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Abstract 

Pervasive computing introduces data management 
requirements that must be tackled in a growing variety of 
lightweight computing devices. Personal folders on chip, 
networks of sensors and data hosted by autonomous 
mobile computers are different illustrations of the need 
for evaluating queries confined in hardware constrained 
computing devices. RAM is the most limiting factor in 
this context. This paper gives a thorough analysis of the 
RAM consumption problem and makes the following 
contributions. First, it proposes a query execution model 
that reaches a lower bound in terms of RAM 
consumption. Second, it devises a new form of 
optimization, called iteration filter, that drastically 
reduces the prohibitive cost incurred by the preceding 
model, without hurting the RAM lower bound. Third, it 
analyses how the preceding techniques can benefit from 
an incremental growth of RAM. This work paves the 
way for setting up co-design rules helping to calibrate 
the RAM resource of a hardware platform according to 
given application’s requirements as well as to adapt an 
application to an existing hardware platform. To the best 
of our knowledge, this work is the first attempt to devise 
co-design rules for data centric embedded applications. 
We illustrate the effectiveness of our techniques through 
a performance evaluation. 

1 Introduction 
Pervasive computing is now a reality and intelligent devices 
flood many aspects of our everyday life. As stated by the 
Semiconductor Industry Association, the part of the 
semiconductors integrated in traditional computers represents 
today less than 50% of a market of $204Billion [SIA02]. As 
new applications appear, the need for database techniques 
embedded in various forms of lightweight computing devices 
arises. For example, the vision of the future dataspace, a 
physical space enhanced with digital information made 
available through large scale ad-hoc sensor networks is paint 

in [ImN02]. Sensor networks gathering weather, pollution or 
traffic information have motivated several recent works 
[MH02, BGS00]. They have brought out the need for 
executing local computation on the data, like aggregation, sort 
and top-n queries [CaK97], either to save communication 
bandwidth in push-based systems or to participate in 
distributed pull-based queries [MFH02]. Personal folders on 
chip constitute another motivation to execute on-board 
queries. Typically, smartcards are used in various applications 
involving personal data (such as healthcare, insurance, phone 
books etc.). In this context, queries can be fairly complex (i.e., 
they can involve selections, joins and aggregation) and their 
execution must be confined on the chip to prevent any 
disclosure of confidential data [PBV01]. Hand-held devices 
are other forms of autonomous mobile hosts that can be used 
to execute on-board queries on data downloaded before a 
disconnection (e.g., personal databases, diary, tourist 
information). Thus, saving communication costs, preserving 
data confidentiality and allowing disconnected activities are 
three different concerns that motivate the execution of on-
board queries on lightweight computing devices [NRC01, 
Ses99]. 

While the computing power of lightweight devices 
globally evolves according to Moore’s law, the discrepancy 
between RAM capacity and the other resources, notably CPU 
speed and stable storage capacity, still increases. This is 
especially true for Systems on Chip (SoC) [NRC01, GDM98] 
where RAM competes with other components on the same 
silicium die. Thus, the more RAM, the less stable storage, and 
then the less embedded data. As a consequence, SoC 
manufacturers privilege stable storage to the detriment of a 
RAM strictly calibrated to hold the execution stack required 
by on-board programs (typically, less than 1KB of RAM is 
left to the applications in smartcards even in the advance 
prototypes we recently experimented). This trade-off is 
recurrent each time the silicium die size needs to be reduced to 
match physical constraints such as thinness, energy 
consumption or tamper resistance. Another concern of 
manufacturers is reducing the hardware resources to their 
minimum in order to save production costs on large-scale 
markets [SIA02]. Thus, RAM will remain the critical resource 
in these environments and being able to calibrate it against 
data management requirements turns out to be a major 
challenge. 

As far as we know, there is today no tool nor academic 
study helping to calibrate the RAM size of a new hardware 
platform to match the requirements of on-board data centric 
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applications. In traditional DBMSs, query evaluation 
techniques resort to swapping to overcome the RAM 
limitation. Unfortunately, swapping is proscribed in highly 
constrained devices because it incurs prohibitive write costs in 
electronic stable memories and it competes with the area 
dedicated to on-board data. In the absence of a deep 
understanding of RAM consumption principles, pragmatic 
solutions have been developed so far. Light versions of 
popular DBMS like Sybase Adaptive Server Anywhere 
[GIG01], Oracle 8i Lite [ORA02], SQLServer for Windows 
CE [Seg01] or DB2 Everyplace [KLL01] have been designed 
for hand-held devices. Their main concern is reducing the 
DBMS footprint by simplifying and componentizing the 
DBMS code [Gra98]. However, they do not address the RAM 
issue. Query executions exceeding the RAM capacity are 
simply precluded, thereby introducing strong restrictions on 
the query complexity and on the volume of the data that can 
be queried. Other studies have been conducted to scale down 
database techniques in the particular context of smartcards 
[ISO99, PBV01]. In [PBV01], we tackled the RAM issue by 
proposing a dedicated query evaluator relying on an ad-hoc 
storage and indexation model. This solution, called 
PicoDBMS, has been shown convenient for complex personal 
folders (e.g., healthcare folders) embedded in advanced 
smartcard platforms [ABB01]. Without denying the interest of 
the PicoDBMS approach, its application’s domain is reduced 
by two factors. First, PicoDBMS makes an intensive use of 
indices with a side effect on the update cost and on the 
complexity of the transaction mechanisms enforcing update 
atomicity. One may thus wonder whether the resort to indices 
could be avoided, and in which situations. Second, PicoDBMS 
constitutes an ad-hoc answer to a specific hardware platform. 
As noticed earlier, hardware configurations are more and more 
specialized to cope with specific requirements in terms of 
lightness, battery life, security and production cost.  Building 
an ad-hoc query evaluator for each of them will rapidly 
become cumbersome and, above all, will incur a prohibitive 
design cost [NRC01].  

In the light of the preceding discussion, there is a clear 
need for defining pre-designed and portable database 
components that can be integrated in Systems on Chip (SoC). 
The objective is to be able to quickly differentiate or 
personalize systems in order to reduce their cost and their 
time-to-market [GDM98]. To this end, a framework for 
designing RAM-constrained query evaluators has to be 
provided. This paper precisely addresses this issue, following 
the three steps approach outlined below. 

Devising a RAM lower bound query execution model  
This study proscribes swapping and indexing for the reasons 
stated earlier. Searching for a RAM lower bound query 
execution model in this context forces us to concentrate on the 
algorithmic structure of each relational operator and on the 
way the dataflow between these operators must be organized. 
The contribution of this step is to propose operators’ 
algorithms that reach a RAM lower bound and to guidelines 
that remain valid when a small quantity of RAM is added to 
the architecture. 

