
Abstract
The majority of data reduction techniques for approxi-
mate query processing (such as wavelets, histograms,
kernels, and so on) are not usually applicable to cate-
gorical data. There has been something of a disconnect
between research in this area and the reality of data-
base data; much recent research has focused on
approximate query processing over ordered or numeri-
cal attributes, but arguably the majority of database
attributes are categorical: country, state, job_title,
color, sex, department, and so on.

This paper considers the problem of approximation
of aggregate functions over categorical data, or mixed
categorical/numerical data. We propose a method
based upon random sampling, called Approximate
Pre-Aggregation (APA). The biggest drawback of
sampling for aggregate function estimating is the sen-
sitivity of sampling to attribute value skew, and APA
uses several techniques to overcome this sensitivity.
The increase in accuracy using APA compared to
“plain vanilla” sampling is dramatic. For SUM and
AVG queries, the relative error for random sampling
alone is more than 700% greater than for sampling
with APA. Even if stratified sampling techniques are
used, the error is still between 28% and 175% greater
than for APA.

1 Introduction
Approximate query answering has received much recent
research attention from the data management community.
The importance of approximation as an area of database
research has been greatly enhanced by the emergence of
Decision Support Systems (DSS) as a fundamental applica-
tion area for database technology. Two characteristics spe-
cific to such systems make DSS a potential area where
approximation methods can be used.

•First, DSS archive many gigabytes or terabytes of data
(often on the order of billions of records), and so exact
query answers can be very expensive.

•Second, queries over DSS are usually aggregate queries,
and thus lend themselves to numerical approximation. 

A great amount of the work in this area has centered around
the approximate evaluation of aggregate queries of the
form:

SELECT AGG_FUNC (TBL.MEAS_ATT)
FROM THE_TABLE TBL
WHERE TBL.SEL_ATT_1 
BETWEEN(N1_LOW AND N1_HI) AND TBL.SEL_ATT_2
BETWEEN(N2_LOW AND N2_HI) AND ...

In most work, it has been assumed that the data model that
is queried over is something similar to a multidimensional
data cube. In this model, there are D selection attributes, any
of which can appear in the WHERE clause of the query.
These attributes partition the data space into a D-dimen-
sional cube. In addition to the selection attributes, there is a
set of measure attributes to which different aggregate func-
tions may be applied in the SELECT clause of the query.
Each tuple in the database is mapped to a cell in the data
cube based on the values of that tuple’s selection attributes,
and the values of that tuple’s different measure attributes are
written into the cell. Queries then compute aggregate func-
tions (such as SUM, AVG, COUNT, etc.) over different low-
dimensional projections of the measure attributes which are
stored in the cube.

 A key assumption in much of the work in this area is that
the attributes appearing in the WHERE clause either are
numerical or have been discretized into a set of buckets
which have a meaningful ordering. In this case, one can
choose from many proposed approximation methodologies.
Examples are multidimensional histograms [18], wavelets
[20], and kernel estimators [13], among others.

1.1 The Problem: Categorical Attributes
One problem with these approximation techniques is that
data often have attributes which are truly categorical. An
example of this is the attribute country (with possible values
United States, Canada, France, etc.). These values are not
numerical, and it is difficult to impose an ordering on them
that allows for a meaningful decomposition of the data
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space (in our example, should Canada be grouped with the
United States, or with France?) Such attributes are problem-
atic for any of the numerical or ordinal approximation meth-
ods mentioned above, since without an ordering, each
possible category must be considered as a separate boolean
attribute. The problem is worse if there are several categori-
cal attributes like seller_country, buyer_country, and
product_class. In this case, we may have increased our data
dimensionality from three to 500 attributes, which is likely
far more than any of the mentioned approximation methods
can handle. According to Gunopulos et al., it is doubtful that
any of these methods can consistently work in more than ten
dimensions [13].

1.2 Random Sampling
Thus, handling estimation over categorical attributes (or,
most commonly, mixtures of categorical and numerical
attributes) is important. Arguably, the only significant sub-
set of current estimators that are suitable for use with both
numerical and categorical data is the subset based upon ran-
dom sampling, which handles categorical attributes grace-
fully since it is unaffected by data dimensionality (as long as
the number of sampled tuples remains constant). Sampling
is also attractive because it can be done in a single pass over
the data, using standard algorithms [19]. However, random
sampling has one tremendous drawback. The accuracy of a
sample-based estimate for an aggregate function decreases
as the variance of the set of values over which the aggregate
is computed increases. Combined with the prevalence of
attributes in the real world that follow a Zipfian or power
distribution, this can make random sampling inaccurate.

The standard statistical method for handling the variance
problem is to use unequal probability or stratified sampling
[6]. In stratified sampling, the probability of sampling a
record is proportional to the importance of the record. For
example, imagine that we want to use a sample of the peo-
ple who live in the city Metropolis in order to estimate the
total net worth of all individuals who live in that city. In
stratified sampling, we would make sure that our sample
contains more of the richest people in Metropolis, because
they are likely to contribute the most to the total net worth.

Still, there are several drawbacks of stratified sampling.

•First, because a stratified sample is targeted towards
answering a particular query (or class of queries) we
should know something about the workload (at least the
attribute(s) that are usually queried, and/or the usual
aggregate function(s)). This can be problematic in DSS,
where queries are often exploratory in nature, and so past
queries might be a poor indicator of the future workload.

•Second, if a stratified sample has been targeted towards
answering a particular query, then there will always exist
other queries that will suffer as a result. In our Metropolis
example, if we use the stratified sample aimed at estimat-
ing the total net worth in order to estimate the average net
worth of all people younger than 25, we will likely get a
very inaccurate result. Why? By skewing our original
sample towards wealthy people (who usually tend to be
older) we likely have less information about people under
25. Of course, we can always target our sample towards
both queries, or more generally, a query workload

[4][5][9]. However, there will always be some other que-
ries that suffer information loss.

