
Estimating the Output Cardinality of Partial

Preaggregation with a Measure of Clusteredness

Sven Helmer, Thomas Neumann, Guido Moerkotte
helmer|tneumann|moer@pi3.informatik.uni-mannheim.de

Fakultät für Mathematik und Informatik,
University of Mannheim, Germany

Abstract

We introduce a new parameter, the clus-
teredness of data, and show how it can be
used for estimating the output cardinal-
ity of a partial preaggregation operator.
This provides the query optimizer with
an important piece of information for de-
ciding whether the application of partial
preaggregation is beneficial. Experimen-
tal results are very promising, due to the
high accuracy of the cardinality estima-
tion based on our measure of clustered-
ness.

1 Introduction

A query optimizer has the option of introduc-
ing partial preaggregation (PPA) into a query
plan containing a grouping with an aggregation.
The motivation is to improve the performance by
reducing the amount of data very early during
query execution. Partial preaggregation means
delaying the complete aggregation and partially
aggregating the data in a first step.

As long as there is sufficient buffer space left,
we do a regular aggregation in main memory.
Once we run out of buffer space, we have to
change the procedure. A regular (full) aggre-
gation algorithm will start swapping out group

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or dis-
tributed for direct commercial advantage, the VLDB copy-
right notice and the title of the publication and its date
appear, and notice is given that copying is by permission
of the Very Large Data Base Endowment. To copy other-
wise, or to republish, requires a fee and/or special permis-
sion from the Endowment.

Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

records to disk to be able to continue the ag-
gregation in main memory. Usually, the group
records written to disk are partitioned so that
records which belong to the same group will end
up in the same partition. The final aggregation
is done by scanning the partitions and aggregat-
ing the group records they contain (now the ag-
gregation result of a partition should fit into the
buffer). When aggregating partially, on the other
hand, we do not write group records to disk while
clearing space in the buffer, but instead send the
records to the next operator in the operator tree
of the query. The main advantage of this ap-
proach is a reduction in data volume while avoid-
ing costly disk I/O. With this method, however,
the aggregation may only be partial, i.e., it may
contain more than one record per group. So we
will have to perform a complete aggregation to-
ward the end of the query evaluation. Ideally,
we expect to benefit from the additional work of
the early partial aggregation, due to a significant
reduction in data volume. Unfortunately, this is
not always the case. The overhead of PPA only
pays off if its output (the number of records per
group) is small enough. The smaller the ratio of
output to input, the quicker the query evaluation,
because the less data has to be handled. As the
query optimizer has to decide whether to apply
PPA, it needs to estimate the output cardinality
accurately.

Several factors influence the quality of an early
aggregation step: the number of groups, the num-
ber of tuples in the input, the distributions of the
group sizes, the size of the buffer, the buffer re-
placement strategy used by the algorithm and,
last but not least, the clusteredness of the data.
While the former factors have already been in-
vestigated in some depth, the clusteredness of the

data has not received much attention so far. Nev-
ertheless, it is a very important (if not the most
important) parameter. When the clusteredness
of the data is favorable, this parameter domi-
nates all other negative effects (as we will see
in Section 6, when looking at the experimental
results). Let us illustrate this briefly by an (ad-
mittedly extreme) example. Assume a relation R

with the attributes A1, A2, . . . , Ar. We want to
group the tuples on the integer values of attribute
Ai and aggregate some other attributes. During
query evaluation, the tuples of R are fed into
a partial preaggregation operator, for example
in this order: 〈4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 2, 2〉
(each number stands for a tuple, for brevity we
represent each tuple by its value for Ai). The
tuples could arrive just as well in the follow-
ing order (due to the physical ordering on disk):
〈4, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 4, 3, 4, 4〉. While the sec-
ond stream contains exactly the same tuples as
the first one, it will be more difficult to handle.
In the first case, we need just enough memory to
hold a single group to do a perfect aggregation
(resulting in the smallest output possible). The
only difference between the two streams is the
apparent clusteredness of the first stream.

This observation motivated us to include the
clusteredness of data in predicting the output car-
dinality of PPA. We developed a measure of clus-
teredness adapted to the requirements of group-
ing and aggregation and show how the measure
can be used for estimating the output cardinality
of PPA. With the help of an experimental evalu-
ation we demonstrate that the output cardinality
of two different PPA strategies can be predicted
very accurately.