 

 

Devising optimization techniques that do not hurt this RAM lower 
bound 
Obviously, a RAM lower bound query execution model 
exhibits poor performance. The absence of swapping and 
indexing leads to recompute repeatedly every information that 
cannot be buffered in RAM. The consequence on the query 
execution algorithms is an inflation in the number of iterations 
performed on the on-board data. The contribution of this step 
is to propose new optimization techniques that drastically 
reduce the number of irrelevant tuples processed at each 
iteration.  
Studying the impact of an incremental growth of RAM  
Mastering the impact of RAM incremental growths has two 
major practical outcomes. In a co-design perspective, it allows 
to determine the minimum amount of RAM required to meet a 
given application’s requirement. In the context of an existing 
hardware platform, it allows to calibrate the volume of on-
board data and the maximum complexity of on-board queries 
that remain compatible with the amount of available RAM. As 
demonstrated by our performance evaluation, very small RAM 
growths may lead to considerable performance gains. This 
motivates further the study of a RAM lower bound query 
execution model and of RAM incremental variations. The 
contribution of this step is twofold. First, it proposes an 
adaptation of the preceding execution techniques that best 
exploit each RAM incremental growth and demonstrates that 
they constitute an accurate alternative to the index in a wide 
range of situations. Second, it proposes co-design guidelines 
helping to find the best compromise between RAM capacity, 
volume of on-board data, query complexity and response time. 

This paper is organized as follows. Section 2 introduces 
important assumptions that delimit the context of the study. 
Section 3 presents our RAM lower bound query execution 
model. Section 4 addresses optimization issues in this RAM 
lower bound context. Section 5 describes the impact of RAM 
incremental growths on the query execution model. Section 6 
presents our performance evaluation. Finally, section 7 
concludes the paper. 

2 Context of the study 
This section introduces hypothesis on the data sources, on the 
queries and on the computing devices, and discusses their 
relevance with respect to the target of this study.  

H1 : On-board data sources are sequential files  
We assume that the data sources are hosted by the device and 
do not benefit from any index structure. The reason to push 
indices aside from this study is threefold. First, indices have a 
negative side effect on the update cost (as we will see, this 
effect is magnified by hypothesis H4). Second, indices makes 
update atomicity more complex to implement [PBV01] and 
then have also a negative side effect on the algorithm’s 
footprint. Finally, indices compete with on-board data on 
stable memory, thereby reducing the net storage capacity of 
the device. This does not mean that indices are definitely 
useless or unsuitable. As shown in Section 6, indices remain 
the sole solution to cope with strict response time constraints 
in the case of complex queries over a large amount of data. 
One objective - and contribution - of this study is to 



demonstrate that alternatives to indices exist and are 
convenient in a wide range of situations. 
H2 : Queries are unnested SQL queries 
We consider relational data for the sake of generality and 
simplicity. Note that the relational model has become a 
standard even in highly constrained environments 
[ISO99,PBV01]. The queries of interest are unnested SQL 
queries including Group by, Having and Order by statements. 
Even if more complex queries could be considered, unnested 
SQL queries are expressive enough to cover the need of the 
target on-board data centric applications (sensors, personal 
folders, ambient intelligence). 
H3 : Computing devices are autonomous   
Autonomy means that the execution of on-board queries relies 
only on local computing resources. Obviously, if we assume 
that external resources can be exploited, the RAM problem 
vanishes. As stated in the introduction, saving communication 
costs, preserving data confidentiality and allowing 
disconnected activities are three common motivations to 
execute on-board queries in autonomy. 
H4 : Stable storage is made of electronic memory   
This assumption simply expresses the reality since lightweight 
computers use commonly EE-PROM, Flash or power-supplied 
RAM technologies for their stable storage [NCR01]. These 
technologies exhibit good properties in terms of lightness, 
robustness, energy consumption, security and production costs 
compared with magnetic disks. In addition, fine grain data can 
be read-accessed from stable storage at a very low cost (the 
gap between EE-PROM, Flash and RAM in terms of direct 
read-access time is less than an order of magnitude). On the 
other hand, writes in EE-PROM and Flash are extremely 
expensive (up to 10 ms per word in EE-PROM) and the 
memory cell lifetime is limited to about 105 write cycles. 

The conjunction of H3 and H4 precludes a query evaluator 
resorting to memory swap. Indeed, swapping incurs 
prohibitive write costs and may hurt the memory lifetime 
depending on the stable storage technology used. But above 
all, the swapping area must be local and there is no way to 
bound it accurately. Again, the swapping area competes with 
the on-board data in stable storage.  

3 RAM lower bound query execution model 
This section concentrates on the definition of a query 
execution model that reaches a lower bound in terms of RAM 
consumption, whatever be the complexity of the query to be 
computed and the volume of the data it involves. The RAM 
consumption of a Query Execution Plan (QEP) corresponds to 
the cumulative size of the data structures used internally by all 
relational operators active at the same time in the QEP plus 
the size of the intermediate results moving along the QEP. We 
first present two design rules that help us to derive the 
principles of a RLB (RAM Lower Bound) query evaluator. 
Then, we propose data structures and algorithms 
implementing this query evaluator.  

3.1 Design rules and consistency constraints 

Two design rules guide the quest for a RLB query evaluator. 

R1 (Invariability): Proscribe variable size data structures  
R2 (Minimality): Never store information that could be 
recomputed  
Rule R1 states that a data structure whose size varies with the 
cardinality of the queried data is incompatible with the reach 
of a RAM lower bound. As a consequence of R1, if an 
operator OP1 consumes the output of an operator OP2, OP1’s 
consumption rate must be higher than or equal to OP2’s 
production rate to avoid storing an unbounded flow of tuples. 
Rule R2 trades performance for space saving. As a 
consequence of R2, intermediate results are never stored since 
they can be recomputed from the data sources at any time. 
Roughly speaking, R1 rules the synchronization between the 
operators in the QEP while R2 minimizes the internal storage 
required by each of them. The conjunction of R1 and R2 
draws the outline of a strict pipelined query execution model 
that enforces the presence of at most one materialized tuple at 
any time in the whole QEP, this tuple being the next one to be 
delivered by the query evaluator.  

Let us give the intuition of such a query evaluator on an 
example. Let assume a Join operator combining two input sets 
of tuples called ILeft and IRight. ILeft and IRight result 
themselves from the evaluation of two sub-queries QLeft and 
QRight in the query tree. To comply to R1, each ILeft tuple will 
be compared to IRight tuples, one after the other, at the rate of 
their production by QRight, and the result will be itself produced 
one tuple at a time. To comply with R2, QRight will be 
evaluated ||ILeft|| times in order to save the storage cost 
associated to IRight. Following this principle for all operators 
and combining them in a pipelined fashion is the intuition to 
reach a RAM lower bound for a complete QEP. However, care 
must be taken on the way the dataflow is controlled to 
guarantee the consistency of the final result. To this end, we 
introduce two consistency constraints that impact the iteration 
process and the stopping condition of each algorithm 
presented in the next section 

Unicity: the value of a given instance of the Cartesian product of 
the involved relations must be reflected at most once in the result. 
Completeness: the values of each instance of the Cartesian 
product of the involved relations that satisfies the qualification of 
the query must be reflected in the result. 