•Third, it is unclear how many types of stratified samples
appropriate for answering simple aggregate queries can be
guaranteed in a single pass over the data, without any prior
knowledge of the data or query distribution.

Given these drawbacks, the question that we address in this
paper is as follows: 

Can we alleviate the effect of variance on the accuracy
of random sampling, to produce a method that is suit-
able for estimation of aggregate functions over categor-
ical or mixed categorical/numerical data in DSS?
Furthermore, can this be done in such a way that (1) we
still only require one pass through the data; (2) we
increase the accuracy of the estimation for all aggre-
gate queries; and (3) this is done without prior knowl-
edge of the query workload?

1.3 Approximate Pre-Aggregation
Our method (called APA or Approximate Pre-Aggregation)
is quite different from stratified sampling. APA uses a true
random sample of the data that is not biased towards any
query or workload. This sample is combined with a small
set of statistics about the data. The statistics can be gathered
in one pass, at the same time that the sampling is performed.
The statistics can be arbitrarily complex, but a few bytes of
information can dramatically increase estimation accuracy.

We now detail a high-level example of APA. Imagine that
we have three professors who teach the database course,
though not every professor teaches the course every semes-
ter. Each semester, a number of students who take the DB
class come to see their professor with a concern or a com-
plaint about the grading on a test. This information is
recorded over three years as 12 tuples in a database table
(shown in Table 1). We sample 50% of the table. The sam-
pled tuples are indicated as unshaded cells in Table 1.

We then use the sample to answer the following SQL query:

SELECT SUM (COMPLAINT)
FROM THE_TABLE
WHERE PROF = ‘Smith’

The total number of students in the sample who complained
to Professor Smith was 36, and the sample constitutes 50%

Table 1: Number of complaints over three years.

Prof Semster Cmplaints Prof Semster Cmplaints

Adams Fa 02 3 Smith Su 01 7
Jones Fa 02 2 Smith Sp 01 8
Adams Sp 02 9 Adams Fa 00 4
Jones Sp 02 2 Smith Fa 00 33
Smith Sp 02 21 Smith Su 00 16
Smith Fa 01 36 Adams Su 00 3
Jones Su 01 1 Jones Su 00 0
Adams Su 01 2 Jones Sp 99 1



of the database tuples. Thus, we estimate that a total of 72
students have come to see Professor Smith with complaints.

As we see from Table 1, the actual number of students
who came to see Professor Smith was 121 (yielding 40.5%
relative error). The problem is the variance in the number of
students who complained to Professor Smith each semester.
This ranges from a low of 7 to a high of 36, and it happens
that our sample missed the two semesters when the greatest
number of students complained to Professor Smith.

In APA, we will address sampling’s vulnerability to vari-
ance by using a bit of additional information about our data-
base. In our example, imagine that we also know the
following simple fact:

(Sum (COMPLAINTS)) = 148

We can then use this information to serve as something of a
sanity check on our estimation that will allow us to “undo”
the effect of variance on our sample. First, we use the rela-
tional selection predicate of the query that we are trying to
answer to divide the data space into 2n quadrants, where n is
the number of clauses in the predicate (in our example, there
is one such clause: PROF = ‘SMITH’, and so our data
space is divided into two quadrants; one corresponding to
PROF = ‘SMITH’ and another corresponding to
PROF ‘SMITH’). Next, we use the central limit theo-
rem in conjunction with our sample to estimate a probability
density function (pdf) for each of the 2n quadrants created
by the predicate. These pdfs are shown above in Figure 1.

The pdfs pictured above describe the probability distribu-
tion for the expected “real” average value for each of our
two quadrants, given the values that we observed in our
sample. These pdfs are fairly intuitive. Since there is signif-
icant variance in the number of complaints associated with
Professor Smith in our sample, we expect to be relatively
unsure about the accuracy of our estimation for the number
of complaints per tuple for Professor Smith. 

The next step is to use our additional information to cre-
ate a set of constraints on the distributions. In our example,
we know that (SUM (COMPLAINTS)) = 148. Since the
total number of database tuples is 16, this implies that the
means of the two distributions shown above in Figure 1
must sum to 148/16 = 9.25.

However, the means of the two distributions do not sum
to 9.25 (they sum to 5.75). Thus, there is significant error
somewhere, and so the next step is to find the most “likely”
way to satisfy all of our constraints and remove the error,

given the pdfs that we have derived. To do this, we rely on a
method from mathematics and statistics called Maximum
Likelihood Estimation (MLE). MLE is a general methodol-
ogy for fitting a set of hidden parameters that explain a set
of observed outcomes. In our example, the MLE will have
much more freedom to adjust the mean of the distribution
associated with Professor Smith, because of the greater vari-
ance in the pdf associated with Professor Smith. 

After performing the MLE, APA obtains a “re-estimated
mean” of 8.52 for Professor Smith, which gives us an esti-
mated total of 136.3 for the total number of students who
have complained to Professor Smith (since

). Since the actual number of complaints
was 121, we have significantly improved our initial estimate
of 72. This improvement is typical for APA.

In this paper, we will subsequently refer to facts of the
form (Sum (COMPLAINTS)) = 148 as “zero-dimen-
sional facts,” but in general APA can handle facts of arbi-
trary dimensionality. An example one-dimensional fact is
(SUM (COMPLAINTS) WHERE PROF = ‘JONES’) = 6;
and a two-dimensional fact is (SUM (COMPLAINTS)
WHERE PROF = ‘JONES’ AND SEMESTER = ‘SU02’) =
0. As our experiments will show, storing all zero-dimen-
sional facts for a database will require only a few bytes, and
can lead to a tremendous increase in accuracy. Storing addi-
tional facts can increase accuracy accordingly.

