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Abstract

Sorting and grouping are amongst the most costly

operations performed during query evaluation.

System R [6] used simple inference strategies to

determine orderings held of intermediate relations

to avoid unnecessary sorting, and to influence

join plan selection. Since then, others have pro-

posed using integrity constraint information to in-

fer orderings of intermediate query results. How-

ever, these proposals do not consider how to avoid

grouping operations by inferring groupings, nor do

they consider secondary orderings (where records

in the same group satisfy some ordering). In

this paper, we introduce a formalism for express-

ing and reasoning about order properties: order-

ing and grouping constraints that hold of physi-

cal representations of relations. In so doing, we

can reason about how the relation is ordered or

grouped, both in terms of primary and secondary

orders. After formally defining order properties,

we introduce a plan refinement algorithm that in-

fers order properties for intermediate and final

query results on the basis of those known to hold

of query inputs, and then exploits these infer-

ences to avoid unnecessary sorting and grouping.

We then show empirical results demonstrating the

benefits of plan refinement, and show that the

overhead that our algorithm adds to query op-

timization is low.

1 Introduction

Sorting and grouping are amongst the most costly op-
erations performed during query evaluation. As block-
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ing operations, they also hinder pipelining. System R
[6] was the first system to recognize the benefit of de-
tecting orderings that held of base relations and inter-
mediate query results to avoid unnecessary sorting and
reduce the cost of join processing (exploiting so-called
“interesting orders”). Others have since proposed the
use of integrity constraints to infer orderings (e.g., [9],
[3], [8]). For example, in their seminal paper on order
optimization, Simmen et al [8] show how functional
dependencies and selection predicates can be used to
determine how orderings get propagated from inputs
to outputs of joins.

In this paper, we present a formal and comprehen-
sive approach to order optimization. While in the same
spirit as [8], we make the following novel contributions:

1. Aside from orderings, we also infer how relations
are grouped (i.e., how records in relations are clus-
tered according to like value of certain attributes).
Just as inference of orderings can make it possi-
ble to avoid sorting, inference of groupings can
make it possible to avoid hash-based grouping
algorithms (e.g., prior to duplicate elimination
or group-wise aggregate computations). We also
consider secondary orderings and groupings (i.e.,
those which hold within each group determined by
a primary ordering or grouping). By inferring sec-
ondary orderings and groupings, it is possible to
avoid unnecessary sorting or grouping over mul-
tiple attributes. Also, in some cases one can use
secondary orderings known of an operator’s input
to infer primary orderings of of its output.

2. We present a formal semantics for order properties
(i.e., primary and secondary orderings and group-
ings), thereby making it easier to reason about
and verify inference techniques (Section 3).

3. We introduce a plan refinement algorithm that
decorates query plans produced by Postgres [10]
with inferred orderings and groupings and then
refines these plans by removing unnecessary sort-
ing and grouping operations (Section 4).

4. We empirically show the benefits of plan refine-
ment and the low overhead it adds to the cost of



SELECT c custkey, COUNT (*)
FROM Customer, Supplier
WHERE c nationkey = s nationkey
GROUPBY c custkey

Figure 1: A Simple Example Query

query optimization (Section 5).

We begin in Section 2 by motivating our approach to
order optimization by working through the optimiza-
tion of a simple example query based on the TPC-H
schema using the grouping and secondary ordering in-
ference techniques presented here.

2 Motivation

We first demonstrate the benefits of inferring group-
ing and secondary orderings with a simple example.
The SQL query shown in Figure 1, which uses the
manufacturer-based schema of the TPC-H benchmark,
associates every customer in the Customer table with
the number of suppliers from the Supplier table that
are situated in the same country. Such a query might
be used to determine how many suppliers could supply
each customer directly without having to go through
customs. Figure 5 shows an execution plan for this
query as generated by Postgres [10] (5a), and the same
Postgres plan after modification according to our in-
ference techniques (5c). (Figure 5b can be ignored for
the time being.) Note that both plans execute a sort-
merge join on Customer and Supplier and aggregate
(Group) on the result. However, prior to aggregation
the Postgres plan of Figure 5a first sorts the join re-
sult on the grouping attribute, c custkey so as to be
able to aggregate over groups in a single pass. But
one-pass aggregation requires data only to be
grouped and not sorted! Our approach allows us
to infer that the result of the sort-merge join will al-
ways be grouped on c custkey, making the sorting
step (or a hash-based grouping step, as might be used
in other systems [1]) unnecessary. When applied to
the query plan of Figure 5a, our refinement algorithm
would detect the unneeded Sort operation and pro-
duce the plan of Figure 5c.

In Section 4.2, we give a detailed explanation of how
we are able to infer that the result of the sort-merge
join is guaranteed to be grouped on c custkey. Sum-
marized briefly, this result follows from the following
reasoning:

1. The sort-merge equijoin produces a result that
is sorted (and hence grouped) on its join at-
tributes (c nationkey). Further, sort-merge also
ensures that output tuples that are in the same
group with respect to c nationkey are them-
selves grouped on the key of the outer relation
(c custkey), as output tuples with the same value
of c custkey are produced all at once as a result

of processing a single tuple from the outer rela-
tion. We express this “grouping within groups”
as “c nationkeyG→c custkeyG”.

2. Because c custkey functionally determines
c nationkey, it must be the case that the
result of the join is also grouped on c custkey.
Therefore, it is not necessary to sort or group
this result prior to aggregation, as the necessary
grouping is already satisfied.

Note that the above optimization required reasoning
about both groupings and secondary orderings. What
allowed us to determine that preprocessing was un-
necessary prior to aggregation was the inference that
a join result was grouped. But we would not have
been able to make this inference had we not recognized
the relevant grouping (on c custkey) as a secondary
grouping following the primary ordering (and hence
grouping) on c nationkey. The impact of this opti-
mization is significant – when applied to a database
instance of 150,000 rows in Customer and 10,000 rows
in Supplier, the plan shown in Figure 5b outperforms
that shown in Figure 5a by an order of magnitude (as
we will show in Section 5).