3.2 Execution model and notations 

Before going into the details of each operator’s algorithm, we 
discuss the way operators interact in a QEP. We consider the 
Iterator model [Gra93] where each operator externalizes three 
interfaces: Open to initialize its internal data structures, Close 
to free them and Next to produce the next tuple of its output. 
The QEP takes the form of a tree of operators, where nodes 
correspond to the operators involved in the query, leaves 
correspond to the Scan operator iterating on the involved 
relations and edges materialize the dataflow between the 
operators. Figure 1 pictures a simple QEP and introduces 
notations that will be used in the algorithm’s description.  
Rules R1 and R2 guarantee the minimality of the dataflow by 
reducing its cardinality to a single tuple. A shared data 
structure called DFlow materializes this dataflow. Each 
operator uses in its turn this data structure to consume its input 
and produce its output, one tuple at a time. More precisely, 



DFlow contains: (i) one cursor maintaining the current 
position reached in each relation involved in the QEP; these 
cursors materialize the current instance of the Cartesian 
product of these relations; and (ii) a storage area for each 
attribute computed by an aggregate function. Thus, DFlow 
contains the minimum of information required to produce a 
result tuple at the root of the QEP and is the unique way by 
which the operators communicate. As pictured in Figure 1, 
cursors and attributes in DFlow are organized into lists to 
increase the readability of the algorithms (e.g., GrpLst denotes 
the list of cursors referencing the relations participating in the 
grouping condition). 

Additional notations are used all along the paper. ILeft and 
IRight denote respectively the left and right inputs of a binary 
operator; ||input|| denotes the tuple cardinality of an operator’s 
input; k denotes the number of distinct values in an input with 
respect to a grouping or a sorting condition.  

 
 
 
 
 
 
 
 
 

Figure 1: Query Example and notations  

3.3 Operator’s algorithms 

Following the precept of rule R2, we present below a RLB 
form of each relational operator’s algorithm. For each 
algorithm, we show its compliance with the Unicity and 
Completeness consistency constraints and give its RAM 
consumption. 

Scan, Select, Project and Join algorithms 
The algorithms implementing these operators are pictured in 
Figure 2, except for the Project that is rather straightforward. 
Project simply builds a result tuple by dereferencing the 
cursors present in DFlow and by copying the values belonging 
to DflowèAggLst. The Scan and Select algorithms are self-
explanatory. Join implements a Cartesian product between its 
left and right inputs. Let us verify Unicity and Completeness 
for each algorithm. Regarding the Scan, the same tuple cannot 
be considered twice between an Open and a Close and all 
tuples are considered since Open initializes the cursor to the 
beginning of the relation and the stopping condition of Next is 
to reach EOF. Select and Project are unary operators that 
consume their input sequentially and then inherit Unicity and 
Completeness from their child operator in the QEP.  The Join 
algorithm performs a nested loop on its operands so that each 
instance of the Cartesian product of its left and right inputs is 
examined exactly once. Again, Unicity and Completeness are 
inherited from its left and right child operators in the QEP.  

The minimality of these four algorithms in terms of RAM 
consumption is not questionable since their consumption 
equals zero. Indeed, they do not use other data structure than 
DFlow. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 2: RLB Algorithms  

3.4 GroupBy algorithm 

The GroupBy operator aggregates in a single result tuple all 
input tuples sharing the same grouping value. By rule R2, 
DFlow contains a single tuple and then grouping values have 
to be processed one after the other. By rule R1, keeping track 

Scan.Open  Dflow.Ri←0         //     Initialize Ri scan 

Scan.Next Dflow.Ri ++          //    reference next Ri tuple 
 if Dflow.Ri > Ri.Cardinality then Dflow.Ri←EOF  // check EOF 

Select.Open  ChildOp.Open() 

Select.Next repeat            //  Get Next child tuple and  
  ChildOp.Next()        // check the selection predicate 
 until DFlow.Child = EOF or match(SelectionPredicate) 

Join.Open  LeftOp.Open();RightOp.Open() //   Open L and R input  
 if DFlow.LeftChild=EOF or DFlow.RightChild=EOF then 
  DFlow.Child←EOF      //   One input is empty 
 else LeftOp.Next()       //    get the first L tuple 

Join.Next if DFlow.Child ≠ EOF then   //  check both L&R EOF 
  Repeat         // Get a R tuple until EOF or match 
   RightOp.Next()         
   if DFlow.RightChild = EOF then 
    LeftOp.Next()      // if end of R, get a next L tuple 
    if DFlow.LeftChild ≠ EOF then 
     RightOp.Open()    //  and reopens R 
     RightOp.Next()      
  until DFlow.Child = EOF or match(JoinPredicate) 

GBY.Open  ChildOp.Open()     // Scan the whole input in 
 Split.Value←+∞   //  order to find the smallest 
 repeat        // grouping value (GV) in Split 
  ChildOp.Next() 
  if DflowèGrpLst < Split.Value then   
   Split←DFlow.GrpLst   // Split converges to the  

 until DFlow.Child = EOF    //  smallest GV at EOF 

GBY.Next  if Split.Value ≠ +∞ then   // there is a next GV to compute 
  Current←Split      //  Initialize the computation  
   DFlow.AggLst←0    //  of the current GV 
   Split.Value←+∞    //  Initialize Split for computing 
  ChildOp.Open()      // the next GV 
  repeat          // scan the whole input  
   ChildOp.Next()       
   if DflowèGrpLst = Current.Value then  // the current tuple 
    compute DFlowèAggLst      // shares the GV  

   elseif DFlowèGrpLst∈] Current.Value,Split.Value [ then 
     Split←DFlow.GrpLst   // Split converges  
  until DFlow.Child = EOF 
  DFlow.GrpLst←Current    //  Output an aggregate 

Sort.Open  ChildOp.Open()         //  Identical to GBY.Open 
 Split.Value←+∞      
 repeat  
  ChildOp.Next() 
  if DFlowèSortLst<Split.Value then 
   Split←DFlow.SortLst  
 until DFlow.Child = EOF 
 Current←Split 

Sort.Next ChildOp.Next() 
 while  DFlowèSortLst ≠ Current.Value and  
    (DFlow.Child ≠ EOF or Split.Value ≠  +∞)   
  if DFlow.Child = EOF then   // The input ends but there is 
   ChildOp.Open()       //  a sorting value (SV) in Split  
   Current←Split         
   Split.Value←+∞     //  Reinit. Split to find next SV 
  elseif DFlowèSortLst ∈ ]Current.Value, Split.Value[ then 
   Split←DFlowèSortLst   //  Converges to the next SV 
  ChildOp.Next() 
 // While loop ends when a tuple with Current SortLst is found 

 GrpLst = {R, S}    AggLst = {Sum}   SortLst = ∅ 

 Join2.LeftChild = {R, S}       Join2.RightChild  ={T} 

 Join2.LeftChildOp=Join1 

 DflowèGrpLst = Value (R.a,S.b) referenced by DFlow 

DFlow structure 

S cursor R cursor  T cursor Sum 

scan scan 

scan 

R S 

T 

Group by R.a, S.b 



of the list of all grouping values already processed by the 
algorithm is precluded. Thus R1 and R2 lead to process the 
grouping values in a predefined order, so that recording a 
single value sums up the history of the whole processing. The 
consequence is that the RAM consumption of the GroupBy 
algorithm amounts to two variables: Current referencing the 
grouping value being processed at each iteration and Split 
recording the frontier between the grouping values already 
processed and the ones remaining to be processed.  This 
constitutes a RAM lower bound in the absence of assumption 
on the initial ordering of the input (hypothesis H1). Different 
RLB forms of the GroupBy algorithm can be devised 
depending on the way the Split variable is managed.  

