the remaining
portions of the query. The sum of these scores is used to
organize the search nodes in a priority queue PQ. In each
expansion step, OASIS picks the node at the head of the
priority queue and explores all the children of the selected
node. The close correspondence between the search expan-
sion and the suffix tree implies that this step corresponds to
exploring all the children of the corresponding suffix tree
node. Since OASIS always expands the node at the head
of the priority queue, it is a best-first search technique like
A*.

Search nodes contain the following fields:

• sp: A pointer to a node in the suffix tree. This pointer
is used to maintain the correspondence between the
search node and its corresponding suffix tree node.

• Z: A vector




z0

z1

. . .
zm


, where zi is the score of the

strongest alignment between the sequence path(sp)
and any subsequence of Q ending at qi. zi is set to
−∞ if the alignment has been pruned. This vector
corresponds, roughly speaking, to a column of the S-
W matrix shown in Table 2.

• maxScore: The maximum score alignment found
along this path. This corresponds to the score of
the strongest alignment between any prefix of the se-
quence path(sp) and any subsequence of the query.

Algorithm 2 Initialize(T,Q, S,minScore)
{compute maximum alignment score beginning after
each position in query}

H ←




h0 ← h1 + max∀β S(q1 → β)
. . .

hi ← hi+1 + max∀β S(qi+1 → β)
. . .

hm ← 0




{initialize first entry in priority queue}
seed.sp← Root[T ]

seed.Z ←




. . .

zi ←
{

0 if hi ≥ minScore

−∞ if hi < minScore

. . .




seed.maxScore← Seed.g ← max(seed.Z)
seed.f ← max(H)
if seed.maxScore = 0 then

seed.tag ← V IABLE
PQ← {seed}

else
PQ← {}

end if
Return H,PQ

• f : The maximum possible score that can be achieved
by further expanding this node.
• g: The maximum score in Z, or the best score ending

at node sp in the suffix tree.
• tag: Indicates the status of the search node, and

can take on one of three values: ACCEPTED,
V IABLE, and UNV IABLE. A node is tagged as
accepted when the strongest possible alignment of the
query with this node or any of its descendants has
been found, and it passes the minScore threshold.
When such nodes reach the top of the priority queue,
we return the alignment on-line, since we can be cer-
tain, by the ordering of the queue, that no subsequent
alignment will be stronger. A node is tagged as vi-
able when a stronger alignment other than that already
found along this path is possible, and the minScore
threshold can be reached. A node is tagged as unvi-
able if no possible extension of this node can result
in an alignment with the necessary strength. Unviable
nodes are pruned from the search tree, while accepted
and viable nodes are added to the priority queue.

The priority queue is ordered by the f -value, so that a
node is only expanded when it can be guaranteed that no
other node on the search frontier can produce a stronger
alignment. After seeding the priority queue, OASIS ex-
pands the successors of the search node at the top of the
heap using the algorithm outlined in Section 3.2. The ex-
pansion of a node may add new nodes to the priority queue,
and the search terminates when the priority queue is empty
(see Algorithm 1 for details).

In practice, several approaches can be adopted to the re-
porting of alignments. In the current implementation, we



duplicate the behavior of S-W, reporting only the single
strongest alignment for each sequence in the database.

3.1 Initialization

OASIS begins by computing a “heuristic vector” H and
initializing the priority queue with an entry representing the
root of the suffix tree (seed). These steps are outlined in
Algorithm 2. Each entry hi in the vector H represents the
maximum possible alignment score of qi+1qi+2 . . . qm with
any arbitrary target (recall that the query Q = q1q2...qm).
Calculating these values is trivial, assuming non-positive
values for insertions and deletions. Hm is set to zero, since
the leftover portion of the query is the empty string. We can
then inductively calculate the remaining values: Hi−1 =
Hi+ the maximum score for the replacement of qi−1.

The seed search node corresponds to the root of the suf-
fix tree (seed.sp ← Root[T ]), which has a path length of
0. As a result, the alignment values stored in the Z vector
are set to 0, or −∞ in cases where the alignment can be
pruned. An alignment can be pruned when the entry hi is
less than the value of minScore, which implies that this
starting alignment point cannot yield a meaningful align-
ment.