In general, the inference of orderings or groupings of
intermediate query results can be exploited in the ways
listed below. Note that an ordering on some attribute
A is a special case of a grouping on the attribute A.
Therefore, all the applications below involving inferred
groupings also benefit from inferred orderings.

1. Inferred orderings can be used to avoid sorting as
a preprocessing step to sort-merge join.

2. Inferred orderings can be used to avoid sorting
when processing ORDER BY clauses of SQL queries.
Inferred secondary orderings can be used to avoid
sorting when processing ORDER BY clauses that
list multiple attributes.

3. Knowledge of inferred orderings can be exploited
in making decisions about how to “push down
sorts” past joins. This enables sorting to be
performed on smaller input relations rather than
larger relations. Knowledge of inferred groupings
similarly enables “pushing down group-by opera-
tions” as was discussed in [12] and [2].

4. Inferred groupings can be used to avoid sorting or
hashing prior to computing aggregates for GROUP
BY clauses.

5. Inferred groupings can be used to reduce the cost
of projection with duplicate elimination, provided
that projection is over the grouped attribute. In
this case, projection and duplicate elimination can
be completed in a single pass. Similarly, any other
operation requiring duplicate elimination needs
no sorting or hash-based grouping preprocessing
step.



6. Inferred groupings can be used to reduce the
cost of evaluating selection queries of the form,
σA=k(R) in the absence of indexes or an order-
ing on A. Provided that R is grouped on A, a
sequential scan can be terminated prior to com-
pletion, once the first tuple is seen whose value
for A does not equal k, and which follows a tuple
whose value for A does equal k. This is a general-
ization of the standard technique for searching for
a value of a key attribute on an unordered, unin-
dexed file, and similarly would reduce the cost of
searching on average by a factor close to 2.

7. Inferred secondary orderings or groupings can be
used to infer new primary orderings or groupings.
The optimization of the query of Figure 1 illus-
trated this. We will see other examples in Sec-
tion 4.

3 Order Properties

We begin in Section 3.1 by briefly reviewing some help-
ful identities from [8] concerning functional dependen-
cies and keys. A novel formalism for order properties
is presented in Section 3.2, and some example order
property inference rules are shown in Section 3.3.

3.1 Functional Dependencies and Keys

We use the notation, FDX→B(R) to say that the func-
tional dependency, X → B holds of relation R (for set
of attributes, X and attribute B), and FDA→B(R)
as shorthand for FD {A}→B(R). (We reserve vari-
able names A,B, C, . . . to name individual attributes
and X, Y, . . . to name sets of attributes.) Similarly,
Key X(R) says that attribute set X is a key of relation
R, and Key A(R) is shorthand for Key {A}(R).

It has long been known that functional depen-
dencies (unless they involve projected attributes) get
propagated through joins [4], [8]. We express this with
the following axiom.

Axiom 3.1 (FD Propagation) For relations, R
and S, sets of attributes, X,Y ⊆ R ∪ S1, and join
predicates, p:

(FDX→Y (R) ∨ FDX→Y (S)) ⇒ FDX→Y (R ./p S).

As was discussed in [8], when the join predicate p is
an equijoin whose join attributes are contained in X
or Y , functional dependencies that involve attributes
from both R and S can be inferred. For example, the
following is a useful identity derivable from Axiom 3.1.

Identity 3.1 For all relations, R and S and attributes
A ∈ R and B,C ∈ S:

FDB→C(S) ⇒ FDB→A(R ./A=C S).

1We assume wlog that R ∩ S = ∅.
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Figure 2: An Illustration of AO→BG

Key propagation through joins is a standard topic in
introductory database courses [7]. We capture this via
the axiom,

Axiom 3.2 (Key Propagation) For relations, R
and S, sets of attributes X ⊆ R and Y ⊆ S, and
join predicate p:

(Key X(R) ∧Key Y (S)) ⇒ Key X∪Y (R ./p S).

As with functional dependencies, key attributes can
be reduced in the case of equijoins involving join at-
tributes which are also key attributes, as expressed in
the identity below:

Identity 3.2 For relations, R and S, set of attributes
X ⊆ R, and attributes A ∈ X and C ∈ S:

Key X(R) ⇒ Key (X∪Y )−{A}(R ./A=C S).

3.2 Order Properties

Informally, order properties have the form,

Aα1
1 →Aα2

2 → . . .→Aαn
n

such that each Ai is an attribute, each αi either spec-
ifies an ordering (αi = O)2 or a grouping (αi = G),
and Aα1

1 is a primary ordering or grouping, Aα2
2 is a

secondary ordering or grouping and so on. A relation
whose physical representation satisfies such an order
property can be viewed as a nested set of (potentially
ordered) equivalence classes, as the following example
illustrates.

Suppose that R = (A,B) consists of 10 tuples,
t1, . . . , t10, and that its physical representation satis-
fies the order property, AO→BG: an ordering on A

2To simplify exposition, we assume all orderings for the pur-
poses of this paper to be ascending. Inference techniques for de-
scending orderings are the obvious analogs to those we present
here.



followed by a grouping on B. This is illustrated in
Figure 2. Circles in this figure denote groups (the out-
ermost circle denoting the group consisting of all tuples
in R), and orderings between groups are shown with
’<’. Thus, tuples t4, . . . , t7 comprise a group because
they have a common value for A (A = 3), and t4 and
t5 comprise a group within that group because they
also share the same value for B (B = 1).