1.4 Paper Organization
The remainder of this paper is organized as follows. In Sec-
tion 2, we give a brief description of MLE. In order to
phrase APA as a MLE problem, three specific components
of the MLE formulation of APA must be defined. These
components are described in Section 3. Our method for
solving the MLE is described in Section 4. Section 5 details
a set of experiments aimed at benchmarking performance of
the approximation. Section 6 describes some additional con-
siderations, such as using the method with numerical data.
We describe related work in Section 7, and conclude the
paper in Section 8.

2 Maximum Likelihood Estimation
We begin with a brief review of the concept of maximum
likelihood estimation, a methodology from statistics that is
of fundamental importance to APA. MLE is a very general
(and very powerful) technique used for the discovery of sta-
tistical models.

Let x be an observable outcome from a given experiment.
In our case, x might be the fact that our random sample pre-
dicts that the value of our relational aggregate SUM query is
72. Then, let the probability density function (pdf) with
respect to observing outcome x be the function

In this formulation, the parameters  are the hid-
den parameters that we wish to estimate (they describe the
model that we want to discover). 

Say that instead of having the answer to just a single
experiment, we conduct a set of n different experiments,
each of which has outcomes x1, x2, ..., xn. In order to “fit”
the hidden model parameters to this set of observations, we
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Figure 1: Pdf fitted to the two quadrants of the data space.
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maximize the likelihood that our particular model produced
the data. This likelihood is given by the function

In order to come up with a set of model parameters to
explain the observations, the likelihood function is maxi-
mized with respect to all possible values for the parameters

. Since it is often difficult to work with such an
unwieldy product as L, the value which is typically maxi-
mized is the loglikelihood

The loglikelihood  is the result of applying a logarithmic
transformation to L, which renders a simpler expression and
does not affect the ordering of the quality of the model
parameters.

3 Maximum Likelihood Estimation in APA
The basic idea of APA is simply to find the best (or most
likely) explanation for the sample which does not violate
any of the known facts about the database, where the facts
are things like the counts for individual, categorical values.
Thus, we need to come up with a way to pose our problem
of approximate aggregation over categorical data as a MLE
problem. In this Section, we describe how this is accom-
plished. As stated previously, there are three specific com-
ponents of maximum likelihood that we need to describe in
the context of APA:

(1) The experimental outcomes x1, x2, ..., xn 
(2) The model parameters 
(3) The pdf 

Once these three components have been defined, we have
transformed the problem of estimation of aggregate func-
tions over categorical data into a MLE problem, and we can
begin the task of developing a method to solve the problem.
The next three subsections define each component for APA.

3.1 Experimental Outcomes
First, we describe how we obtain the “outcomes” x1, x2, ...,
xn to postulate APA as a MLE problem. In APA, those out-
comes are a set of predictions made by our sample. Thus,
we are trying to fit or explain our sample in the context of
our model. We begin with an example aggregate query:

SELECT SUM (SALARY)
FROM EMPLOYEE
WHERE SEX=‘M’ AND DEPARTMENT=
‘ACCOUNTING’ AND JOB_TYPE=‘SUPERVISOR’

With a query of this type, we will begin by numbering each
of the boolean clauses in the relational selection predicate
from 1 to m. In our case, b1 = (SEX = ‘MALE’), b2 =
(DEPARTMENT = ‘ACCOUNTING’) and b3 =
(JOB_TYPE = ‘SUPERVISOR’). We will also consider
the negation of each of these clauses: . 

Given this, let  be the list of all “meaningful” conjunc-
tions of these boolean clauses (meaningful in the sense that
they do not contain a conjunction of a given predicate with

that predicate’s negation). In our example,  =
[ , , , ,

, , , ]. Note
that each of the boolean conditions in this list corresponds
to a single cell in the multidimensional data cube defined by

 (see Figure 2).
Given this, we can now easily define our set of “experi-

mental” outcomes x1, x2, ...,  for the MLE.

Definition 1:  The outcomes x1, x2, ...,  for the MLE in
APA are the results of the aggregate function in question
with respect to each of the relational selection predicates in

, estimated using our sample.

For example:

Example 1: We know that our sample-based estimate for
SUM(SALARY) over  is $1.5M (that is, the
total salary for male supervisors in the accounting depart-

ment is $1.5M).  is the first entry in . Thus,
$1.5M is used as the value of x1. 

Example 2: Imagine that the sample-based estimate for

SUM(SALARY) over  is $1.1M (that is, the
total salary for male non-supervisors outside of the
accounting department is $1.1M). This is the fourth entry

in . Thus, x4 is $1.1M. 

In this way, our random sample is used to estimate the value
for each cell in the cube, and these values become the out-
comes x1, x2, ..., .

3.2 Model Parameters
The second part of the MLE problem that we need to
describe is the set of model parameters  which
we will attempt to estimate.

In APA, these parameters are defined to be the APA
guess as to the real value of the aggregate function in ques-
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tion, with respect to each of the cells in the multidimen-
sional data cube defined by . More exactly:

Definition 2:  If xi is the value of cell i predicted by the
sample, then the model parameter  is the APA maxi-
mum likelihood estimate for the correct value for the
aggregate function applied to cell i. 

Thus, after MLE, the final, approximate answer to the
aggregate query will be the value of the parameter , which
corresponds to the predicate .

Note that in the case of APA, we will also effectively
have an additional set of constraints on the possible values
of . Recall that the basic idea of APA is to find
the most likely solution given the results of our sampling as
well as a simple set of known facts about the data, like
counts of individual attributes. Two examples of these types
of facts are:

(SUM (SALARY) WHERE SEX=‘FEMALE’ AND
DEPARTMENT!=‘ACCOUNTING’ AND
JOB_TYPE!=‘SUPERVISOR’) = $0.4M

(SUM (SALARY) WHERE JOB_TYPE!=‘SUPERVI-
SOR’) = $2.3M

These facts are then easily translated into constraints on
:

Example 3: The relational selection predicate present in

the first fact is . This is the 4th predicate in .
Thus, the first fact is equivalent to the constraint that

.