3.2 Expanding arcs in the search tree

The Expand function (see Algorithm 3) is the core of the
OASIS algorithm. Essentially, this function fills in a por-
tion of the S-W matrix for a particular node of the suffix
tree. In addition to the scoring matrix S, the query se-
quence Q, and minScore (described above), this function
takes the following arguments:

• psn: the parent search node psn;
• stn: the suffix tree node being expanded, and;
• H: the heuristic vector computed by the initialization

function.

Expand returns an appropriately tagged search node
corresponding to stn.

The relevant portion of the S-W expansion matrix (G)
aligns the portion of the target labelling the incoming arc of
the suffix tree node, denoted C = c1c2 . . . cn. It is seeded
with the last column of the matrix filled for the parent node
(psn.Z). When the current search node (node) is returned,
we only store the final column of G (in the Z field), as it
is the only information relevant to the descendants of the
search node.

Entries in G are filled inductively, as with S-W, with
the exception that we do not permit a reset to 0 (outside
of the seed entry). In S-W such resetting (see Equation 1),
corresponds to starting a new alignment. Such resetting is
not required in OASIS, because from the root of the suf-
fix tree, all possible target alignments are considered. As
a result resetting the score to 0 would duplicate the work
done elsewhere. Since the algorithm explicitly considers
all starting alignments for the query in the column expan-
sion, and because of the fundamental property of the suffix

Algorithm 3 Expand(psn, stn,H,Q, S,minScore)

node.sp← stn
node.maxScore← psn.maxScore
C = c1c2 . . . cn ← IncomingPath(stn)
G←


g0,0 ← psn.z0 g0,1 ← −∞ . . . g0,n ← −∞
g1,0 ← psn.z1 g1,1 . . . g1,n

...
...

. . .
...

gm,0 ← psn.zm gm,1 . . . gm,n




for j ← 1 . . . n do
for i← 1 . . . m do

gi,j = max


 gi−1,j−1 + S(qi → cj),

gi−1,j + S(qi → −),
gi,j−1 + S(− → cj)




if gi,j ≤ 0 ∨ gi,j + hi ≤ node.maxScore ∨ gi,j +
hi < minScore then

gi,j ← −∞
end if

if gi,j > node.maxScore then
node.maxScore← gi,j

end if

end for

gV alues← the jth column of G
fV alues← gV alues + H

if node.maxScore ≥ max(fV alues) ∧
node.maxScore ≥ minScore then

node.tag ← ACCEPTED
node.f ← node.g ← node.maxScore
Return node

else if max(fV alues) < minScore then
node.tag ← UNV IABLE
Return node

end if

end for

node.f ← max(fV alues)
node.g ← max(gV alues)

if IsALeaf(stn) then
if minScore ≤ node.maxScore then

node.tag ← ACCEPTED
node.f ← node.g ← node.maxScore

else
node.tag ← UNV IABLE

end if
else

node.Z ← gV alues
node.tag ← V IABLE

end if

Return node



tree that guarantees every subsequence is the prefix of some
path in the tree, all starting alignments are considered and
the algorithm never misses any local alignments.

After computing a value gi,j , OASIS performs align-
ment pruning (setting the score to −∞) on alignments po-
sitions that are no longer viable. This process allows OA-
SIS to discard specific alignment elements of a search node,
which are either unviable or covered by other search paths.
This pruning occurs in three cases:

1. Non-positive alignment scores (gi,j ≤ 0): To
avoid duplicating work nodes with negative alignment
scores are pruned. Consider a partial local alignment
between a portion of a query qaqa+1...qb and the suf-
fix tctc+1...td. If the maximum alignment score be-
ginning at qa → tc and ending at qb → td is negative,
then we can guarantee that the score of any alignment
between qa...qb... and tc...td... will have a lower score
than the alignment between qb+1... and td+1.... This
second alignment will be expanded along another tree
path, so it is undesirable to maintain the (guaranteed)
sub-optimal first alignment along the current search
path.