The primary ordering (AO) says that the group of
tuples with A = 1 precedes the group of tuples with
A = 2, which in turn precedes the group of tuples
with A = 3. From this we can infer, for example,
that both t1 and t3 precede t9, but we can infer no
ordering between t1 and t3. The secondary ordering
(BG) says that within each group of tuples with like
values of A, tuples are clustered together if they have
the same value for B. Thus, t1 can precede t2 or t2 can
precede t1, but they must be adjacent. Thus, there
are many permutations of R that satisfy this order
property (and most order properties in general). Two
example permutations that satisfy this order property
are shown below.

• t3, t1, t2, t10, t8, t9, t6, t7, t4, t5

• t1, t2, t3, t9, t8, t10, t4, t5, t6, t7.

Note that the latter permutation also satisfies the or-
dering, AO→BO.

More formally, we say that a physical representation
of a relation (or just physical relation) is a list of tuples
ordered according to their placement as records in a
file.3 For any physical relation, R, this ordering is
expressed with the total order, “BR” Thus, we have
the following definition for a physical relation.

Definition 3.1 (Physical Relations) A physical
relation, R, is a list of tuples

t1 BR . . . BR tn

such that “ti BR tj” holds of records ti and tj if ti im-
mediately precedes tj in the file representation of R.

Thus, we begin from the assumption that each relation
has an associated dedicated file, and that records are
stored row-wise.

For convenience, we denote the irreflexive, asym-
metric transitive closure of “BR” as “B+

R”. Thus,
ti B+

R tj if ti precedes tj (not necessarily immediately)
in the file representation of R.

Order properties are formulated with an algebra of
constructors whose signatures are shown in Figure 3.
An order property (Ord) is defined recursively as either
an empty order property ⊥, or the combination (“→”)
of a basic order property (BOrd) with an order prop-
erty. Basic order properties are either orderings (AO)

3Note that a file may not actually be stored, as in the case
of pipelined results from intermediate queries.

Expn Signature
⊥ → Ord
→ BOrd, Ord → Ord
O Att → BOrd
G Att → BOrd

Figure 3: Signatures for Ordering Constructs

or groupings (AG) on individual attributes. Thus in
general, order properties have the form,

(Aα1
1 →(Aα2

2 →(. . .→(Aαn
n →⊥))))

for some set of simple order properties, Aαi
i . For con-

venience, we express this using the shorthand,

Aα1
1 →Aα2

2 → . . .→Aαn
n .

Also, given

o = Aα1
1 →Aα2

2 → . . .→Aαk

k , and
o′ = A

αk+1
k+1 →A

αk+2
k+2 → . . .→Aαn

n

we use the shorthand “o→o′” to express the order
property,

Aα1
1 →Aα2

2 → . . .→Aαn
n .

We sometimes refer to “o1→o2” as the concatenation
of order properties o1 and o2. Finally, for any set of
attributes, X = {A1, . . . , An}, we use the notation,
XG as shorthand for

AG
1 →AG

2 → . . .→AG
n .

The formal semantics of each order property con-
structor is defined in terms of the relationship,
“O o(R)” which holds if physical relation R satisfies
order property o. Axioms defining order properties in
terms of this relation are shown below. Axiom 3.3 says
that every physical relation satisfies the empty order
property. Axiom 3.4 says that R is ordered on at-
tribute A (OAO (R)) if tuples with lower values for A
appear earlier in the file than tuples with higher values
for A.

Axiom 3.3 (Empty Order) For all physical rela-
tions, R,

O⊥(R) ⇔ TRUE.

Axiom 3.4 (Basic Ordering) For all physical rela-
tions R and attribute A ∈ R,

O AO (R) ⇔ ∀ t, u ∈ R (t.A < u.A ⇒ t B+
R u).

Axiom 3.5 says that R is grouped on attribute A
(OAG(R)) if all tuples with the same value for A are
clustered together. This is captured formally by say-
ing that for any two tuples with the same value for A,
a, all tuples that lie between them also have a value
for A of a.



Axiom 3.5 (Basic Grouping) For all physical rela-
tions, R and attribute A ∈ R,

OAG(R) ⇔ ∀ t, u ∈ R (t.A = u.A ⇒ p (t, u, R))

such that

p (t, u,R) ⇔ ∀ v ∈ R ((t B+
R v B+

R u) ⇒ v.A = t.A).

Axiom 3.6 defines secondary order properties, saying
that R satisfies Aα→o iff:

• R satisfies the basic order property, Aα, and

• every group of R with a common value for A sat-
isfies order property, o.

Axiom 3.6 (Secondary Order Properties) For
any physical relation, R = t1 BR . . . BR tn, and
attribute A ∈ R, let R[A=c] be the group of R tuples
whose value for A = c, in the order that they are
found in R. More precisely,

R[A=c] = tj1 BR[A=c] . . . BR[A=c] tjm

such that:

• {tj1 , . . . , tjm
} = {ti|1 6 i 6 n, ti .A = c}, and

• (tij BR[A=c] tik
) ⇒ (tij BR tik

).

Then, for any order property, o,

OAα → o(R) ⇔ OAα(R) ∧ ∀ c (O o(R[A=c])).

Figure 4 shows some useful identities derivable from
the ordering property axioms above. Identity #1 says
that for any order property that holds of a physical re-
lation, all prefixes of that order property also hold of R.
In most cases, it is not useful to drop suffixes of order
properties as ordering information gets lost. However,
in some cases these suffixes are trivial and therefore
yield no interesting ordering information. For exam-
ple, if A is a key for R, then any order property over
R of the form, AG→o is trivial as all groups denoted
by AG consist of a single tuple, and hence secondary
orderings over these groups are meaningless. (Sim-
ilarly, AO→o can be reduced to AO without losing
non-trivial information.) Therefore, we always assume
that order properties are normalized such that no or-
der property includes a key unless it is ordered, in
which case it appears at the end. Identity #2 of Fig-
ure 4 says that an ordering on any attribute implies a
grouping on that attribute. Identity #3 says that if
X functionally determines B, and an order property
that includes all attributes in X (ordered or grouped)
appearing before Bα, then Bα is superfluous. Iden-
tity #4 is a special case of identity #3, covering the
case where X consists of a single attribute. Identity
#5 says that the grouping of an attribute that is func-
tionally determined by the attribute that follows it in
the order property is superfluous. Correctness proofs
of the identities of Figure 4 can be found in [11].