This paper is structured as follows. In the next
section we deal with the related work on aggre-
gation. After that we briefly introduce some pre-
liminaries. We present our measure in Section 4
and show how to estimate the output cardinality
in Section 5. Section 6 contains the experimental
evaluation, while Section 7 gives a conclusion and
an outlook.

2 Related Work

The importance of data orderedness has been re-
alized in areas apart from databases, e.g. in sort-
ing. There are numerous publications on adap-
tive sorting, where the influence of orderedness of
data on different sorting algorithms is measured
(see [17] for a survey). The measures of disor-

der used in adaptive sorting are not appropriate
for aggregation because they make too great de-
mands. When aggregating, we are not interested
in how sorted the data is, clustered data is per-
fectly fine (in the example of the introduction,
the first stream was not sorted).

Also related to our work are publications deal-
ing with the estimation of the cardinality of pro-
jections on relations [4, 8, 12, 22, 26, 27]. That
work is different insofar as it tries to predict the
cardinality of a deterministic operator’s final re-
sult. PPA is an intermediate, nondeterministic
operator (the final aggregation is done later) and
its output is influenced by many other parame-
ters, e.g. the strategy of the algorithm or the
buffer size.

There has also been a renewed interest in
the topic of aggregation and duplicate elimi-
nation. Recent work on PPA is covered by
[10, 23, 24, 30, 31]. Up to now, however, all
models assumed randomized data and did not
consider clustered data. Several researchers have
investigated the possibilities of improving query
evaluation and optimization with regard to ag-
gregation [11, 18, 21]. There has also been work
on materializing aggregates for speeding up the
processing, especially in data warehouse environ-
ments [3]. Furthermore, there are ongoing activi-
ties looking into the exchange of precision for per-
formance [1, 9, 15]. Finally, we should mention
the studies concerning the extension of standard
aggregate functions [6, 7, 13, 29].

The work that comes closest to our approach is
the collection of numerous publications on buffer
and cache replacement strategies (see [16, 28] for
an overview). A cache miss is similar to not find-
ing a group record in the buffer of PPA. One
major difference, however, is the behavior in the
startup phase. A cache has many misses during
the initial phase as it fills up. PPA, on the other
hand, just allocates a new group record (as long
as free space remains in the buffer). In this sense,
the allocation should not be seen as a miss.

Apart from this difference, most of the papers
on buffer and cache replacements strategies com-
pare different algorithms experimentally and do
not model the buffer hit probability. Analytical
studies as in [2, 14, 25] make assumptions differ-
ent from ours (e.g. different data distributions or
complex modeling of hardware cache properties).

3 Preliminaries

Before describing and analyzing our measure and
PPA, we have to introduce the terms we use
throughout the paper. When talking about ag-
gregation, we mean classical, decomposable ag-
gregate functions as used in SQL. We group
and aggregate a relation R containing the tuples
t1, t2, . . . , tn, so the cardinality of R, denoted by
|R|, is n, where the subscripts of the tuples sup-
ply the order of appearance. By ti.Aj we mean
the value of attribute Aj of tuple ti. The (fi-
nal) aggregation will yield m different groups:
G = {g1, g2, . . . , gm}. The size of a group gi (i.e.,
the number of tuples belonging to this group) is
denoted by |gi| = si. G partitions R, i.e., each
tuple of R belongs to exactly one group. Further-
more, a PPA operator will have at its disposal a
buffer of size B, measured in the number of group
records.

4 A Measure of Clusteredness

As seen in the introductory example, blocks of
identical grouping values are very favorable for
PPA. One step towards determining the clus-
teredness is to find the tuple positions in R where
the value of the grouping attribute Ay changes.
For this, we define a function f (on the domain
1, 2, . . . n):

f(i) =

{

1 if ti−1.Ay 6= ti.Ay

0 if ti−1.Ay = ti.Ay
(1)

with i ≥ 2 and f(1) = 1. Consequently, the
total number of changes c is:

c =

(

n
∑

i=1

f(i)

)

− m (2)

We subtract m at the end, since we do not want
to count the first appearance of each grouping
value. Thus, perfectly clustered data counts as
having 0 changes.