2. Existing alignment is as good (gi,j + hi ≤
node.maxScore): Based on an optimistic heuristic,
we can not find an extension to this alignment with
a better score than the strongest alignment already
found along this search path. Some ancestor of the
search node has an alignment score maxScore, so
extensions to this alignment can not produce optimal
scores for this portion of the database.

3. Threshold failure (gi,j + hi < minScore): No pos-
sible extension to this alignment can be equal to or
greater than the minScore threshold.

Under certain conditions, we can stop extending align-
ments along a path. Using the heuristic values H , we
can determine an upper bound on the best possible align-
ment score resulting from further exploration, stored in the
f field. If this value is less than or equal to a score al-
ready found along the path (f ≤ minScore), we can cease
expansion, and return ACCEPTED or UNV IABLE
depending on whether it meets the minScore threshold.
When improved scores are possible (f > minScore), we
must decide if further expansion is warranted: if f is be-
low minScore, we can immediately return the node as
“UNV IABLE”, otherwise it is tagged as “V IABLE”.

3.3 Example Execution of OASIS

Next we illustrate the execution of the OASIS algorithm
using an example. For this example, we return to the target
sequence and the suffix tree shown in Figure 2. The query
used in this example is TACG. The minimum alignment
score (minScore) is set to 1, and the edit matrix shown in
Table 1 is used in this example.

The priority queue is initialized with the following root
seed node:

Z H x =0N
0 4 maxScore = 0

T 0 3 f = 4
A 0 2 g = 0
C 0 1
G −∞ 0

We now expand the children of this node. Using the
suffix tree shown in Figure 2, the children search nodes to
consider next correspond to the following suffix tree nodes:
1N, 2N, 3N, 4N.

Expanding Node 1N
The expansion of the node 1N starting from the root is
shown below. Note that the first column in G is the Z col-
umn from the root node. Most of the G matrix is main-
tained in memory only while the node is expanded, but the
final column (labelled (Z)) is maintained for subsequent
expansion of the children.

G (Z) H F x = 1N
- A ←Target (headPos = 3)
0 −∞ 4 −∞ maxScore = 1

T 0 ↖(−1) 3 −∞ f = 3
A 0 ↖1 2 3 g = 1
C 0 ↑(0) 1 −∞ tag = V IABLE
G −∞ ↖(−1) 0 −∞

As mentioned in Section 3, the expansion corresponds
to an extension of the G table using the symbols along
the node’s incident arc. For instance, in this example the
second column of G corresponds to the initial alignment
scores along the path beginning with the symbol A. The
first two values in the G column refer to the replacement
scores (indicated by↖) of A → T and A → A. The third
value is the result of an insertion (↑). In cases where align-
ment pruning has occurred, we indicate the value initially
computed in parentheses, but remember that such positions
are actually assigned a value of −∞. This node is tagged
as V IABLE because f ≥ minScore.

Expanding Nodes 2N and 3N
The expansion of node 2N is similar to the expansion of
node 1N, and results in a f value of 2 and g value of 1. The
expansion of node 3N results in f and g values of 1, so this
node is tagged as ACCEPTED. In the interest of space,
we omit the details of these node expansions.

Expanding Node 4N
The expansion of the node 4N (shown below) is a case
where multiple columns of G are expanded within a sin-
gle node expansion.

G (Z) H F x = 4N
- T A ←Target (position = 8− 9)
0 −∞ −∞ 4 - maxScore = 2

T 0 ↖1 ←(0) 3 −∞ f = 4
A 0 ↑(0) ↖2 2 4 g = 2
C 0 ↖(−1) ↑(1) 1 −∞ tag = V IABLE
G −∞ ↖(−1) −∞ 0 −∞



Priority Queue
After expanding the root node’s children, the priority queue
contains the following entries, in (nodePtr/f) pairs:
PQ = {(4N/4), (1N/3), (2N/2), (3N/1)}. Note that al-
though 3N has been accepted, it is last on the queue, and
therefore we will not report its descendants as results un-
less all other paths have been shown to yield lower scores.