1. O o→o′(R) ⇒ O o(R)

2. O o→BO→o′(R) ⇒ O o→BG→o′(R)

3. FDX→B(R),O o→Bα→o′(R), X ⊆ atts in o ⇒
O o→o′(R)

4. FDA→B(R),O o→Aα→o′→Bβ→o′′(R) ⇒
O o→Aα→o′→o′′(R)

5. FDA→B(R),O o→BG→AG→o′(R) ⇒
O o→AG→o′(R)

Figure 4: Some Identities Based on Axioms 3.3 – 3.6

3.3 Order Property Inference

Table 1 shows a set of inference rules for determining
what order properties hold as a result of executing 4
different join algorithms: nested loop join, sort-merge
join, simple-hash-join and order-preserving hash join
[5]. For all rules expressed in this table, R and S are
physical relations with attributes, A and B, and sets
of attributes, X and Y respectively, o and o′ are order
properties, and p is a join predicate. Again, correct-
ness proofs of these rules, based on axioms 3.2–3.5 and
the operational semantics of the join algorithms can be
found in [11].

Rule 1 of Table 1 (observed previously in [8] and [5])
says that the output relation from a nested loop join
inherits the ordering of the outer (input) relation. Rule
1 also holds of a simple hash join, as is implemented in
Postgres [10] (Rule 2). Rule 3 is a specialized form of
Rule 1 that holds when the outer relation contains a
key, X. In this case, each group of tuples in the output
with common values for X will also be ordered on the
inner relation’s ordering.

Like nested-loop join, the output of merge join is
always ordered by the order property of the outer re-
lation. And like nested-loop join, if the outer relation
contains a key, then the output relation is ordered by
the concatenation of the order properties of the outer
and inner relations, separated by a grouping on the
outer relation key. This is expressed formally in Rule
4. Note that this rule is more specific than the corre-
sponding rule for nested loop join (Rule 3) because in-
put relations to merge joins are always sorted on their
join attributes and because we are assuming merge
joins are equijoins only.

Order-preserving hash joins were introduced by
Claussen et al. [5] as a variant of hash join that sup-
ports early sorting. The algorithm is based on Grace
hash join and exploits a prior sorting of the outer
(probe) relation to produce a result that is similarly
ordered. This variant of hash join therefore resembles
nested loop and sort-merge join in preserving orderings
of outer relations. It is important to note that order-
preserving hash join does preserve orderings, but does
not preserve groupings held of the outer relation. That



is, if the order property satisfied by the outer relation
is of the form,

AO
1 → . . .→AO

k−1→AG
k →o

such that Ak is the leftmost grouped attribute, then
only AO

1 → . . .→AO
k−1 is preserved in the outer rela-

tion: all order properties following and including the
first basic grouping property (AG

k ) are lost. This is
expressed formally in Rule 5.

4 Order Property Optimization

We have designed and implemented a plan refinement
algorithm that refines query plans produced by Post-
gres [10] so as to eliminate unnecessary sorting and
grouping operations.4 The plan refinement algorithm
uses known functional dependencies, key properties
and order properties of base relations to infer order
properties of intermediate query results. It then uses
inferred order properties to determine which unneces-
sary sort operations can be removed. We first sum-
marize relevant Postgres plan operators in Section 4.1,
and then describe the algorithm and present examples
of refined query plans in Section 4.2.

4.1 Postgres Plan Operators Summarized

Table 2 presents the plan operators (nodes) of Post-
gres that are relevant to our plan refinement algorithm.
(A plan operator is irrelevant to our algorithm if it
generates no new functional dependency, key or order
property information from child or parent nodes. Op-
erators that are irrelevant to our plan refinement al-
gorithm include: Material, Subplan, SubqueryScan,
TIDScan, Limit and Result).5

The data structures for all plan nodes in Postgres
include the following fields:

• inp1, . . . inpn: the fields contained in all input
tuples to the node,

• left: the left subtree of the node (set to Null for
leaf nodes and Append),

• right: the right subtree of the node (set to Null
for leaf nodes, unary operators and Append).

As well, additional operator-specific fields provided by
Postgres and used by our refinement algorithm are
listed in the Attributes column of Table 2 (modulo
some renaming to simplify exposition). Table Scan
(Sequential Scan) includes a key field which identifies
the key of its input relation (if one exists). Ind Scan

4In Postgres, grouping is accomplished by sorting so in actu-
ality, our algorithm only eliminates unnecessary sorting opera-
tions. We chose Postgres as our target query optimizer because
it is open-source.

5Postgres set operations (SetOp) are relevant but not yet cov-
ered by our refinement algorithm.