Example 4: The relational selection predicate present in
the second fact is ( )   ( ) 
( )  ( ). This is a disjunction of the

third, fourth, seventh, and eighth predicates present in .
Thus, this fact is equivalent to the constraint that

 = $2.3M.

3.3 The Probability Density Function f
The third and final aspect of the MLE that we need to define
is the probability density function f, which will give us the
likelihood that we would see the experimental observations
x1, x2, ..., , given model parameters . Spe-

cifically, we need to derive a pdf f where  is the

probability that a sample would predict that the value for xi
falls in the range a to b, given that the real value for xi is .
Intuitively, our function will reflect the fact that a value for

 which diverges significantly from the value predicted by
the sample is a much poorer explanation for the sample than
a value for  that is close to the prediction.

To derive this function, we begin with the following set of
formulas. Much of our notation and inspiration is borrowed
from Hellerstein, Haas and Wang [15]. Assume we attempt
to estimate the value for an aggregate of the form

SELECT AGG(expression)
FROM THE_TABLE
WHERE (predicate)

Assume we have pulled a sample of size n from a database
of size db, and the estimated value of the query based on the
sample is x. Let ti denote the ith tuple in the sample. Let v(ti)
be the value of AGG(expression) predicted by the single
tuple ti. For example,

•if AGG is SUM, then v(ti) = ti.expression  if predi-
cate(ti) = true, and 0 otherwise

•if AGG is COUNT, then v(ti) = db if predicate(ti) = true and
0 otherwise

Let T(v) = (n - 1)-1 . From Hellerstein, Haas

and Wang [15], and using the central limit theorem we then
have

where  is the cumulative standard normal distribution.
Since this probability relies on the central limit theorem, it
is expected to be a good estimate if the large sample
assumption holds, as it typically will in the type of approxi-
mate query answering application that we consider. 

However, this probability function is not quite the pdf
 that we require. If , we need the density

of the distribution at , and not the definite integral of the
function evaluated over all values from -  to , which is
what  gives us.

Thus, what we really want is

Substituting, we have

Since  is the cumulative standard normal distribution, the

above expression simply becomes 

where g is the probability density function for the standard
normal distribution. More specifically,

Definition 3:  The probability density function f is
defined as follows:

4 Quadratic Programming in APA
We have now described APA as a MLE problem. We next
address how we might actually perform the estimation.

There are many ways to attempt to estimate the solution
to a maximum likelihood problem. Estimation or approxi-
mation is usually necessary because of the inherent intracta-
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bility of discovering the most likely model in the general
case. The best-known algorithm for such approximation is
the Expectation Maximization (EM) algorithm [7]. EM
begins with an initial guess at a solution and then repeatedly
refines the guess until it reaches a locally optimal solution.

However, there are several reasons that we will not use
EM to solve our problem. One is that in APA, the search
space is very constrained by a set of linear equations that
govern the relationship among the model parameters

 (see Section 3.2, Examples 1 and 2). In most
formulations, EM simply seeks to maximize the loglikeli-
hood value  (see Section 2). Maximizing  in APA with-
out constraints on  will be of little use (it will
give an answer that is exactly equivalent to the estimate
obtained by the sample!). The reason that APA can improve
the accuracy of sampling is that it provides a framework to
reconcile the error of the sample with a set of known facts.

4.1 Quadratic Programming
As a result of this, we will instead solve the MLE compo-
nent of APA using a quadratic programming formulation.
Solving certain constrained MLE problems using quadratic
programming is a widely-accepted technique in statistics
[3][14][17].

APA can be formulated quite nicely as a quadratic pro-
gramming problem. Quadratic programming is an extension
of linear programming, with the generalization that the
objective function to maximize may contain products of two
variables, and not simply scalars. Formally, any quadratic
programming problem can be stated as:

In this formulation, C is a lower triangular matrix, A is a
matrix, and , b, l, h, and d are vectors. Each of the ele-
ments except for  is given as input into the quadratic pro-
gramming algorithm; the algorithm then solves for an
optimal value of  so as to maximize the value of the objec-
tive function characterized by C and d (which may or may
not be possible depending on various characteristics of the
input). A concrete example of such a problem would be:

A key advantage of using methods like quadratic program-
ming is that a tremendous amount of effort has gone into
developing algorithms that work efficiently to solve prob-
lems which can be specified within the quadratic program-
ming framework. While solving quadratic programming in
general is NP-hard, many algorithms (such as those in the
interior point family) work so well, so quickly, and so often
that for practical purposes, the problem is often tractable. If

we use quadratic programming to perform MLE in APA, we
need only find a way to specify the estimation in APA as a
quadratic programming problem. In the remainder of this
Section, we will focus on the three components of the qua-
dratic programming formulation of APA:  the objective
function ( TC  + dT ), the constraints (A  = b), and the
bounds (l <  < h).

4.2 The Objective Function
The first requirement of the quadratic programming formu-
lation of APA is the development of an objective function
that is quadratic with respect to the MLE parameters

. Fortunately, this will be easy to do in our
case. Recall from Section 2 that MLE seeks to maximize the
value of the function

In the case of APA, this translates to maximizing

Since the log and the exp functions cancel one another out,
this expression simplifies greatly. After simplifying and
removing multiplicative coefficients and constraints com-
mon to each term in the summation (which will not affect
the maximization), we have

Maximizing this very simple sum is clearly possible within
the quadratic programming framework. Since 
and Ti(v) is not dependent on , we have an expression that
is quadratic with respect to each . Thus, the loglikelihood

 is readily used as an objective function as part of our qua-
dratic programming formulation of APA.

4.3 Constraints
Next, we need to formulate our constraints on the possible
values of . The ability of quadratic program-
ming to incorporate constraints makes it ideal for use with
APA, since the search space in APA is highly constrained
by the set of known facts about the database. 