The first variation of the GroupBy algorithm, called 
CompMin, uses Split to reference the next grouping value to 
be computed. At the first iteration (implemented by 
Group.Open), the algorithm scans its input and searches into 
Split the smallest grouping value present in the input. At each 
next iteration, Current takes the value of Split, then the 
algorithm scans again its input and aggregates the tuples 
sharing the grouping value referenced by Current. At the same 
time, the algorithm searches into Split the grouping value to be 
processed at the next iteration, that is the value immediately 
greater than the one referenced by Current. This algorithm 
then performs (k+1) iterations on its input. Unicity and 
Completeness are guaranteed by the fact that the grouping 
values are processed in ascending order. Therefore, the same 
value cannot be considered in different iterations and all 
grouping values are considered. Indeed, Group.Open initiates 
the processing by finding the smallest grouping value and the 
stopping condition in Group.Next is that there is no grouping 
value greater than the last processed. In addition, each 
iteration scans the input sequentially, so that a tuple sharing 
the grouping value being processed is considered exactly 
once, assuming the child operator enforces Unicity and 
Completeness.  

The second variation of the GroupBy algorithm, called 
CompMax, uses Split to reference the last grouping value that 
has been processed. During the first iteration, Current is used 
to converge to the smallest grouping value and to compute the 
resulting aggregate at the same time. To illustrate this, let 
assume the first grouping value encountered in the input be v1, 
so that Current references v1. While iterating on the input, 
tuples having a value higher than v1 are not considered and 
tuples sharing the value v1 participate in the aggregation. If a 
tuple having a value v2 < v1 is encountered, Current evolves 
to v2 and the aggregation calculus is reinitialized. At the end 
of the first iteration, Current has converged to the smallest 
grouping value and the resulting aggregation has been 
computed. At each next iteration, Split takes the value of 
Current and Current is used to converge to the next grouping 
value (i.e., the value immediately greater than the one 
referenced by Split) and to compute the resulting group at the 
same time. While k iterations suffice to compute all 
aggregations, a (k+1)th iteration is required to guarantee the 
Completeness of the algorithm, that is to check that there exist 
no greater grouping value than the last processed. The 
remaining of the proof of Unicity and Completeness is 
equivalent to the CompMin algorithm. 

Intuitively, and as its name indicates, CompMax does more 
job than CompMin since several aggregation calculus are 
partially performed before being discarded. However, 
combining the first iteration of CompMax with the next 
iterations of CompMin leads to a third algorithm, called 
IterMin, that implements the GroupBy in only k iterations. 
Indeed, the first iteration of CompMax does not use the Split 
variable. This variable could thus be exploited to determine 
the second grouping value to be processed, so that the (k-1) 
next iterations could be computed in the same way as 
CompMin. Figure 3 summarizes the behavior of each algorithm 
on an input containing a sequence G1<G2 …<Gk of grouping 
values. For each algorithm, we represent a snapshot of its 
internal state (i.e., Current, Split and Agg variables) at givens 
iterations. The gray arrow represents the current tuple being 
processed at a given iteration (e.g., if the tuple being considered 
at iteration 2 of CompMin is (G5,8), then the values of 
Current, Split and Agg are respectively G2, G3 and 0). 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 3: Snapshot of the three GroupBy algorithms 

Sort algorithm 
The Sort algorithm shares the same structure, RAM lower 
bound, number of iterations and proof of Unicity and 
Completeness as the CompMin variation of the GroupBy 
algorithm. The sole difference is that each iteration delivers 
the tuples sharing the sorting value referenced by Current 
instead of aggregating them. This algorithm is thus not 
discussed further in this section. Note that a CompMax-like 
variation of the Sort algorithm could be devised but it would 
lead to ||input|| iterations (instead of k+1) to sort an input flow. 

3.5 Concluding remarks 

The RAM consumption of a whole QEP incurred by our 
execution model can be computed as follows. According to 
the queries of interest (see hypothesis H2), the sole operators 
that may be involved several times in the same QEP are Scan, 
Select and Join and their RAM consumption is  zero. 
Therefore, the RAM consumption ascribed to the QEP’s 
operators is the RAM consumed by the GroupBy and Sort 
operators, namely 2*||GrpLst|| + 2*||SortLst||, which 
corresponds to the size of their respective Current and Split 
variables . The size of the dataflow corresponds to the size of 
the DFlow structure plus the size of the current tuple being 
delivered in the final result, that is: ||FromLst|| + ||AggLst|| + 
Σisize(a i), for each ai ∈ p, p being the Project condition. 
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Consequently, the RAM lower bound to execute a query 
without index can be expressed by: 
RLB=Σi  size(ai) + 2 ×  ||GrpLst|| +2 × |  SortLst|| + ||FromLst|| + ||AggLst|| 
This result demonstrates the feasibility to design a query 
evaluator consuming a tiny bounded RAM, independent of the 
cardinality of the queried data and of the query complexity. 
One may doubt about the practical interest of RLB expecting 
that lightweight platforms will be equipped with a much larger 
RAM. Note however that current smartcard platforms 
provides not much than a few hundred bytes of RAM to the 
on-board applications, the rest of the RAM being preempted 
by the operating system, and the JavaCard VM. Regarding 
future platforms, smartcard manufacturers put more emphasis 
on the increase of CPU speed, communication bandwidth and 
storage capacity than on RAM. In addition, the objective of 
co-design is to lower the hardware resources (among them the 
RAM) to their minimum in order to save production costs on 
large-scale markets. 

But beyond this formula, the significance of this study is 
on providing guidelines  and algorithm’s structures that remain 
valid when a small quantity of RAM is added to the 
architecture.  

4 Optimizations in RAM lower bound 
Not surprisingly, a RAM lower bound query execution model 
exhibits poor performance since every information that cannot 
be buffered in RAM needs to be recomputed. The dramatic 
consequence on the number of iterations performed on the 
queried data is illustrated in Figure 4. Assuming that k is the 
number of (R.a,S.b) distinct values present in the GroupBy 
input, the scan of T turns to be executed k*||R joinS || times. 

Different and complementary solutions can be investigated 
to decrease this iteration cost without hurting the RAM lower 
bound. First, global optimization techniques can be used to 
rearrange the query tree in order to minimize the total number 
of iterations required to evaluate it. This can be done notably 
by pushing selections down to the QEP and by finding an 
optimal join ordering. In a RAM lower bound context, Left-
deep trees outperform Right-deep and Bushy trees except for 
extreme values of the join selectivity’s. In conducting our 
experiments, we observed that the Left-deep tree heuristic 
remains valid when a small quantity of RAM is added to the 
model. This confirms the intuition that right subtrees have to 
be minimized to decrease the cost of recomputing them for 
each tuple of the left subtree. The ordering of joins in the Left-
deep tree depends on their selectivity and on the cardinality of 
the relations involved, as usual. The query execution in a 
RAM lower bound exhibits other interesting properties such 
as: (i) RAM consumption is independent of the number of Join 
and Select operators, (ii) Join and Select algorithms are order 
preserving and (iii) intermediate results are never materialized 
in the QEP. These properties allowed us to devise original 
optimization techniques detailed in [ABP03]. However, these 
techniques are not developed further in this paper because 
they have to be reconsidered when a small quantity of RAM is 
added to the model.  