(Index scan) includes a key field and also identifies
indexed attributes (att1, . . ., attn). Sort reorders
its input relation by sorting on attributes attD1

1 , . . .,
attDn

n such that each Di is either “ASC” or “DES”.
Unique removes duplicate tuples with equivalent val-
ues for attributes, att1, . . ., attn in a single pass
over its input. (Thus, Unique is always preceded
in a Postgres plan by Sort.)6 Group performs two
passes over its input, first inserting Null values be-
tween pairs of consecutive tuples with different val-
ues for attributes, att1, . . ., attk, and then applying
functions Fk+1, . . . , Fn to the collection of values of
attributes attk+1, . . . , attn respectively, for each set
of tuples separated by Nulls.7 (Thus, Group is al-
ways preceded in a Postgres plan by Sort with the
exception as described for Unique). Append appends
the relations produced by subplans plan1, . . ., plann.
Hash builds a hash table over its input using a pre-
determined hash function over attribute, att. HJoin
(Hash join) performs a (non-order-preserving) simple
hash equijoin (att1 = att2) with the relation pro-
duced by left as the probe relation, and the relation
produced by right as the build relation. (Thus, HJoin
is always preceded in a Postgres plan by Hash over
the right subplan.) Merge performs a merge equijoin
(att1 = att2) with the relation produced by left
as the outer relation, and the relation produced by
right as the inner relation. (Thus, Merge is always
preceded in a Postgres plan by Sort being applied to
both the left and right subplans, except when an
input to Merge is a result of an index scan.) Finally,
NLJoin (nested-loop join) performs a nested-loop join
with join predicate, pred over its inputs with with the
relation produced by left as the outer relation, and
the relation produced by right as the inner relation.
If attribute index? is set to TRUE, then the join is an
indexed nested loop join. Finally, we have added NOP
as a dummy plan operator that we temporarily make
the root of a Postgres plan prior to its refinement, and
whose purpose is revealed in Section 4.2.

4.2 A Plan Refinement Algorithm

Our plan refinement algorithm accepts a query plan
tree generated by Postgres as input and produces as
output, an equivalent plan tree with unnecessary Sort
operators (used either to order or group) removed.
This algorithm requires that 4 new attributes be asso-
ciated with every node in a query plan tree, n:

6Actually, this is not entirely accurate. Sort will not precede
Unique if Merge precedes Unique and produces output in the
required order.

7Postgres actually factors this operators into two single-pass
operators: Group which inserts nulls between consecutive tuples
with differing values for grouping attributes, and Att which ag-
gregates on the resulting groups. As these operators are always
consecutive in a plan, we collapse them into a single operator
here.



Rule Join Order Property Inference Rule
1. Nested Loop (./n) O o(R) ⇒ O o(R ./n

p S)
2. Simple Hash (./simh) O o(R) ⇒ O o(R ./simh

p S)
3. Nested Loop (./n) O o(R),Key X(R),O o′(S) ⇒ O o→XG→o′(R ./n

p S)
4. Merge (./m) OAO→o(R),Key X(R),OBO→o′(S) ⇒ OAO→o→XG→BO→o′(R ./m

A=B S)
5. Order-Preserving Let o = oα→oβ s.t. oα = AO

1 → . . .→AO
k−1 and oβ = ⊥ or oβ = AG

k →oγ . Then,
Hash (./h) O oα→oβ (R),Key X(R),O o′(S) ⇒ Ooα→XG→o′(R ./h

p S)

Table 1: Order Property Inference Rules for Joins

Operator Attributes
Table Scan key
Ind Scan key, att1, . . ., attn

Sort attD1
1 , . . ., attDn

n

Unique att1, . . ., attn

Group att1, . . ., attk, attFk+1
k+1 , . . ., attFn

n

Append child1, . . ., childn

Hash att
HJoin att1, att2

Merge att1, att2

NLJoin pred, index?
NOP -

Table 2: Postgres Operators and Relevant Attributes

• keys: a set of attribute sets that are guaranteed
to be keys of inputs to n;

• fds: a set of functional dependencies (attribute
sets → attribute) that are guaranteed to hold of
inputs to n;

• req: a single order property that is required to
hold of inputs either to n or some ancestor node
of n for that node to execute; and

• sat: a set of order properties that are guaranteed
to be satisfied by outputs of n.

The basic idea of the plan refinement algorithm is to
decorate the input plan with the attributes above, and
then to remove any Sort operator n whose child node
produces a result that is guaranteed to satisfy an or-
der property required by its parent node (i.e., when
n.req ∈ n.left.sat). This is accomplished with 3
passes over the input plan as we discuss below, and
illustrate with the refinement of the query plan of Fig-
ure 5a into the query plan of Figure 5c.

Pass 1: Functional Dependencies and Keys

A bottom-up pass is made of the tree so that func-
tional dependencies (fds) and keys (keys) are prop-
agated upwards when inferred to hold of intermedi-
ate query results. Keys and functional dependen-
cies known of base relations are first used to decorate

Ind Scan and Table Scan leaf nodes. These decora-
tions propagate through most nodes unchanged, ex-
cept through joins (Merge, NLJoin and HJoin) and
Unique where new functional dependencies and keys
are added, and Append where functional dependencies
and key properties are lost. The functional dependen-
cies and keys created by joins are those resulting from
application of Axioms 3.1 and 3.2. Unique (att1, . . .,
attn) adds {att1, . . ., attn} as an additional key, and
{att1, . . ., attn} → targetlist as an additional
functional dependency.

Figure 5b shows the decorated version of the plan of
Figure 5a. The keys for base relations Supplier and
Customer (s suppkey and c custkey respectively)
propagate through their associated Sort nodes, as do
the functional dependencies implied by these keys.8
Merge creates a key which is the union of the keys of
its inputs, and preserves both functional dependencies
that hold of its inputs. The key and functional depen-
dencies generated by Merge then propagate up to the
root of the tree.

Pass 2: Required Order Properties

Next, a top-down pass is made so that required or-
der properties (req) are propagated downwards from
the root of the tree. The operation of this pass is cap-
tured by the pseudocode for SetReq shown in Figure 6.
This algorithm is called on the root of the plan (NOP)
with the empty order property to trigger the top-down
pass. Observe that new required order properties are
generated by:

• NOP (if its child is a Sort operator (i.e., if the
original query includes an Order By clause),

• Group and Unique (which require inputs to be
grouped on the grouping attributes),

• Join operators, each of which splits any required
order property it inherits into separate required
order properties for its child nodes according to
the rules of Table 1.