The constraints in the quadratic programming formula-
tion of APA are a straightforward application of the general
technique from the examples of Section 3.2. Recall that
each target value  is associated with the value of the
aggregate function in question, applied to the tuples associ-

ated with the boolean, relational selection predicate [i].
Each such predicate corresponds to a quadrant in the multi-
dimensional data cube created by the boolean predicates
present in the aggregate query that we are estimating. The
constraints for our quadratic programming formulation are
then simply linear sums of the values . Each
such sum corresponds to a known fact about the database.
See Section 3.2 for more detail.
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4.4 Bounds
The final components of the quadratic programming formu-
lation of APA that must be defined are the vectors that spec-
ify the lower and upper bounds for the estimate. Bounds in
quadratic programming perform two important and separate
functions:

•First, they specify which answers are unacceptable. In the
case of APA, for example, it would be incorrect to esti-
mate that the value of COUNT(*) is negative.

•Second, they provide for a quick and accurate solution to
the problem by constraining the search space. Since qua-
dratic programming in general is NP-hard, coming up with
tight initial bounds that reduce the search space can help
lead to an optimal solution.

To produce the bounds for our quadratic programming for-
mulation of APA, we return to the fact (from Section 3.3)
that the likelihood function for an estimate  for cell i is
based on the normal probability density function g. As is
stated in nearly every introductory statistics textbook,
99.7% of the total mass of the normal probability density
function is found within three standard deviations of the ori-
gin. Because of this, any estimate for  which falls outside
of this range is quite unlikely, and it is reasonable to remove
all such solutions from consideration by choosing appropri-
ate bounds. We can use this fact to develop reasonable
bounds for our estimate of . From Section 3.3,we have

If we wish to limit our search space to a solution set that
comprises 99.7% of the total likelihood of the search space,
we simply set the value of this expression to three and solve
for the two possible values of . Thus, our upper and lower
bounds on  will be the two solutions to

More specifically, after solving for 

5 Experiments
In this Section, we describe a set of qualitative performance
results that give a good idea of the kind of accuracy that one
can expect when applying APA to the problem of estimating
COUNT, SUM, and AVG values over high-dimensional data.
We will compare several different flavors of APA against
uniform and stratified random sampling, as well as the mul-
tidimensional wavelet transform [20]. In this Section, we
only give our results over categorical data, because two of
the variations on APA that we test cannot be used for
numerical or mixed data (see Section 6.1). However, as we
discuss in Section 6.1, the variations on APA that can be
used with numerical data have no appreciable difference in

accuracy on such data, so the results presented here give a
good picture of the accuracy of the method.

5.1 Test Data
Our experiments are conducted over eight real, high-dimen-
sional data sets. The eight data sets which we consider are:
US Census data, Forest Cover data (from the UCI KDD
archive), Water Quality data, River Flow data, Stock Mar-
ket data, William Shakespeare data (word proximity infor-
mation), Image Feature Vector data, and Web Page data
(keyword frequency information).

Since many of the data attributes in these data sets are not
categorical, we transform non-categorical data into categor-
ical data in the following way in order to have a varied test-
bed. One-half of the numerical data attributes are
partitioned into five, equi-width buckets, and those buckets
are used as categories. The other half of the data attributes
are partitioned into five categories of exponentially decreas-
ing depth (where the depth is the number of tuples that each
bucket contains). In this case, the first category has 1/2 of
the database tuples, the next has 1/4, the next 1/8, the next 1/
16, and the final category has 1/16 as well.

For each data set, we arbitrarily pick (50 + 3) different
attributes from the data set in question for use in our experi-
ments (or fewer if the data set is of dimensionality less than
53). The first 50 attributes are transformed into categories as
described above and are designated as selection attributes.
Since each of the 50 query attributes is divided into five cat-
egories, there are 250 categories in all, 50 of which are
present in each database tuple. Each tuple falls in one cell in

a data cube having 550 or  cells in total.
The last three attributes chosen are designated as measure

attributes. Measure attributes are the target attributes on
which aggregate functions are applied during our experi-
ments, whereas query attributes appear only in the relational
selection predicate for our test queries. While query
attributes are transformed into categories as described
above, measure attributes are left in numerical form. 

5.2 Test Queries
To test the different methods, we construct a large number
of SQL-style aggregate queries over the data sets. 

5.2.1 The WHERE Clause
For each data set, the WHERE clause of each of the test que-
ries is generated as follows. Each query has between one
and eight random predicates associated with its relational
selection operator. These predicates are formed into a con-
junction with a series of boolean AND operators. An exam-
ple of such a three-predicate query is:

SELECT SUM (MEASURE_1)
FROM RIVER_FLOW
WHERE CATEGORY_6 = TRUE AND
CATEGORY_48 = FALSE AND
CATEGORY_156 = TRUE

The queries are generated so that they have varying
expected selectivities, where the expected selectivities are
calculated using an attribute value independence assump-
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tion. Queries are generated to match roughly between
0.01% to 10% of the database tuples. The joint distribution
of query selectivities and number of categorical predicates
are shown below.

5.2.2 The SELECT Clause
Recall that for each data set, three attributes are chosen as
the different measure attributes. The measure attributes in
our queries have aggregate functions (either SUM or AVG)
applied to them by the SELECT clause. Thus the queries
themselves return results computed over the measure
attributes.

For each data set, we create 7,000 queries. Each of the
queries has a WHERE clause generated as described above in
Section 5.2.1. One thousand of the queries have the SUM
aggregate function applied to the first measure attribute for
its respective data set, 1,000 apply SUM to the second mea-
sure attribute, and 1,000 apply SUM to the third measure
attribute. Likewise, 1,000 of the queries have the AVG
aggregate function applied to the first measure attribute,
1,000 apply AVG to the second, and 1,000 apply AVG to the
third. Finally, 1,000 COUNT(*) queries are also generated.