Taking c as a measure of clusteredness is not
accurate enough. For example, we may have the
same number of changes in two different scenar-
ios, but a totally different behavior of PPA. In
one scenario we may just alternate between two
different groups (which is quite favorable from
the viewpoint of PPA), while in the other we cy-
cle between many different groups (more than the
buffer can hold).

Inspired by measures in adaptive sorting based
on inversions [17], we enhanced our approach. In
a sequence X = 〈x1, x2, . . . , , xn〉, (i, j) is an in-
version if i < j and xi > xj. Usually, the number
of inversions or the largest distance determined
by an inversion is used as a measure of disorder.
As a straightforward transfer to aggregation is
not possible, we settled on the distance between
tuples having the same grouping value, i.e., we
want to know how far back in the relation the
last visited tuple with this grouping value is lo-
cated. Measuring the distance in terms of posi-
tions within R does not make sense, because this
does not consider the clusteredness of the data
in between. On account of this shortcoming, we
measure the average distance in terms of changes
between the occurrence of two identical grouping
values.

Let Tk = 〈ti1 , ti2 , . . . , tisk
〉 denote the sequence

of tuples for which Ay (the attribute we are
grouping on) is equal to k (w.l.o.g. we assume, for
ease of notation, that the value of Ay for group
gk is equal to k). We now want to add up all the
changes in the value of Ay that occur between
tuple ti2 and its predecessor ti1 , between ti3 and
ti2 , up to tsk

and tsk−1. With the help of f(i) we
can do this easily:

δk =
sk
∑

j=2

ij
∑

l=ij−1+1

f(l) =

isk
∑

l=i1+1

f(l) (3)

Let us look at an example. Given the sequence
〈4, 1, 1, 2, 4, 3, 3, 4, 4, 2〉 and Ay = 4, we have T4 =
〈t1, t5, t8, t9〉. Between tuple t1 and t5 we change
to two different blocks of values, between t5 and
t8 to one block, and between t8 and t9 we have
no changes. This means, that δ4 = 3. The values
for δ1, δ2 and δ3 can be calculated analogously,
resulting in δ1 = 0, δ2 = 3 and δ3 = 0.

We want to attain a measure of clusteredness
d, which expresses the average number of changes
between the appearance of two identical grouping
values. The lower this number is, the more clus-
tered the data will be (and vice versa). However,
we are only interested in distances that are larger
than zero changes. Tuples with identical group-
ing values next to each other will certainly lead
to the absorption of one of them (which is ideal
for PPA). Averaging over all non-zero distances,
we get:

d =

{
∑m

k=1
δk

c
if c 6= 0

0 else
(4)

In the case c = 0, we have perfect clustering
and thus, all δk will also be equal to 0. For our
example above, this means d = 2, since c = 3 (see
formula (2)). This corresponds to the intuitive
view. There are three non-zero distances: 1 and
2 for Ay = 4 and 3 for Ay = 2.

One could object that the query optimizer
could just run PPA to find out whether it is ben-
eficial and remember the output cardinality for
later queries (as we have to traverse the rela-
tion anyway to calculate our measure). However,
there is an important difference. In the case of
test runs, statistics would have to be gathered
for each anticipated buffer size. In our case, c

and d are collected once and can be used for all
different buffer sizes because our measure is to-
tally independent of the buffer size used by the
PPA algorithm later on.

5 Estimating the Output Cardinality

How do we use the measure from the last sec-
tion for estimating the output size of a partial
preaggregation algorithm? We analyze two differ-
ent algorithms, one using a random replacement
strategy and the other using an optimal strategy
(allowing lookahead).

The most common strategy, LRU, is quite dif-
ficult to analyze. Developing a mathematical
model for it is very complex and, up to now,
one had to rely on simulation results [23]. How-
ever, the optimal strategy is a strict lower bound,
whereas random replacement establishes a prac-
tical upper bound [16]. We will see later how the
LRU strategy can be bounded by our estimates.