8Because Postgres performs eager projection, only attributes
s suppkey and s nationkey are output by the scan of Supplier.
(Similarly, c custkey and c nationkey for Customer.)
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Figure 5: Query Plans for the Query of Figure 1

All other nodes pass the required order properties they
inherit from parent nodes to their child nodes, except
for Hash and Append which propagate the empty order
property to their child nodes.

To illustrate, again consider the query plan shown
in Figure 5b. The result of this query does not need
to be ordered; hence, the req property of the NOP
node is set to ⊥. However, Group (which groups
by c custkey) requires its input be grouped by this
attribute (c custkeyG). This property gets pushed
down to Sort and then Merge. Because this order
property is not of the form, o→XG→o′, order prop-
erties based on join attributes (c nationkeyO and
s nationkeyO) are passed down to the child nodes
of Merge. These in turn are passed down to the
TableScan nodes at the leaves of the tree.

Pass 3: Sort Elimination

The final pass of the plan refinement algorithm is a
bottom-up pass of the query plan tree that determines
what order properties are guaranteed to be satisfied
by outputs of each node (sat), and that concurrently
removes any Sort operator, n for which n.left.sat ∈
n.req. The operation of this pass is captured by the
pseudocode for InferSat shown in Figure 7. Observe
that new order properties are inserted into the sat set
for the following nodes:

• Ind Scan and Sort produce outputs that sat-
isfy the order property, attO1→ . . .→attOn (where
att1, . . . , attn are the index and sort attributes
respectively).

• Table Scan produces an output that satisfies the
order properties of the input relation it scans.

Algorithm SetReq (Node n, Order Property p)
CASE n of
NOP: IF n.left = Sort THEN

n.req := n.left.attO1→ . . .→n.left.attOn
SetReq (n.left, n.req)

Group, Unique: n.req := n.attG1→ . . .→n.attGn
SetReq (n.left, n.req)

Merge: n.req := p

IF p = n.attO1→o→XG→n.attO2→o′ AND
X ∈ n.keys THEN

SetReq (n.left, n.attO1→o)

SetReq (n.right, n.attO1→o′)
ELSE

SetReq (n.left, n.attO
1 )

SetReq (n.right, n.attO
2 )

HJoin, NLJoin: n.req := p

IF p = o→XG→o′ AND X ∈ n.keys THEN
SetReq (n.left, o)
SetReq (n.right, o′)

ELSE
SetReq (n.left, p)
SetReq (n.right, ⊥)

Hash: n.req := p
SetReq (n.left, ⊥)

Append: n.req := p
SetReq (n.child1, ⊥)
...
SetReq (n.childn, ⊥)

Otherwise: n.req := p
SetReq (n.left, p)

END

Figure 6: Pseudocode for SetReq (Pass #2)

• Unique and Group produce outputs that sat-
isfy the order property, attG1→ . . .→attGn (where
att1, . . . , attn are the grouping attributes).

• Join operators produce outputs that satisfy the



order properties according to the rules of Table 1,
and

• Append and Hash produce outputs that cannot be
guaranteed to satisfy any order property.

All other nodes propagate the order properties they
received from their child nodes to their parent nodes.

To illustrate, again consider the query plan of
Figure 5b. During sort elimination, order properties
that are guaranteed to be satisfied by inputs to
every node are determined in a bottom-up pass of
the query plan tree. Because s suppkey is a key
for Supplier, s suppkeyG is inferred to be satisfied
by supplier. Similarly, c custkeyG is inferred
to be satisfied by customer. Both of these order
properties are still satisfied after application of
Sort, though obviously Sort adds additional order
properties (c nationkeyO and s nationkeyO for the
left and right Sort nodes respectively). As a result
of Merge, order properties: c custkeyG→s suppkeyG,
c nationkeyO→c custkeyG→s suppkeyG, and
c custkeyG are satisfied. Because the subsequent
Sort has one of these order properties as its required
order property (c custkeyG), it can be removed as
this order property is satisfied without sorting. This
leaves the plan shown in Figure 5c.

Because of space limitations, we have omitted de-
tails regarding how the identities of Figure 4 are used
to augment the order properties contained in a node’s
sat set (for example, adding c nationkeyG to the left
Sort node of Figure 5b by application of Identity #2).
In short, the identities of Figure 4 are applied lazily:
only for nodes that are child nodes of Sort when the
Sort is examined to see if it is unnecessary. We leave
further details to our technical report [11].

4.2.1 Another Example: TPC-H Query 3

In [8], Simmen et al. used query 3 of the TPC-D (now
TPC-H) benchmark to illustrate their order optimiza-
tion techniques. This query returns the shipping pri-
ority and potential revenue of orders with maximum
revenue of those not shipped as of some date, and is
listed as it is in [8] (except with the date constant
changed) below:

select l orderkey,

sum (l extendedprice * (1 - l discount)) as rev,

o orderdate, o shippriority

from customer, orders, lineitem

where o orderkey = l orderkey

and c custkey = o custkey

and c mktsegment = ’building’

and o orderdate < date (’1998-11-30’)

and l shipdate > date (’1998-11-30’)

group by l orderkey, o orderdate, o shippriority

order by rev desc, o orderdate

Algorithm InferSat (Plan p)
Do a Bottom-Up (Preorder) Traversal of p.
For each node, n:
CASE n of
Ind Scan:

n.sat := {n.attO1→ . . .→n.attOn}
Table Scan:

n.sat := {Orders satisfied by input relation}
Unique, Group:

n.sat := n.left.sat ∪ {n.attG1→ . . .→n.attGn}
Merge, NLJoin, HJoin:

n.sat :=

{o→XG→o′ |
o ∈ n.left.sat, o′ ∈ n.right.sat, X ∈ n.keys} ∪

{o | o ∈ n.left.sat}
Append, Hash:

n.sat := {}
Sort:

n.sat := {n.attO1→ . . .→n.attOn}
IF n.req ∈ n.left.sat THEN DELETE n

Otherwise:
n.sat := n.left.sat

END

Figure 7: Pseudocode for InferSat (Pass #3)

Simmen et al. showed the plan produced for this query
by DB2 without their order optimizations applied, and
then showed the refined version of this plan (with a
Sort operator removed) that was produced by apply-
ing their order optimizations. They showed that the
optimized plan outperformed the original plan by a
factor of 2. The optimized plan is reproduced from
their paper in Figure 8a.