Table 2: Distribution of test queries.

exp. %DB
 match query

1
pred

2
pred

3
pred

4
pred

5
pred

6
pred

7
pred

8
pred

10% 4% 4% 4% 4% 4% 4%

1% 4% 4% 4% 4% 4% 4%

0.1% 4% 4% 4% 4% 4% 4% 4%

0.01% 4% 4% 4% 4% 4% 4%
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Since we generate 7,000 queries for each of the 8 data sets,
56,000 different queries are generated in all.

5.3 Experiments

5.3.1 Approximation Methods Tested
In our experiments, we test six different approximation
options over the eight data sets. The six options are:

•Random Sampling. We simply perform random sampling
without replacement. The random sample is then used to
approximate the answer to the various queries.

•Stratified Sampling. In this option, we use 3 different
unequal probability samples, as well as a single, uniform
random sample. Each of the 3 unequal probability samples
is tailored to answering one of the three different SELECT
SUM(ATT) clauses. We use the approximate Neyman
allocation technique [6] (also used by Chaudhuri et al. [5])
when performing our stratified sampling. Since a larger
number of strata increases accuracy, we maximize the
number of strata h by using h = N for a sample of size N.
Thus, each strata receives one sample, and strata are cho-
sen to minimize variance. For COUNT(*) queries, the
stratified sample is equivalent to the random sample.
AVG(ATT) queries are treated as SUM(ATT)/
COUNT(*) queries, which is why the stratified sample
must also make use of a uniform random sample. Thus, we
note that stratified sampling actually requires several sam-
ples.

•APA0. This is an implementation of approximate pre-
aggregation. For APA0, we store a random sample identi-
cal to that used in the approximation based on random
sampling. However, for each measure attribute, we also
store all “0-dimensional” facts about our data and use
them as our constraints as described in Section 4.3. This
means that for each measure attribute, we simply know
(and can make use of) the fact that
(SUM(MEASURE_ATT_i) = vali). In addition, we know
that (COUNT(*) = valcnt). Thus, APA0 assumes limited
information in addition to the sample which can be stored
in a few bytes.

•APA1. This is identical to APA0, except that for each mea-
sure attribute, we also store and use all “1-dimensional”
facts. An example of a one-dimensional fact is:

(SUM (SALARY) WHERE SEX = ‘F’) = $1.9M

In this type of fact, there is a single category named in the
WHERE clause. As a result, with c total categories present
in the data, c facts must be stored for each measure
attribute. Since c will probably number in the thousands
(or less), storing a few thousand such facts introduces only
a very small overhead, and is probably very reasonable.

•APA2. This is identical to APA1, except that we also store
all 2-dimensional facts for each measure attribute. These
are facts with a conjunction of two categorical restrictions
present in the WHERE clause. For example: 

(SUM (SALARY) WHERE AND SEX = ‘F’ AND JOB
= ‘SUPERVISOR’) = $0.4M

With c categories, there are (c choose 2) such facts to
compute and store. Even with 1,000 different categories,
there are still fewer than 500,000 such facts, and they can
be stored in a few megabytes in total. Since a reasonable
sample may be an order of magnitude larger in size, this is
probably still a reasonable overhead for many applica-
tions. 

•APA3. Finally, this is APA2 with the addition of all 3-
dimensional facts stored and used. Since there are (c
choose 3) such facts for each measure attribute, APA3 is
probably only reasonable for use with a relatively small
number of categories. Still, we test APA3 in order to pro-
vide a more informative benchmark.

•Wavelets. The sixth option that we test in our benchmark-
ing is a wavelet approximation (similar to Vitter and
Wang’s [20]). To be fair, wavelets are not meant for cate-
gorical data (which is typically very high-dimensional).
Still, the comparison is worthwhile because the perfor-
mance of the wavelet transform in this very high-dimen-
sional domain is probably indicative of the type of
performance that other methods for use with relatively
low-dimensional, numerical data will exhibit when used
with categorical data. 

5.3.2 Experiments Run
For each of the six methods described above, we construct
the appropriate data structures for each of the eight data sets
in order to answer queries over each of the three measure
attributes for each data set. Note that the wavelet transform
and stratified sampling actually require significantly more
space for the same “sized” model than either sampling or
the lower-dimensional versions of APA. This is because, for
APA and uniform sampling, the same sample can be used
for each measure attribute. However, for the other two
methods, different models must be used for each measure
attribute that it queried over, and a separate model must be
constructed to facilitate COUNT(*) query evaluation.

For each of the different approximation methods over
each of the data sets, we tested four different model sizes:
M = 5,000, 10,000, 20,000, and finally M = 40,000.

For all of these different combinations, we ran each of the
queries that were generated as described in Section 5.2. For
each query, we compare the model’s answer to the correct
answer obtained from going back over the data. Our compu-
tation of the accuracy of the approximation is based on the
relative error in combination with a sanity bound b [10].
Given an exact answer S and an approximate answer ,
this error is defined as:

The reason for the sanity bound is that without such a
bound, relative error effectively treats “small” queries dif-
ferently from large ones [10]. For example, if the correct
answer is 0.2, and the approximate answer is 0.3, the rela-
tive error is 50% (this is the same error obtained when the

S′

ε S S′–
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correct answer is 2 million and the approximate answer is 3
million, which is a more significant error). Adding a sanity
bound forces a minimum value for the denominator in the
expression for . In each case, the sanity bound is set to be
1/10,000 as large as the largest correct aggregate result
returned by that class of queries over that data set.

For a set of approximations, we will report the median
value for . The reason that we report the median value
(rather than the mean) is that for the partial sum
(SUM(DIM)) and average queries, errors can vary widely
because of tremendous skew of certain attribute values. This
can cause individual errors to be so large as to skew the
mean error. The mean can be affected to the extent that it
often presents a somewhat misleading picture of the accu-
racy of the approximation. The median value is less suscep-
tible to a few answers which are extraordinarily inaccurate.