Second, local optimization techniques can be devised to 
decrease the number of tuples considered inside each iteration. 
Note that local optimization has here a different meaning than 

in the usual case since it applies to one iteration rather than to 
one operator. Having a deeper look on the algorithms 
presented in section 3 allows to split, at each iteration, the 
input flow of each operator into three distinct sets of tuples. 
As illustrated in Figure 4, Relevant tuples are tuples 
participating in the operator’s result for the current iteration 
(e.g., tuples sharing the current grouping value being 
computed by a GroupBy). Obviously, this set of tuples cannot 
be reduced. Required tuples are tuples modifying the internal 
state of the algorithm without participating in the iteration’s 
result (e.g., tuples modifying the Split variable of the GroupBy 
algorithm). These tuples are required to enforce the Unicity 
and/or Completeness of the algorithm and their number 
depends on the algorithm itself. Thus, the respective merit of 
different algorithms implementing the same operator can be 
compared with respect to the number of Required tuples they 
consider. Selecting the one minimizing this number is a good 
heuristic. Finally, Irrelevant tuples are all the tuples present in 
the input that are not Relevant nor Required. Eager pruning 
should take place to avoid producing Irrelevant tuples and 
carrying them in the QEP up to the operator. The 
optimizations related to Required and Irrelevant tuples are 
developed in the following sections.   

 
 
 
 
 
 
 
 
 
 
 

Figure 4: Iterations performed by a RLB query evaluator 

4.1 Minimizing Required tuples 

As stated earlier, the number of Required tuples considered by 
each algorithm depends on the way Unicity and Completeness 
are enforced. Regarding the Scan algorithm, one can notice 
that all tuples present in its input are Relevant. The inputs of 
the Select, Project and Join algorithms cannot contain 
Required tuples since they do not maintain an internal state. 
This comes from the fact that Unicity and Completeness are 
inherited from their child operator in the QEP. Therefore, 
these four algorithms are optimal in terms of Required tuples 
since this number is equal to zero. 

The GroupBy algorithm is him directly impacted by the 
management of Required tuples. Let us first consider the 
CompMin variation of this algorithm. At a given iteration, all 
input tuples t such that t.GrpLst∈]Current, Split[ are Required, 
where Current and Split denote the current state of the 
corresponding variables during this iteration. Indeed, each 
time an input tuple falls into this interval, it updates the Split 
variable thereby decreasing the upper bound of the interval. 
This is the way by which CompMin converges to the next 
grouping value to be computed and guarantees Unicity and 
Completeness. Thus, along the same iteration, the number of 
Relevant tuples (i.e., tuples sharing the grouping value 
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referenced by Current) remains constant while the number of 
Required tuples decreases and the number of Irrelevant tuples 
increases from the same amount, according to this converging 
process. In the CompMax variation of the GroupBy algorithm, 
the Required tuples at a given iteration are all the input tuples t 
such that t.GrpLst∈]Split, Current]. Each input tuple falling 
into this interval either lower the value of Current (if 
t.GrpLst<Current) or participate in the aggregation of the 
grouping value (if t.GrpLst=Current). This is the way by 
which CompMax converges to the grouping value to be 
computed at this iteration, computes it and guarantees Unicity 
and Completeness. Note that once convergence is achieved, all 
input tuples sharing the Current value are Relevant rather than 
Required. Let us now compare both algorithms with respect to 
the number of Required tuples they consider. Along iteration i 
(with i>1), CompMin.Current references the same value as 
CompMax.Split and, at the end of the iteration, CompMin.Split 
references the same value as CompMax.Current. However, the 
upper bound of the interval is open in CompMin while it is 
closed in CompMax. This strongly accelerates the 
convergence of this upper bound and makes CompMin much 
more efficient than CompMax in terms of Required tuples. 
Indeed, CompMin considers at each iteration at most one 
Required tuple per distinct grouping value remaining to be 
processed while CompMax considers at most all the tuples 
sharing these values. 

Comparing CompMin to IterMin requires a deeper look at 
the first iterations. The first iteration of IterMin produces the 
same result as the first two iterations of CompMin, that is, 
detecting and processing the smallest grouping value. Again, 
converging to this value is faster in CompMin because at most 
one Required tuple has to be considered per grouping value. 
An algorithm considering less Required tuples cannot be 
envisioned without putting assumptions on the input ordering 
(hypothesis H1).  
Thus, CompMin is preferred to IterMin and CompMax in the 
Ram Lower Bound context for it minimizes the number of 
Required tuples.  

As the Sort algorithm shares the same structure as 
CompMin, it exhibits the same number of Required tuples. 
Thus, under hypothesis H1, the algorithms presented in Figure 
2 are all optimal with respect to the number of Required tuples 
that need to be considered. 

The number of Required tuples has an impact on the local 
cost of each algorithm. For example, all Required tuples 
participate in the computation of grouping values that turn to 
be discarded both in CompMax and in the first iteration of 
IterMin. But beside this local overhead, Required tuples have 
a much more negative impact on the global cost of the whole 
QEP. Indeed, they generate computations from the leaves of 
the QEP up to the operator that requires them, without 
participating in the iteration’s result. Minimizing the number 
of Required tuples during an iteration amounts to maximize 
the number of Irrelevant tuples that could be pruned early in 
the QEP. The next section develops this point.  

4.2 Eager pruning of Irrelevant tuples 

The distinction between Relevant, Required and Irrelevant 
tuples depends on each operator. Once this distinction has 
been made, eager pruning of Irrelevant tuples can be 

implemented as follows. Each operator willing to eliminate 
the Irrelevant tuples from its input expresses a predicate, 
called iteration filter, that selects only the Relevant and 
Required tuples for a given iteration. This predicate will then 
be checked by the operators participating in the QEP subtree 
producing this input. Conceptually, an iteration filter is similar 
to a regular selection pre dicate that is pushed down to the QEP 
to eliminate the Irrelevant tuples as early as possible. 
However, iteration filters may involve several attributes issued 
from different base relations. So, they are more complex than 
regular selection predicates and care must be taken on the way 
they are checked to avoid redundant computations. In the 
following, we first describe how iteration filters are expressed, 
then we concentrate on the way they are checked. 

4.3 Expressing iteration filters 

The following discussion is conducted on an operator basis. 
The Scan and Project operators are not concerned by the 
expression of iteration filters since all tuples they consider are 
Relevant. Regarding the Select operator, expressing an 
iteration filter to eliminate the Irrelevant tuples present in its 
input turns to delegate the selection process to another 
operator belonging to the QEP subtree producing the Select 
input. This is nothing but pushing selections down to the QEP, 
as usual. The Join algorithm considers many Irrelevant tuples 
since, at each iteration i, the Relevant tuples from the right 
input are only whose matching with the current tuple ti from 
the left input. Thus, a Join iteration filter is the instantiation of 
the join predicate with ti. In a Left-deep QEP, a Join filter is 
unfortunately inoperative. Indeed, checking it in the right 
subtree leads to evaluate the join predicate twice per tuple. 
Note that Join iteration filters may keep a strong interest in a 
more general context. 

GroupBy filters: in the CompMin variation of the GroupBy 
algorithm, a tuple t is Relevant if t.GrpLst= Current, while it is 
Required if t.GrpLst∈]Current, Split[, where Current and Split 
denote the state of the corresponding variables at the time the 
tuple t is processed. The GroupBy iteration filter, or GroupBy 
filter for short, is therefore a predicate of the form (t.GrpLst ≥ 
Current and  t.GrpLst < Split). Note that the Split variable 
evolves during a same iteration. It takes the value +∞ at the 
beginning of the iteration and then converges to the value 
immediately greater than Current. This introduces a particular 
form of predicate that can be termed dynamic since its 
selectivity increases along a same iteration.  