Because our approach to plan refinement reasons
about groupings and secondary orderings, we can fur-
ther improve the plan shown in Figure 8a by eliminat-
ing the Sort that precedes the NLJoin leaving the plan
shown in Figure 8b. The Sort was introduced in [8] as
an “early sort” optimization – it ensured that the out-
put of the nested loop join was ordered on o orderkey
without having to sort the much larger relation out-
put from the join. As with the previous example, the
goal was to sort prior to aggregation (Group) so that
aggregation could be performed in a single pass. The
requirement that the input to aggregation be sorted
on o orderkey is stronger than necessary. In fact, the
input need only be grouped, and the output of nested
loop is guaranteed to be grouped on o orderkey even
without sorting it.

Due to space considerations, we illustrate the rea-
soning that permits refinement of this plan at a high-
level only:

1. By the definition of sorting, the output of the sorts
of Customer and Order are R and S such that
O c custkeyO (R) and O o custkeyO (S). By identity
#2 of Figure 4, we also have O c custkeyG(R) and
O o custkeyG(S).
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Figure 8: TPC-H Q3: Effects of Plan Refinement

2. By identity #5 of Figure 4, every group of Order
tuples with the same value of o custkey trivially
satisfies the order property, o orderkeyG. Thus
we have, O o custkeyG→o orderkeyG(S).

3. By Rule 4 for Merge in Table 1, we have

O c custkeyG→c custkeyG→o custkeyG→o orderkeyG(T ),

for join result, T . Note that the join predicate
ensures that c custkey = o custkey for all out-
put tuples, so by identity #1 of Figure 4, this
becomes:

O o custkeyG→o custkeyG→o custkeyG→o orderkeyG(T ).

4. Because o custkey functionally determines itself,
we can apply identity #4 of Figure 4 twice to get,
O o custkeyG→o orderkeyG(T ).

5. By identity #5 of Figure 4, because o orderkey
(as the key of Order) functionally determines
o custkey, we have O o orderkeyG(T ).

6. By Rule 1 of Table 1 for NLJoin, we have
O o orderkeyG(U) for the result of the nested loop
join, U .

Thus, the result of the nested loop join is grouped on
o orderkey, even without a prior sort on o orderkey,
and there is no reason to sort on this attribute.

5 Results

To measure the degree to which our plan refinement
techniques improve query processing performance, we
ran two experiments based on the example plan refine-
ments described in Section 4.2.1. Both experiments
were run with Postgres after we modified the optimizer

code to implement the plan refinement algorithm de-
scribed in Section 4.2. We describe these two experi-
ments in Sections 5.1 and 5.2 respectively, and in Sec-
tion 5.3, report on an experiment determining the cost
of performing the plan refinement optimization.

We ran all of our experiments on a 1 Ghz Pentium
III running Linux, with 512 MB RAM and a 120 GB
hard disk. Each experiment was run 3 times with aver-
age times reported. Timing results for plan executions
were generated by the Postgres EXPLAIN ANALYZE
tool, which also provided details about timings for in-
dividual operators, sizes of intermediate query results
etc. Our data was generated by the DBGEN tool for
TPC-H with a scale factor of 1. Thus, each query
ran on a Customer table containing 150,000 rows, a
Supplier table containing 10,000 rows, an Order ta-
ble containing 1,500,000 rows, and a LineItem table
with 6,000,000 rows.

5.1 Experiment #1: Figure 1

Our first experiment involved comparing the perfor-
mance of the Postgres plan generated for the query of
Figure 1a (Figure 5a), and the plan returned by our
plan refinement algorithm (Figure 5c). The results are
shown in the table below.

Postgres Plan (Fig. 5a) Refined (Fig. 5c) Ratio

6384.9 sec 487.9 sec 13.08

It should be pointed out that this query joined
Customer and Supplier on non-key attributes with
a very small range of values (nation key). Therefore,
the output of the join was extremely large (close to 60
million rows), thereby making the plan that performed
a sort before aggregating become bogged down despite
fairly small input relations. This is an extreme exam-
ple of when it pays to avoid sorting: when it is done
towards the end of the computation on intermediate
join results where the join selectivity is very low. In
such cases, plan refinement can reduce execution costs
by an order of magnitude.

5.2 Experiment #2: TPC-H Query 3

Our second experiment involved comparing plans for
TPC-H query 3 shown in Figures 8a (produced by DB2
as shown in [8]) and 8b (the same plan with the un-
necessary Sort removed). The timing results for each
of these plans is shown below.

Plan From [8] (Fig. 8a) Refined (Fig. 8b) Ratio

126.8 sec 2729.9 sec 0.05

Interestingly enough, removing the Sort from the orig-
inal plan dramatically increased the execution time
of the plan! This was due to the effect of sorting prior
to an indexed nested loop join on caching behavior.
Specifically, sorting the outer relation of the join on the
join attribute (o orderkey) had the effect of ensuring
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Figure 9: TPC-H Q3 W/ Table Scan

that index lookups for the same value of o orderkey
were consecutive, thereby increasing the likelihood of
finding joining tuples from lineitem in the cache.
Further, because o orderkey was not only grouped
but sorted, consecutive tuples with differing values of
o orderkey were likely to have values of o orderkey
that were close, thereby increasing the likelihood that
index nodes that were accessed during the index scan
would also be found in the cache.