Picking the Next Node to Expand
In our example, the node 4N is at the front of the priority
queue and it’s children, (2L, 8L), are expanded next.

Expanding Node 2L
As soon as it is possible to do so, we cease the column-
wise expansion of a node. In this case (node 2L as shown
below), we reach an accept state (f = g) in the second
column, and finish. We need not maintain an alignment
column-vector (Z) for this node, both because it is a leaf
node and an ACCEPTED node.

G H F x = 2L
A C G ... ←Target (position = 3− 5)
−∞ −∞ −∞ 4 −∞ maxScore = 4

T −∞ −∞ −∞ 3 −∞ f = 4
A 2 ←1 ←(0) 2 −∞ g = 4
C −∞ ↖3 ←(2) 1 −∞ tag = ACCEPTED
G −∞ ↑(2) ↖4 0 4

Expanding Node 8L
The expansion of node 8L is similar to the expansion of
node 2L, and results in a f value of 2 and g value of 2. In
the interest of space, we omit the details of this expansion.

At the end of expanding nodes 2L and 8L, we reach a
terminal symbol, $. No further expansion is possible, so
we simply set f and g to the maximum value seen along
the path, which was uncovered in the earlier expansion of
node 4N.

Search Termination
Now, the priority queue contains PQ =
{(2L/4), (1N/3), (8L/2)(2N/2), (3N/1)}. The top el-
ement is tagged as ACCEPTED, therefore we have
found the maximum local alignment with respect to the
one sequence stored in the suffix tree. In a multi-sequence
tree, we would continue the search in order to identify
maximal alignments for all sequences, or until the queue is
empty, indicating that all alignments with scores greater or
equal to minScore have been identified.

3.4 Suffix Tree Disk-based Representation

Since the OASIS search is driven by a suffix tree, the repre-
sentation of the suffix tree on disk can have a large impact
on the performance of OASIS. In this section, we present
the disk-based representation that we use.

In general, accessing a suffix tree results in many ran-
dom disk accesses, which could lead to poor performance.
To minimize this effect, we organize the representation of
the tree on disk such that siblings are stored contiguously
whenever possible. This organization is beneficial, since
OASIS must explore all children of a node when the node

is expanded.
The suffix tree is conceptually represented using three

arrays: a symbols array, an array for the internal nodes,
and an array for the leaf nodes. The disk-based represen-
tations for the three arrays, with reference to the suffix tree
in Figure 2, are as follows:

Symbols:
The symbol array (shown in Figure 2) is simply broken
down into chunks that fit into a disk block, and the disk
blocks are written out sequentially. The position informa-
tion that is shown in Figure 2, is simply the index of the
symbols, and is shown only for illustration purposes; this
information is not part of the actual disk representation.

Internal nodes:
Each internal node has the following four attributes:

• depth: This attribute stores the length of the node
path.

• position: This attribute is a pointer to the symbol ar-
ray, indicating the portion of the original sequence that
labels the incoming arc. The length of the arc can be
determined by subtracting the depth of the parent node
from the depth of the incident node.

• firstChild: This attribute is a node pointer to the first
successor or child of the node.

• endBit: Since siblings are adjacent, we use this at-
tribute to indicate whether or not a node is the “last”
sibling.

The internal nodes are traversed in a level-first order,
and stored sequentially on disk in disk-block size chunks.

Leaves:
To save space, we organize the leaf nodes in such a way that
the array index of a node indicates the relevant position
in the symbol array for the incident arc. Since there is
a single leaf node for every suffix, the index tells us the
starting position for the full node path in the symbol ar-
ray. For instance, leaf node 0L is the terminus of the path
beginning from position 0 in the symbol array. Because
of this, leaf nodes can not be clustered like the internal
nodes, and we must maintain an explicit pointer to siblings
(rightSibling). Again, the array is written to disk sequen-
tially, and organized in disk blocks.