Sort filters: As already stated, the RAM lower bound 
version of the Sort and GroupBy algorithms share the same 
structure. Thus, the discussion on GroupBy filters applies as 
well to Sort filters and need not be repeated. 

Checking iteration filters 
The objective is to push the evaluation of iteration filters down 
to the QEP in order to prune Irrelevant tuples as early as 
possible. The place where an iteration filter can be checked 
depends on the relations it involves. Mono-relation iteration 
filters are simply checked by the corresponding Scan operator, 
at the leaf of the QEP. Multi-relation filters have to be 
decomposed into several predicates that are checked at 
different levels of the QEP. Let assume an iteration filter 
involving the relations R1, R2,… Rn appearing in this order in 



the Left-Deep tree (that is, R1 is the very left leaf of the QEP). 
This iteration filter is split into n independent predicates as 
follows. The first predicate applies to R1 and is checked by the 
corresponding Scan. The ith predicate applies to the result of 
the join between R1, R2,… Ri and is checked by the 
corresponding join operator, and so on up to the join with Rn. 
Figure 5 shows the instantiation of this mechanism for a multi-
attribute GroupBy.  

 
 
 
 
 
 
 
 
 

Figure 5: Group Filters  
 
Let us have a closer look on this figure and consider a 
Required tuple t(x,y) produced by JoinRS. Before delivering 
it, JoinRS checks whether this tuple satisfies the GroupBy 
filter, namely t.GrpLst∈]Current, Split[ (assuming the use of 
CompMin). Once delivered and considered by JoinRST, t can 
match with several tuples from T thereby producing a 
sequence of tuples of the form {tt1, tt2, … ttn}, from which 
only the first one is Required. Thus, tt1 will update the Split 
bound in such a way that {tt2, … ttn} become Irrelevant. The 
tuples {tt2, … ttn} have been produced vainly. To avoid such 
situation, the join algorithm has to be slightly modified in 
order to abort the processing of tuple t as soon as possible. 
This can be done by checking at each Next call from its parent 
that the current left tuple is still valid with respect to the 
iteration filter (i.e., t.GrpLst < Split).  

While eager pruning of Irrelevant tuples is simplified by 
the Left-deep shape of the QEP, it can be extended to Right-
deep and Bushy trees in a straightforward fashion. 

5 The impact of RAM incremental growths  
This section revisits the query evaluation and optimization 
techniques devised in a RAM lower bound context when a 
small quantity of RAM is added to the model.  

5.1 Impact on the operator’s algorithms 

Let us first consider the impact of a RAM incremental growth 
on the design rules introduced in section 3.1. Rule R1 remains 
unchanged because variability plays against any memory 
bound. While RAM growth is considered, the RAM remains 
bounded by a small value. By incremental growth, we are 
expressing a slow deviation from the RLB bound, up to reach 
the value satisfying the application’s constraints. Rule R2 
could be reformulated as follows “recompute the information 
that cannot be stored in the bounded RAM”. While this design 
rule seems obvious, it means that the philosophy of the 
algorithms remains unchanged, that is remains based on 
iterating – less frequently – on the operator’s input(s). 
Let us now consider the impact of additional RAM on each 
operator. The goal is to exploit RAM to materialize 

intermediate results, thereby reducing the number of iterations 
required on the operator’s input(s). Scan, Select and Project 
operators are insensitive to the RAM size since they 
implement a single iteration on their respective input.  

The Join algorithm benefits from additional RAM in a 
straightforward fashion. The nested-loop algorithm evolves to 
a block nested-loop, dividing the number of iterations on the 
right input by the number of buffer entries allocated to the join 
(assuming the buffered input be the left one). Tuple 
comparisons can also be saved by sorting or hashing the 
content of the buffer. In our context where the buffer is small, 
sorting is preferred to hashing since hashing consumes RAM 
on its own and would then decrease the useful part of the 
buffer.  

The three variations of the GroupBy algorithm can benefit 
from a buffer. Let us first consider the CompMin algorithm. 
Exploiting the RAM available leads to divide the buffer into 
three arrays of a same cardinality b, called Current[] , Split[] 
and Agg[] . At each iteration (except the first one), the 
algorithm computes into Agg[] the b aggregations 
corresponding to the grouping values referenced by Current[] 
and searches into Split[] the b grouping values to be processed 
next. These next grouping values are determined thanks  to a 
converging process, as in the RAM lower bound context. At a 
given iteration, all input tuples t such that t.GrpLst > 
max(Current[]) and t.GrpLst < max(Split[]) and t.GrpLst ∉ 
Split[] are Required. Indeed, each time an input tuple falls into 
this interval, it is inserted in sorted order into Split[] and the 
highest value of Split[] is discarded, thereby decreasing the 
upper bound of the interval. At each iteration, the algorithm 
considers at most one Required tuple per distinct grouping 
value remaining to be processed, as in the RAM lower bound 
context. However, since the number of iterations is divided by 
b, the total number of Required tuples considered by the 
algorithm is much less than in the RAM lower bound context. 
The CompMax algorithm can be buffered in the same way 
(i.e., by changing variables into arrays) except that a single 
Split variable is necessary to reference, at a given iteration, the 
highest grouping value previously computed. With buffering, 
the gap between CompMax and CompMin in terms of 
Required tuples increases since at each iteration, many 
aggregation calculus are partially performed before being 
discarded. On the other hand, CompMax produces less 
iterations than CompMin since more space is left to the 
Current[] array in the buffer. This makes the CompMax 
algorithm more efficient when iteration filters are not 
considered. The buffered extension of IterMin is not discussed 
since it has the same memory requirements as CompMin and 
considers more Required tuples. 

The buffered adaptation of the Sort algorithm shares some 
similarities with CompMax. The buffer is divided into an 
array Current[] of b’ entries  dedicated to the storage of the 
smallest tuples to be delivered at a given iteration and Split, a 
single variable referencing the highest sorting value 
encountered at the previous iteration. At the first iteration, the 
algorithm scans its inputs and inserts the tuples in ascending 
order into Current[]. When Current[] overflows, the highest 
tuple in the sort order is discarded. At the end of this iteration, 
Current[] contains the b’ smallest tuples corresponding to a 
sequence of sorted values of the form v1v1v1<v2v2< …vn-1vn-1 
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<vnvnvn (this sequence expresses the presence of duplicates 
wrt the Sort condition). All Current[] tuples having a sorting 
value in the range [v 1,vn-1] are then delivered in the sort order 
and Split is set to vn (see Figure 6). At the next iteration, tuples 
of the input having a sorting value less than vn are not 
considered, tuples sharing the value vn are delivered and tuples 
having a sorting value greater than vn are inserted in ascending 
order into Current[], and so on. At each iteration all input 
tuples t such that t.SortLst∈[Split, max(Current[])[ can be 
either Relevant or Required and their status is actually 
determined a posteriori, at the time Split is reset (i.e., at 
iteration end). The Sort algorithm takes less benefit from a 
RAM growth than the GroupBy. This is due to the fact that 
tuples sharing the same sorting value have to be delivered 
together instead of being aggregated. Consequently, the 
performance of the Sort algorithm is driven by the number of 
duplicates wrt the sort condition.  