To test our theory regarding this result, we mod-
ified the query plan produced by DB2 to perform a
Table Scan of lineitem (rather than an Ind Scan),
as would be required if there were no index on
l orderkey over lineitem. This plan is shown in Fig-
ure 9a. The refined plan with the unnecessary Sort
operator removed is shown in Figure 9b, and the tim-
ing results for these two plans is shown below:

TPC-H Q3

With Table Scan (Fig. 9a)
Refined (Fig. 9b) Ratio

121.4 sec 113.3 sec 1.07

Note that not only does removal of the Sort operator
make the above plan execute 7% faster, the resulting
plan also executes 12% faster than the original plan
produced by DB2’s order optimization that uses in-
dexed nested loop join rather than nested loop join!
Again, this shows the potential performance gains that
can result from refining plans to remove unnecessary
sorting and grouping.

5.3 Experiment #3: Overhead

For our final experiment, we measured the overhead
added to the cost of query optimization resulting from
performing plan refinement. For each of the experi-
ments above, we measured the times required for Post-
gres to optimize its queries both with and without our
plan refinement extension. We also measured these

Query
Opt Time

No Refinement

Cost Of

Refinement

Added

Overhead

Fig. 5a 0.56 msec 0.11 msec 19.6%

Fig. 8a 2.85 msec 0.32 msec 11.2%

TPC-H Q1 3.54 msec 0.06 msec 1.7%

TPC-H Q5 46.07 msec 1.39 msec 3.0%

TPC-H Q10 52.10 msec 0.33 msec 0.6%

Table 3: Overhead Of Plan Refinement

times for some TPC-H queries that are not changed
as a result of executing plan refinement algorithm:
TPC-H query #’s 1, 5 and 10. The results are shown
in Table 3. Interestingly, the overhead introduced by
plan refinement was only significant (i.e., 5% or more)
when refinement actually had an effect! And as we
saw earlier, the overhead introduced is significantly
outweighed by the savings in query execution cost in
most cases. For all TPC-H queries that are unaffected
by plan refinement, the overhead introduced by plan
refinement is negligible.

6 Related Work

Related work in avoiding sorting and grouping tends
to fall in one of two camps: either it is concerned with
inferring orderings or with inferring groupings. Ours
is the first paper to our knowledge to fully integrate
the two.

The earliest work on order optimization was from
System R [6]. System R kept track of orderings known
of intermediate query results so as to potentially influ-
ence the choice of join strategy (inferred, or “interest-
ing orders”) might influence a selection of a sort-merge
join processing strategy if the inferred ordering made
it possible to avoid one or more of the sorts. While pi-
oneering in this area, the techniques used for inferring
orderings were quite primitive (based on explicit OR-
DER BY clauses). Grouping inference and secondary
orderings were not considered.

The seminal work of Simmen, Shekita and Malke-
mus [8] introduced the use of functional dependencies
to infer orderings of join results. However, they con-
sider only primary orderings and not secondary order-
ings nor grouping. Therefore their techniques would
fail to optimize the query plans we showed in Fig-
ures 5a and 8a. In fact, the latter plan was taken
from their paper where they presented it as the final
product of their order optimization techniques.

Slivinskas, Jensen and Snodgrass [9] also con-
tributed work on ordering, though less in the context of
query plan generation but more at the level of the data
model. They propose three different notions of relation
equivalence (list-based, multiset-based and set-based)
corresponding to the three ways that SQL treats a re-
lation depending on the query. They point out that
each defines a different class of acceptable query re-
sults. They discuss order preserving operators such as



nested loop join and selection, but in the context of
how they lead to list-equivalence. They do not con-
sider how grouping properties get propagated.

Less work can be found on inference of grouping
properties, though the most notable work is that of
Chaudhuri and Shim [2] and Yan and Larsen [12]. The
goal in both cases is to develop “early group-by” op-
timization strategies (analagous to the early sorting
goals of [8] and [5]. In so doing, they approach the
inference of grouping in a manner that is the reverse
of our approach: whereas we move from the bottom
of a plan to the top to see what (grouping or sorting)
operations can be removed, they move from the top of
a plan to the bottom to see what grouping operations
can be pushed down. Both approaches require under-
standing of how grouping properties get propagated
by operators.

7 Conclusions

In this paper, we present a formal and approach to
order optimization that integrates both orderings and
groupings within the same comprehensive framework.
We make the following novel contributions:

1. Aside from orderings, we also infer how relations
are grouped. Just as inference of orderings can
make it possible to avoid sorting, inference of
groupings can make it possible to avoid hash-
based grouping algorithms. We also consider sec-
ondary orderings and groupings. By inferring sec-
ondary orderings and groupings, it is possible to
avoid unnecessary sorting or grouping over mul-
tiple attributes. Also, in some cases one can use
secondary orderings known of an operator’s input
to infer primary orderings of of its output.

2. We present a formal semantics for order proper-
ties, thereby making it easier to reason about and
verify inference techniques.

3. We introduce a plan refinement algorithm that
decorates query plans produced by Postgres with
inferred orderings and groupings and then refines
these plans by removing unnecessary sorting and
grouping operations.

4. We empirically show the benefits of plan refine-
ment and the low overhead it adds to the cost of
query optimization.

One topic for future work concerns the integration of
the plan refinement with the plan generator of a query
optimizer, so that plans with “interesting orders” and
“interesting groupings” might be retained as candidate
plans, where they might currently be discarded. We
also are interested in generalizing this work to infer
“bounded disorder”: unordered relations whose dis-
order can be measured as the number of passes of

a bubble sort required to make the relation ordered.
Inference of “bounded disorder” appears to be rele-
vant when considering how order properties get prop-
agated through block-nested-loop joins, and could be
exploited to reduce the cost of certain plan operators.
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