3.4.1 Suffix Tree Construction

For OASIS, the suffix tree is constructed only once. Tra-
ditional suffix tree construction algorithms [25, 38] realis-
tically require the entire tree to be maintained in memory
during the construction phase. With large data sets, this is
not possible, and techniques for building suffix trees larger
than the amount of memory are required. Recently such
a technique was proposed [16]. This technique constructs
sub-trees stemming from fixed-length prefixes of each suf-
fix in memory, by making one pass through the sequence
data for each subtree. We use this same general approach
to construct the suffix tree, but select lexical ranges for each
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Figure 3: Performance Comparisons, SWISS-PROT,
E=20,000.

Figure 4: Filtering Efficiency, SWISS-PROT,
E=20,000.

pass based on the contents of the underlying database se-
quences. Once the suffix tree has been constructed, we
reorganize the disk-representation using the representation
described above.

4 Experimental Evaluation
This section presents an experimental evaluation of OASIS.

4.1 Data Set and Queries

In the experiments described in this paper, we used the en-
tire SWISS-PROT database [37]. This data set is an an-
notated collection of proteins with low redundancy, and is
commonly used in practice. SWISS-PROT contains over
100K protein sequences, totaling roughly 40M amino acid
symbols, ranging in length from 7 to 2048 symbols.

In addition to SWISS-PROT, we also tested OASIS
on the entire Drosophila (fruit-fly) genomic nucleotide se-
quence. This nucleotide data set contains roughly 120M
symbols in 1K sequences. The results for the nucleotide
data sets are similar to those presented here, with OASIS
outperforming S-W by orders of magnitude. In the interest
of space, we omit these results in this paper.

For the query set, we used typical short query work-
loads, since OASIS is designed primarily for this task.
The protein query workload consisted of a hundred queries
that were randomly selected from the ProClass motif
database [15]. ProClass is a non-redundant database
which organizes the SWISS-PROT entries into family re-
lationships, grouping similar proteins and placing them
in the same family class. Such queries are frequently
used to find matches to short peptide sequences [6]. The
ProClass database contains roughly 70K motifs, rang-
ing in length from 3 to 80 residues, with an average length
of 17. The hundred queries in the selected workload range
in length from 6 to 56 symbols and have an average length
of 16 symbols.

4.2 Experimental Setup and Implementation Details

In these experiments, we used BLAST version 2.2, down-
loaded from the NCBI website [7]. We implemented both

OASIS and S-W in C++. Both code sets were compiled
with full optimization using gcc version 2.95.4. The OA-
SIS algorithm reads disk pages from a buffer pool, which
uses a simple clock replacement policy. The OASIS imple-
mentation used a block size of 2K. All experiments were
run on a machine with a 1.70 GHz Intel Xeon processor,
running Debian Linux 2.4.13, and configured with a 40GB
Fujitsu MAN3367MP SCSI hard drive. Unless stated oth-
erwise, in the following experiments, we set the buffer pool
size to 256MB.

For OASIS the suffix tree was built using the technique
described in [16]. The on-disk image was organized as de-
scribed in Section 3.4. The space utilization of the suffix
tree index is summarized below:

Data Set Size Index Size Space Utilization
(# of symbols) (bytes per symbol)

40M 500MB 12.5

The space utilization of the suffix tree is comparable to
that of the most compact suffix tree representations [22]
(which uses 12.5 bytes per symbol).

In all the experiments, for the protein queries, we used
the PAM30 edit distance matrix, which is the popular
choice for short queries [6]. (We also experimented with
other edit distance matrices, which produced similar re-
sults.)

All search tools were configured to use a fixed gap
penalty model. With this model, a series of k insertions
or deletions contributes −ka to the alignment score, where
a is a single gap penalty. Alternately, we can use an affine
gap penalty, which charges a penalty b to open the gap, and
a penalty c to extend the gap. With an affine gap model,
a k-length gap contributes −b − (k − 1) ∗ c to the align-
ment score. To manage affine gaps, OASIS and S-W must
expand three dynamic programming matrices. The two ad-
ditional matrices store the alignment scores associated with
insertion gaps and deletion gaps respectively. Our current
implementations of OASIS and S-W do not support such
affine gap penalties.