 
 
 
 
 
 
 
 
 
 
 

Figure 6: Buffered Sort  

5.2 Impact on iteration filters 

We focus below on the filter predicates expressed by the 
buffered version of the GroupBy and Sort algorithms. From 
the preceding section, it turns out that the predicate expressing 
a GroupBy filter for the CompMin algorithm takes the form 
(t.GrpLst∈Current[] or (t.GrpLst > max(Current[]) and  
t.GrpLst < max(Split[]) and t.GrpLst ∉ Split[])). We do not 
discuss the form of GroupBy filters for the CompMax 
algorithm since CompMin is always preferred when iteration 
filters are used. The predicate expressing a Sort filter takes the 
following form (t.SortLst∈[Split, Max(Current[])[). The 
predicates expressing these iteration filters are more costly to 
check than their RAM lower bound counterpart, although they 
are less frequently checked. Indeed, the inclusion of a tuple 
into an interval has now to be evaluated. Note that this 
evaluation can be accurate (exact match) or fuzzy (only the 
bounds are checked). The cost of an accurate evaluation is 
decreased by the fact that the GroupBy and Sort buffers are 
kept sorted.  

Let us now consider the modification made on the join 
algorithm to check the filter predicates accurately (cf. section 
4.3). Irrelevant tuples should now be discarded from a Join 
buffer as soon as the upper-bound of the filter predicate 
evolves. This leads to check all tuples present in the join 
buffer, on each Next call issued by the Join parent in the QEP. 
A less accurate alternative is to check only the current left 
tuple being considered. This simpler alternative has been 
shown more efficient by our performance evaluations. 

6 Performance evaluation 
The first objective of this evaluation is to assess the pertinence 
of the algorithms proposed in this paper, by quantifying the 
time required to execute different types of queries under 
strong RAM constraints. The expected outcome is to precisely 
evaluate to which extent these algorithms constitute an 
alternative to the use of indices. The second objective is co-
design oriented. The expected outcome is here to provide 
valuable co-design guidelines by the means of curves helping 
to find the best compromise between RAM capacity, volume 
of on-board data, query complexity and expected response 
time.   

6.1 Experimentation platform 

To conduct these experiments, we have implemented a 
complete query evaluator complying with the design 
principles introduced in this paper. The operator’s algorithms 
are the ones presented in section 5.1. Regarding the GroupBy 
algorithm, CompMin is used when iteration filters are 
activated and CompMax is used otherwise. The QEPs of 
interest are optimized according to the heuristics described in 
this paper. Thus, they take the form of Left-deep trees where 
joins are ordered according to their respective selectivity and 
to the cardinality of the relations involved. The RAM is 
distributed on the resulting QEP thanks to a simple (and 
preliminary) cost model.  

Counters are introduced in the platform to capture the 
number of elementary operations performed during the 
execution of a QEP (e.g., read a RAM cell, read a stable 
storage cell, evaluate a predicate …). These counters allow us 
to calibrate our prototype in order to reflect the behavior of 
different target hardware platforms (e.g., in terms of processor 
speed or stable storage technology). For this study, the 
platform has been calibrating with the following values: RAM 
read time = 50 ns, Stable storage read time = 100 ns, 
Processor speed = 50 Mips. These values correspond to 
advanced smartcard prototypes and are representative of the 
smartcard technology that will be available in the near future 
(two to four years). 

6.2 Data, queries and experiments 

In the scope of these experiments, we consider an on-board 
database composed of four base relations named R, S, T and 
U. Each relation contains at least three attributes: an integer 
primary key attribute, a string non-key attribute on which 
apply GroupBy and Sort operations and a string non-key 
attribute complementing the tuple to reach an average size of 
100 bytes. In addition, foreign key attributes are added into S 
to reference R and into T and U to reference S. These relations 
are populated by a pseudo-random generator allowing us to 
generate either a uniform or a Zipfian (i.e., skewed) 
distribution of the data. The tuple cardinality of each relation, 
for a scale factor SF=1, is: ||R||= 100, ||S||= 300, ||T||= 1200 and 
||U||= 600, leading to a 220KB database. 

We consider different types of queries, summarized in 
Table 1, of increasing complexity. Queries Q1 to Q5 are 
named Regular for they are representative of usual queries 
that we could foresee in an embedded context (sensors, 
personal folders, ambient intelligence). The simplest Regular 
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query (Q1) computes a single join while the most complex 
ones (Q4 and Q5) compute two joins followed by a GroupBy 
or a Sort. To make the study complete, we consider also 
Complex queries (Q6 and Q7) involving three joins and a 
multi-attribute GroupBy or Sort.  

6.3 Interpretation of the results 

Let us first study how the query evaluator behaves in the 
presence of Regular queries. The curves plotted in Figures 
7(a) to 7(e) represent the respective execution time of queries 
Q1 to Q5 as a function of the RAM. On each figure, the plain 
curve represents the execution time required to execute the 
query without iteration filters while the bold curve integrates 
the benefit provided by iteration filters. These two curves 
divide the space into three areas. The area above the plain 
curve materializes all combinations of response time (RT) and 
available RAM that can be reached by exploiting our 
operator’s algorithms, without iteration filters nor index. The 
area delimited by the two curves represents the RT/RAM 
combinations that become accessible by adding iteration 
filters to the preceding algorithms. Finally, the gray area 
represents the RT/RAM combinations that are unreachable 
without index. A fourth area on the left end side of each figure 
shows the combinations that can never be considered since 
they are located under the RAM lower bound. These curves 
deserve two important remarks. First, the hyperbolic shape of 
the curves shows that the operator’s algorithms exploit very 
well any RAM incremental growth. To illustrate this, the time 
required to execute Q2, without index nor iteration filter, 
amounts to 75 seconds with 150 bytes of RAM and falls down 
to 12 seconds with an addition of only 100 bytes of RAM. 
Second, the iteration filters strongly enlarge the area where the 
resort to indices can be avoided. Typically, the quantity of 
RAM required to execute Q3 in 1 second without iteration 
filters is 2,5KB  and falls down to 1,2KB  when iteration 
filters are exploited. For queries Q4 and Q5, the benefit of 
iteration filters seems graphically less impressive but this 
feeling is only due to the logarithmic scale of the figure. For 
example, executing Q5 in 1 second requires more than 16KB 
of RAM while 2KB suffice when iteration filters are used.  

The main conclusion of this first series of experiments is 
that the combination of our operator’s algorithms with 
iteration filters constitutes a very convincing alternative to the 
use of indices for the considered queries. Note that, thanks to 
these techniques, Q1 to Q5 can all be executed with a response 
time close to 1 second (the worst case being 1,4 second for 
Q5) with only 1KB of RAM. This result is particularly 
significant considering that the domain of investigation 
delimited by a response time around 1 second and a RAM 
around 1KB seems to be very challenging. Indeed, 1 second 
represents a « psychological » barrier reflecting well the 
requirement of most interactive applications. 1KB of RAM 
could however be  considered as a two extreme bound and one 
may wonder whether not to consider more comfortable 
assumptions regarding the RAM resource. The first reason is 
technological. Today’s ultra -light devices like smartcards are 
equipped with 1 to 4 KB of RAM (for the most powerful ones) 
but only a few hundred of bytes is left to the on-board 
applications, the rest being consumed by the OS, the JVM and 
the execution stack. Thus, 1KB of RAM allocated for query 

processing is today a rather optimistic assumption and 
semiconductor manufacturers do not forecast a rapid growth 
of the RAM resource for several reasons like reducing the 
silicium die size, the power consumption and the security 
threats. The second reason is economic and leads to lower all 
hardware resources (among them the RAM) to their minimum 
in order to save production costs on large-scale markets. So if 
more RAM is not expressly required, it will not be provided. 