In Figure 3, we give the results of our experiments. For
each of the three different query types (SUM, COUNT, and
AVG), we plot the effect of model size, number of boolean
predicates present in the WHERE clause of the query, and the
query selectivity on the quality of the answer. For the results
shown with respect to model size, we disregard queries
whose WHERE clause accepted fewer than 0.1% of the data-
base tuples, since these queries tended to skew the results a
bit (though those queries are present in the plots showing
the effects of selectivity on the accuracy of the different
approximations).

Plots of the different results follow. Note that the plots
showing the median value for  are in log scale, to more
easily show the qualitative performance characteristics of
the different methods. 

5.4 Discussion
Overall, our experimental results show that for SUM and
AVG queries, there is a dramatic reduction in error and a sig-
nificant increase in accuracy with the use of APA compared
to random sampling. Even use of APA0 and APA1 causes a
tremendous reduction in error, despite the very modest
amount of additional statistics required. APA0 requires that
only the total aggregate value for each measure attribute be
stored. This probably amounts to a few dozen to a few hun-
dred bytes for most applications. This storage is negligible
when we consider the fact that it is used to augment a ran-
dom sample which is itself likely many megabytes in size.
Even APA1 still requires that we store only the total aggre-
gate value for each measure attribute with respect to each
category. This additional storage space is still on the order
of kilobytes in size, which again is probably insignificant
when compared to the size of a useful sample.

How significant is the reduction in error associated with
APA? A couple of examples considering queries we tested
which matched more than 0.1% of the database tuples are:

•For a sample of 40,000 tuples, the median error  for SUM
queries over all experiments answered through sampling
was 0.565; for APA0 it was 0.0792 and for APA1 it was
0.0690. Thus, the median error for SUM queries for sam-
pling is 713% greater than for APA0 and 819% greater
than for APA1.

•For a sample of 40,000 tuples, the median error for AVG
queries answered through sampling was 0.651; for APA0
it was 0.096 and for APA1 it was 0.0668. Again, the
median error for AVG queries answered using a sample is
678% greater than for APA0 and 974% greater than for
APA1.

•Stratified sampling can also greatly reduce the estimation
error compared to uniform random sampling. However,
the error reduction is not nearly as dramatic as it is for
APA. For a sample of 40,000 tuples, stratified sampling
gave a median error of 0.101 for SUM queries over all
experiments, and a median error of 0.183 for AVG queries.
This error is 28% greater than APA0 and 46% greater than
APA1 for SUM queries. For AVG queries, the error for
stratified sampling is 91% greater than APA0 and 175%
greater than APA1. 

Furthermore, we point out that stratified sampling (as
implemented) requires several different samples, each for
use with different classes of queries. For APA and random
sampling, only one sample is used. Thus, a “40,000 tuple”
sample for stratified sampling can be substantially larger
than a “40,000 tuple” sample for APA or random sampling,
especially if many attributes are queried over.

Some other observations from our experiments are:

•Wavelets are generally unsuitable for use in this domain. In
almost every case, the error associated with the wavelet
approximation showed that it was the poorest option. To
be fair, wavelets were not meant to be used with categori-
cal data. But the results still show what is probably a gen-
eral inapplicability to categorical data of methods that are
meant for relatively low-dimensional, numerical data.

•One case where APA0 and APA1 failed to outperform ran-
dom sampling was for COUNT(*) queries. In a sense, this
is an expected result. We can predict analytically that the
error of random sampling is proportional to the variance of
the values that are sampled. Since the values sampled by
the COUNT(*) aggregate function are all either 0 or 1, a
large sample will have a small error. Sampling provides
very accurate estimation for COUNT(*) queries with a
large enough sample size. However, use of APA for SUM
and AVG queries does not preclude the use of plain vanilla
sampling for COUNT(*) queries, since the same sample
can be used both for APA and for sampling.

•For similar reasons, the more selective the query, the better
random sampling compares with APA, even for SUM and
AVG queries. Why? As fewer and fewer values match the
relational selection predicate, the variance of the sampled
values tends towards 0, and sampling becomes more accu-
rate. However, sampling does not compare favorably to
APA for SUM and AVG queries until 0.01% or fewer of the
tuples from the database match the relational selection
predicate. Since selectivity this great is probably rare in an
aggregate query, APA is still greatly superior to random
sampling.

•A final observation is that our results indicate that the addi-
tional accuracy of APA2 and APA3 would probably not
warrant their use. Since APA0 and APA1 already give a
median error of well below 10% for SUM, DIM, and AVG
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queries with almost no additional overhead, it might be
hard to justify the use of APA2 or APA3.

6 Additional Considerations
We now briefly consider some additional issues regarding
the use of APA.

6.1 Handling Numerical Data
APA0 and APA1 can easily be extended to handle numeri-
cal attributes in the relational selection operator. Imagine
that we want to estimate the following using APA1:

SELECT SUM (SALARY)
FROM EMPLOYEE
WHERE AGE BETWEEN (30 AND 40) AND 

AND JOB_TYPE = ‘SUPERVISOR’
AND YRS_EMPLOYED BETWEEN (3 AND 5)

We would begin by numbering each of the boolean clauses
in the relational selection predicate from 1 to m, just as in
the purely categorical case: b1 = (AGE BETWEEN (30 AND
40)), b2 = (JOB_TYPE = ‘SUPERVISOR’) and b3 =
(YRS_EMPLOYED BETWEEN (3 AND 5)). Everything in
the estimation proceeds normally, until we need to compute
the constraints for the MLE. For APA0, the only value that
we need to know in order to derive the constraints is the
value for SUM(SALARY) with respect to the entire data-
base; this does not change for numerical data, and so APA0
is totally unaffected by numerical data.