0 10 20 30 40 50 60
0

20

40

60

80

100

120

Query Length

%
 o

f A
dd

iti
on

al
 M

at
ch

es

0 10 20 30 40 50 60
10

2

10
 1

10
0

10
1

10
2

Query Length

M
ea

n 
T

im
e 

(lo
g 

sc
al

e,
 s

ec
on

ds
)

E=1
E=20000

Figure 5: Accuracy Comparisons with BLAST,
SWISS-PROT, E=20,000.

Figure 6: Effect of Selectivity, SWISS-PROT.

4.3 Comparison with BLAST and S-W

In this experiment, we compare the performance of OA-
SIS with the Swiss-Waterman (S-W) algorithm, which is
the traditional accurate local alignment algorithm. For this
experiment, we also include a comparison with the pop-
ular search tool BLAST. Note that BLAST is a heuristic
algorithm, so its functionality is not directly comparable to
S-W and OASIS. The primary goal of the comparison with
BLAST is simply to establish a baseline for performance
comparison.

While OASIS controls query selectivity through the
minScore input parameter, BLAST uses an E-value pa-
rameter. Each alignment has an E value, which indicates
the number of alignments we expect to find in a given
database by chance having an equivalent or better align-
ment score. The following equation relates E-value and
alignment score (S):

E = Kmne−λS (2)

where m is the query length, n is the database size and
K and λ are scaling constants computed by BLAST. In a
BLAST search, all alignments with an E-value less than
some input parameter are returned. The corresponding
minScore value for OASIS can be computed as follows:

minScore =
⌈

ln(Kmn)− ln(E)
λ

⌉
(3)

BLAST performs additional statistical adjustments to
the E value based both on the length of the query and on
the lengths of individual sequences in the database [1]. For
this reason, BLAST is used only for baseline comparisons
with OASIS, which is designed as a replacement for S-W.
OASIS can however perform the same adjustments: query
length has a fixed effect on minScore, and it is straightfor-
ward to adjust reported statistics as OASIS uncovers align-
ments. To strictly maintain online properties, OASIS must
also sort the queue based on an optimistic estimate of E-
value, as it relates to alignment score. When a particular
sequence is accepted, it must then be pushed back on the
priority queue with a non-optimistic E value (adjusted for
the actual sequence length).

Figure 3 shows the performance comparison between
OASIS, S-W and BLAST, with the selectivity set to
E=20,000, which is the BLAST recommended value for
short protein queries. These results are organized according
to query length, and the query execution times are plotted
on a log scale. Where multiple queries of a particular length
exist, we have plotted the mean time for all such queries.
While OASIS and S-W optimally find the strongest align-
ments, BLAST offers no such guarantee. Despite this, OA-
SIS runs faster than BLAST, by an order of magnitude in
some cases. In all cases, OASIS is an order of magnitude
or more faster than S-W, which provides the same function-
ality as OASIS.

In order to study the tradeoffs between OASIS and S-
W in greater detail, we examine the number of column-
wise expansions performed by each algorithm. This met-
ric indicates what portion of the database is considered by
OASIS, and thus reflects the filtering behavior of the algo-
rithm. Figure 4 shows the filtering behavior of OASIS and
S-W with respect to query length for the protein queries. In
the worst case, OASIS expands 18.5% of the columns. On
average, OASIS expands only 3.9% as many columns as S-
W. OASIS generally does less work per column than S-W,
due to alignment pruning, so this is a conservative metric
of filtering efficiency.

We also examined the number of matches that were re-
turned by OASIS and BLAST. Figure 5 plots the percent-
age of additional matches that were returned by OASIS.
On average OASIS retrieved about 60% more matches than
BLAST.

4.4 Effect of Selectivity

In this experiment we investigate the effect of query se-
lectivity on the performance of OASIS. Query selectiv-
ity is changed by varying the E value in OASIS (we
vary the E score rather than minScore for consistency in
the presentation of the experimental results; corresponding
minScore values can be computed using Equation 3).