Figures 7(f) and 7(g) gives another insight into the gain 
brought by iteration filters. Figure 7(f) expresses the ratio 
between the execution times obtained without and with 
iteration filters for the two queries Q2 and Q3 as a function of 
the RAM. Not surprisingly, the lower the RAM the higher the 
ratio since the RAM determines the number of iterations 
performed by the GroupBy and Sort algorithms. Note that this 
ratio would be even greater with queries Q4 and Q5 since the 
GroupBy and Sort algorithms would reiterate on a bigger 
subtree. The highest benefit is measured in the range [RLB, 
1,5KB ] of RAM.  This motivates further the use of iteration 
filters when the RAM resource of a device has to be 
minimized. Figure 7(g) plots the percentage of RAM saved in 
the execution of Q2 and Q3 by iteration filters as a function of 
the expected execution time. For example, the amount of 
RAM required to execute Q2 in less than 1 second is 200 
bytes with iteration filters and 940 bytes without iteration 
filters, leading to a gain of 78% of RAM. 

Figures 7(h) and 7(i) evaluate the robustness of our 
algorithms against an increase of distinct values and skewed 
data. The evaluation of Q2 and Q3 is measured with and 
without iteration filters for a given amount of RAM of 1KB. 
As shown by Figure 7(h), the use of iteration filters makes the 
operator’s algorithm more stable when facing more distinct 
values. This phenomenon is due to the eager elimination of the 
Irrelevant tuples that participate in an increasing number of 
iterations. Figure 7(i) shows that the GroupBy algorithm is 
insensitive to skewed data, the number of iterations remaining 
constant. The Sort algorithm takes advantage of skewed data 
because several sorting values shared by few tuples can be 
processed at the same iteration. 

Finally, the last four figures evaluate to which extent our 
algorithms scale when the query complexity or the volume of 
data augments. Figure 7(j) illustrates the benefit of iteration 
filters for a complex query involving 3 joins and a multi-
attribute GroupBy. For 1KB  of RAM, iteration filters reduce 
the cost of the execution from 9,6 to 1,4 seconds. Clearly, the 
more complex the query, the more efficient the iteration 
filters. Figure 7(k) plots the execution time of the filtered 
execution of all queries of interest as a function of the RAM. 
This figure demonstrates that the proposed algorithms scale 
well when they face complex queries. Indeed, all queries 
except Q7 can be executed around one second (the worst case 
being 1,4 second for Q5 and Q6)  with only 1KB  of RAM. 
Figure 7(l) plots the execution time of the filtered execution of 
all queries as a function of the database size for a fixed 
quantity of RAM of 1KB . The first learning of this figure is 
that our algorithms scale pretty well for Regular queries. 
However, they scale badly in the presence of Sort or in the 



Query  Query Type Output Tuples / Dist. Values 
Q1 Join(S, T) 1200 
Q2 GroupBy(S.a, join(S, T)) 60 / 60 
Q3 Sort(S.a, join(S, T)) 1200 / 60 
Q4 GroupBy(R.a, Join(R, S, T)) 1200 / 20 
Q5 Sort(R.a, join(R, S, T)) 1200 / 20 
Q6 GroupBy(R.a, S.b, join(R, S, T, U)) 200 / 200 
Q7 Sort(R.a, S.b, join(R, S, T, U)) 2400 / 200 

 
 

Table 1:  Queries Description 
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(b) Q2 - logarithmic scale
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(c) Q3 - logarithmic scale
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(d) Q4 -logarithmic scale
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(e) Q5 - logarithmic scale
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(f) Filter / No Filter Ratio 
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(g) Saved RAM
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 (h) Dist. Values - RAM 1KB 
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(i) Zipfian Distrib. (RAM 1KB )
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(j) Q6 - loragithmic scale
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Figure 7: Evaluation results 



presence of several joins. This situation was predictable and 
one cannot expect execute complex queries on a large 
database without index and with only 1 KB of RAM in less 
than 1 second. Two ways can be investigated to decrease the 
query execution time, namely adding more RAM or adding 
indices. Figure 7(m) plots the same curves with a larger 
RAM of 10KB  and shows that the problem becomes less 
critical without totally disappearing and that complex queries 
involving Sort are still not tackled. Adding indices is the way 
followed by PicoDBMS [PBV01]. It solves the performance 
problem at the price of the side effects mentioned in section 2. 

As a conclusion, these experiments show the accuracy of 
the proposed operator’s algorithms along with their iteration 
filters and demonstrate that they constitute a real alternative 
to the index in a wide range of situations. Beyond this range, 
indices should be considered. Finally, note that all the curves 
presented in this section can be used for co-design purpose. 
Indeed, they provide valuable information to determine: 
whether indices or iteration filters are required in a given 
situation, how much RAM should be added to reach a given 
response time, how much the expected response time should 
be relaxed to tackle a given query with a given quantity of 
RAM and how much data can be embedded in a given device 
without hurting an expected execution time. 

7 Conclusion 
Pervasive computing and ambient intelligence motivate the 
development of new data-centric applications that must be 
tackled in a growing variety of ultra-light computing devices. 
As far as query execution is concerned, RAM appears to be 
the most critical resource in these devices. In the absence of 
a precise understanding of the RAM consumption problem, 
ad-hoc solutions have been developed. Most of them 
introduce strong restrictions on the type of queries and on the 
amount of data that can be tackled while the others resort to 
dedicated index methods having negative side effects. This 
introduces the need for pre-designed database components 
that can be integrated in Systems on Chip.  

This paper precisely addresses this issue and proposes a 
framework helping to design RAM-constrained query 
evaluators. First, we proposed a query execution model that 
reaches a lower bound in terms of RAM consumption. 
Second, we devised a new form of optimization, called 
iteration filter, that drastically reduces the prohibitive cost 
incurred by the preceding model, without hurting the RAM 
lower bound. Third, we proposed variations of the preceding 
techniques that best exploit any incremental growth of RAM. 
Our performance evaluations led to two important and 
practical outcomes. First, they show the accuracy of the 
proposed techniques and demonstrate that they constitute a 
convincing alternative to the index in a wide range of 
situations. Second, they provide helpful guidelines helping to 
calibrate the RAM resource of a hardware platform 
according to given application’s requirements as well as to 
adapt an application to an existing hardware platform.  

While this paper draws the limit beyond which indices 
are required, an interesting future work is to study the 
combination of our operator’s algorithms, iteration filters and 
indices. Our feeling is that these solutions can fit well 

together and can cover a very large range of situations in the 
most accurate way. Another important issue is to put these 
results in practice. A cooperation has been set up with 
Schlumberger to study the evolution of their smartcard 
operating system to tackle on-board d ata centric applications. 
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