In APA1, in order to construct the constraints for the
MLE in our example, we would need to know the value of
SUM(SALARY) with respect to each of the boolean clauses
b1, b2, and b3. Since b1 and b3 are numerical attributes, we
would need some sort of histogram on these two attributes
in order to use the method. Single-attribute histograms are
ubiquitous in relational database systems, and tremendously
accurate histograms can quickly and efficiently be con-
structed using a variety of modern techniques, such as the
V-optimal histograms of Jagadish et al. [16]. Thus, we
argue that both APA0 and APA1 are practical for numerical
or mixed numerical/categorical data. In fact, additional
experiments (omitted due to space constraints) have shown
no substantial difference in qualitative performance for the
methods when used over mixed numerical/quantitative data.
For example, for a sample of 40,000 tuples, the median
error for AVG queries answered through sampling was
0.582; for APA0 it was 0.085 and for APA1 it was 0.079.

On the other hand, APA2 and APA3 are impractical for
numerical data. Both APA2 and APA3 would require
approximating the joint distributions of numerical and cate-
gorical attributes, which is a difficult problem (and storing a
large number of multidimensional histograms is prohibi-
tive).

6.2 One-Pass Construction and Maintenance
One advantage of APA is that one-pass construction (and
dynamic maintenance) of the statistics required by APA is
fairly easy. There exist a wealth of algorithms for dynami-
cally maintaining a sample of a specified size from a data-
base, even if the database is a data stream for which the size

is not known beforehand [19]. Thus, APA can be used for
one-pass approximation of data streams.

In addition, the summary statistics needed by APA are
simple and efficient to maintain dynamically. It is simple to
maintain the value of COUNT and SUM with respect to dif-
ferent categories relating to data insertion and deletion, and
if APA is used for numerical data, there exist algorithms for
efficiently maintaining one-attribute histograms [12].

6.3 APA Across Foreign Key Joins
As it has been described in this paper, APA is suitable for
use in aggregate functions with respect to a relational selec-
tion predicate. However, it should easily be possible to
extend APA to work across foreign key joins, using a tech-
nique for sampling from the results of joins, like the join
synopses of Acharya et al. [1].

7 Related Work
There has been much recent work in the database commu-
nity on approximate query processing and selectivity esti-
mation [1][10][13][15][20]. Several papers have dealt
specifically with making sampling robust for aggregate esti-
mation [2][4][5][9][21]. Most of these methods rely on
stratified sampling of some kind. The work of Wu et al. [21]
is an exception, in that they propose uniform sampling from
the cumulative distribution function. This approach is useful
and well-grounded in statistics, but like wavelets [20], the
approach is not meant for categorical attributes.

Of the other sampling-based papers referenced above, all
use some variation on stratified sampling. One paper in par-
ticular [5] makes use of the Neyman allocation tested in
Section 5. Though we have experimentally compared strati-
fied sampling to APA, it is important to point out that strati-
fied sampling is actually quite different from APA.
Stratified sampling tailors the sample itself to a particular
problem, whereas APA tries to make estimation more accu-
rate, given a particular sample. Interestingly, we see no rea-
son that the general methodology used in APA could not be
used along with stratified sampling techniques, or with the
concise and counting samples of Gibbons and Matias [11].
In other words, first we could tailor the sample to the prob-
lem (as in stratified sampling, or using concise and counting
samples), and then use APA-like statistics to increase the
sample accuracy further. This is an area for future work.

Maximum likelihood estimation (used by APA) is a stan-
dard statistical technique. There are literally thousands of
papers from different disciplines on the topic. There is also
an extensive literature on methods for solving MLE prob-
lems. As discussed in Section 4, the EM algorithm [7] is
probably the most widely used. Constrained quadratic pro-
gramming (used by APA) is also an accepted framework for
developing solutions to MLE problems [14][17]; there is
general-purpose commercial software for performing such
estimation [3]. Many other solution methodologies exist. In
our view, the depth of related literature from statistics and
other fields is a positive comment on APA; it suggests the
underlying principles are sound and well-motivated.

Finally, we mention the work of Faloutsos et al. [8], who
considered the problem of recovering data distributions
from summary data (where summary information is infor-



mation like the result of aggregate functions such as COUNT
and SUM). Since applying aggregate functions to numerical
data essentially discretizes the data (similar to building his-
tograms over the data), their work was concerned mostly
with “smoothing” the results of aggregate functions to
recover the original continuous data distribution. While
clearly related in that they are using summary statistics in
order to perform estimation, the domain that Faloutsos et al.
considered was quite different, and it is not clear how their
results could be applied to categorical data or how they
could be used to augment sampling as we have done.

8 Conclusions and Future Work
In this paper, we have described Approximate Pre-Aggrega-
tion (APA), a framework for using simple summary statis-
tics to greatly increase the accuracy of random sampling for
estimation of aggregate queries over categorical or mixed
categorical/numerical data. This is important because many
previous estimation techniques have largely ignored cate-
gorical data. APA is based upon sound, statistical tech-
niques such as maximum likelihood estimation and
constrained quadratic programming. It is also suitable for
estimation in a streaming environment, since the informa-
tion used by APA can be collected in a single database scan.

Some work remains to be done with respect to the valida-
tion of the ideas presented in the paper. For example, this
study has largely sidestepped issues associated with compu-
tational efficiency. Performing the actual estimation in APA
is relatively efficient (the time required by APA for estima-
tion is typically dominated by the time required to scan the
sample in memory), but significant costs can be associated
with maintaining the statistics used by APA in the face of
data insertion and deletion. Particularly for options like
APA2 and APA3, this maintenance might be costly. It
would be useful to study under exactly what conditions the
extra accuracy obtained by APA2 and APA3 is worthwhile,
given these costs. It would also be useful to know what
characteristics of queries and data might require the addi-
tional accuracy. For example, strong correlations between
the selection or functional attributes and the measure
attributes, or extremely skewed attribute values might make
the additional costs worthwhile.
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