For this experiment, the E value is varied from 1 to
20,000. Figure 6 plots these two extremes. Plots for the
other E values are in between these two extremes, and are
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SWISS-PROT, E=20,000.

Figure 8: Buffer Pool Performance
Figure 9: Sample Online Be-
havior, SWISS-PROT, Query:
DKDGDGCITTKEL

not shown in the figure. A higher E value implies a more
“relaxed” match, and more results are returned. For the ex-
periment shown in Figure 6, with an E value of 20,000,
OASIS returns roughly 1000 times more results than for
E=1.

As can be seen from this figure, for very small query
lengths, the more highly selective queries (E=1) take better
advantage of our hierarchical search technique, and thus re-
sult in more efficient performance. However, as the query
lengths increase, the effect of selectivity reduces sharply.
For long queries, the difference in performance is relatively
small, especially given that OASIS returns many more re-
sults for E=20,000. In practice, OASIS must search a
relatively large space to guarantee that no alignments are
missed. This implies that in uncovering strongly relevant
matches, much of the groundwork has been laid for the
discovery of weaker matches. Notice that the difference in
performance is quite marked on the shortest queries, where
high selectivity (or low E values) makes OASIS behave
very much like exact suffix tree search.

4.5 Effect of Buffer Pool Size

This experiment evaluates the effect of the buffer pool on
the performance of OASIS. Figure 7 plots these results as
the mean times for the entire workload. Figure 7 shows that
the performance of OASIS degrades for very small buffer
pool sizes. As the buffer pool size increases the perfor-
mance improves rapidly. With 512M allocated, the entire
structure can fit in memory, and when one quarter of the
tree (buffer pool size = 128M) can fit in memory, we see a
57.5% increase in query running time.

To understand the effect of the buffer pool size on the
query performance, we measured the ratio of “buffer hits”
over all protein queries. This ratio is defined as the ratio
of disk pages requested that are already in the buffer pool.
Figure 8 shows the buffer hit ratios for each of the three
components of the suffix tree (see Section 3.4).

Notice the internal nodes are the only optimized ele-
ments in terms of disk layout, and as such, they are least
susceptible to problems with smaller allocation. In the cur-
rent suffix tree representation, symbol and leaf accesses are

by their nature random, since they are ordered according
to the original database sequence. We are currently experi-
menting with an alternative leaf representation to alleviate
this problem, so that leaves are stored contiguously with
the internal nodes.

4.6 Online Behavior

The results presented in the previous sections describe the
complete running times of all algorithms. However un-
like S-W and BLAST, OASIS has an online behavior, and
produces results incrementally with scores in descending
order. As a result, the top results are returned far more
quickly. In this section, we now examine the online behav-
ior of OASIS.

We illustrate the online behavior of OASIS with a single
protein query; however the behavior described here is typ-
ical of other queries. We use a 13 symbol protein query
from the Motif collection (DKDGDGCITTKEL). In this
experiment, the selectivity was set to E = 20, 000. With
this setting, OASIS identifies 5899 viable alignments, and
BLAST identifies 5437 viable alignments. Figure 9 plots
the times at which each result is returned by OASIS. Note
that the top results are returned very quickly, with the first
40 results being returned in under 4/100ths of a second.

5 Related Work
We now review some existing work in this area. An ef-
ficient, but inaccurate, system for local alignment match-
ing is QUASAR [8]. Based on suffix arrays, it achieves a
performance gain over BLAST in searches for “strongly
similar DNA sequences” by filtering out sections of the
database not likely to generate any useful matches. The
technique proposed by Kahveci and Singh [18] indexes the
substrings of a database according to background statistical
properties using a “wavelet” approach. For a given query
string, it then identifies regions that are able to produce a
strong global alignment. After filtering, the authors report
that between 5-50% of the database remains. However, the
effectiveness of the approach with standard protein edit-
distance matrices (e.g. BLOSUM62 or PAM30) is not ex-
plored. A similar approach has been adopted by Ooi et



al. [30], in which a bitmap index is used to filter out “ir-
relevant subsequences”. Sahinalp et al. [33] have observed
that compression distances in strings is almost metric, and
leverage this property to use VP-trees to prune out large
portions of the database when evaluating string proxim-
ity searches. OASIS differs from these approaches in that
it uses its index structure to directly evaluate alignments
rather than simply identifying strong regions. There is a
filtering component however, in the sense that OASIS al-
lows us to consider only a small subset of the database.

BLAST [1–3] and FASTA [32] are are commonly used
for similarity searching on biological sequences. Both tools
employ heuristics to speed up their search. There has
been considerable work on refinements of the BLAST al-
gorithm [3, 20, 24, 39], and these techniques focus primar-
ily on improving the speed and the sensitivity of the basic
BLAST algorithm. However, none of these have the same
sensitivity as S-W. Recent work [4, 10] has also consid-
ered using suffix trees for searching unstructured sequence
data. Both of these works refer to the application of the
suffix trees to genetic sequences, but do not detail any ap-
proximate matching strategy. Other groups [29] have used
lookup index structures to identify exact matches, and thus
achieve considerable performance gains on searches for ex-
act similarity on clean data. Chavez and Navarro [9] de-
velop an algorithm operating on a suffix tree that finds all
matches within a certain “edit distance”, or number of ed-
its and symbol substitutions. For the PAM and BLOSUM
matrices used in protein sequence analysis, edit distance
provides a very loose lower-bound on the the actual align-
ment score, since certain residues are substituted with high
likelihood.

A* is a widely used technique, and has been proposed as
a method for solving multiple sequence alignment [19,21],
which finds alignments between two or more sequences.
These papers investigate how to pick the heuristic in the
A* algorithm for multiple-alignment searches. Neither of
these methods have been implemented, or compared with
existing tools like S-W or BLAST for the simpler case of
local-alignments. OASIS only considers local-alignments,
and hence can pick simpler heuristics. Furthermore, the
search in OASIS is driven by a suffix tree, which results in
significant pruning of the search space.

In general, the construction and traversal of suffix trees
results in “random-like access” [14] for a number of ef-
ficient in-memory construction methods [25, 38]. Since,
even the most efficient suffix tree representations require
12.5 bytes per symbol [22], for large data sets the suffix
trees need to reside on disk. In recent years, a number of
solutions have been proposed for efficiently construct suffix
trees on disk [4, 10, 16, 17, 31]. Specifically for biological
sequences, a recent paper by Hunt et al. [16] proposed a
secondary-memory algorithm, which we have used in our
implementation.

Suffix trees have also been applied for aligning whole
genomes [11, 12], and for exploring repeated structures in
genomic sequences [23]. OASIS differs from these ap-

proaches as it targets a different problem, namely local-
alignment searches.

6 Conclusion and Future Work

We have introduced a new algorithm called OASIS which
improves upon the performance of the existing state-of-the-
art for accurate local sequence alignment. The existing
accurate local-alignment algorithm, the Smith-Waterman
(S-W) algorithm, is rarely used since it is very computa-
tionally expensive. Consequently, when searching large
biological sequence databases, life science researchers of-
ten settle for approximate search algorithms, which though
finely tuned to avoid missing good matches, do not guaran-
tee that a good match will never be missed. In this paper
we show that the OASIS algorithm is often an order-of-
magnitude or more faster than the S-W algorithm when the
query is a short sequence. Such short sequences are often
used in querying biological sequence data sets, and OASIS
is very effective in these cases.

Besides not missing any matches, OASIS, also has the
property of returning result tuples in decreasing order of the
matching scores. Consequently, OASIS can also be used in
an online mode, where the scientist may want to abort the
query after seeing the top few results.

As part of future work, we will investigate techniques
to allow incremental updates to the suffix-tree disk struc-
ture. We are also planning on investigating techniques to
further improve the performance of OASIS for answer-
ing long queries, and extending our current implementa-
tion to include affine gap penalties. Finally, we plan on in-
vestigating the application of OASIS for evaluating local-
alignment matches in other domains, such as identifying
closely matching musical pieces based on a few hummed
notes [5, 26].
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