5.1 Random Replacement Strategy

First, we give a general description of this strat-
egy before analyzing the cardinality of its output.
The basic algorithm for partially aggregating tu-
ples is quite simple. We step through the tuples
of R in their order of appearance (from t1 to tn).
For each grouping value of Ay seen so far, we
keep a group record in the buffer (with a max-
imum capacity of B group records). For each
newly arriving tuple, we check if the correspond-
ing group record is present in the buffer. If so,

we combine this tuple with the data already ag-
gregated; the tuple is absorbed. Otherwise, we
create a new group record. This works perfectly
until we run out of buffer space. At this point,
we have to swap out a group record each time
a tuple arrives for which no appropriate group
record exists in the buffer (we make room for the
newly created group record). In case of a com-
plete aggregation operator, this can happen in
several different ways, e.g. by writing runs to disk
in sort-based techniques [19] or by swapping out
partitions in hash-based techniques [19]. In the
case of PPA, we just output the displaced group
records. In this context we need a strategy to
determine the records which are to be swapped
out. For the random replacement strategy, we
select the records to be displaced randomly.

5.1.1 A First Analysis

In the following sections, we need to be able
to estimate the (average) probability P that the
record belonging to a group is not in the buffer.
A very simple approximation for P is 1− B

m
(e.g.

used by Larson in [23] for uniformly distributed
data). However, this neglects the fact that in
almost all realistic cases the cardinalities of the
groups will vary widely. Therefore, we use the fol-
lowing estimation (for a derivation see Appendix
A):

P ≈

∑m
i=1

∏B−1
j=0

(

1 − si

n−j·ŝi

)

m
(5)

with ŝi = n−si

m−1 (and si the number of tuples in
group i).

Let us now analyze the output cardinality. We
assume that the buffer is already filled with group
records and that we have seen each group at least
once (we will soon relax these constraints). In
Section 4, we have determined the total number
of changes c when traversing R. However, not all
of these changes lead to the removal (and subse-
quent output) of a group record from the buffer.
We also know that on average, d changes have
taken place since the last time we encountered
the value of Ay of the current tuple. The proba-
bility that a group record has been swapped out

after x swaps is 1 −
(

B−1
B

)x
. As we know the

average probability P that a group record is not
present in the buffer momentarily, about d · P

of the changes lead to swaps (and consequently

contribute to the output). So we can estimate
the cardinality of the output o by

o ≈ m + c

(

1 −

(

B − 1

B

)d·P
)

(6)

5.1.2 Refining the Estimation

Having just one average value d for the distance
does not consider the fact that the distances
between appearances can vary widely. To get a
more accurate picture, we divide the distances δk

into different classes, depending on their value.
We define D different distance classes using a
partitioning Ω = (ω0, ω1, . . . , ωD) (with ω0 = 0,
ωD = ∞), such that δk(ωu) encompasses all
distances that are between ωu−1 and ωu. We
define ∆k(ωu) to be the positions of tuples whose
attribute values Ay are equal to k and whose
distance to their predecessor is between ωu−1

and ωu:

∆k(ωu) =

{ij |tij
∈ Tk, j > 1 ∧ ωu−1 <

ij
∑

l=ij−1+1

f(l) ≤ ωu} (7)

We do not include the lower bound of each in-
terval in order to filter out the tuples that have a
distance of zero to their predecessor (as these are
irrelevant for our measure). Now δk(ωu) is simply

δk(ωu) =
∑

ij∈∆k(ωu)

ij
∑

l=ij−1+1

f(l) (8)

In order to calculate the average distance d(ωu)
for each class, we also have to divide up c, the
total number of changes, into the different classes:

c(ωu) =
m
∑

k=1

|∆k(ωu)| (9)

Combining these steps, we get D different val-
ues (for u = 1, 2, . . . , D):

d(ωu) =

{

∑m

k=1
δk(ωu)

c(ωu) if c(ωu) 6= 0

0 else
(10)

Consequently, we also have to adapt Equation
(6) to take the different distance classes into ac-
count:

o ≈ m +
D
∑

i=1

c(ωi)

(

1 −

(

B − 1

B

)d(ωi)·P
)

(11)

5.1.3 Yet Another Refinement

We are now going to relax the assumption that
the buffer is filled right from the start and that
we have already seen a tuple of each group. We
assume that, when arriving at tuple position l in
R, we know the number vl of different grouping
values observed so far. (We can estimate this
number by a formula given by Larson [23] for
uniformly distributed data or by obtaining them
from a histogram.) Estimating the probability P

that a group record is not in the buffer now in-
volves l instead of n tuples and vl instead of m

different groups. So,

P (l) ≈

0 if vl ≤ B
∑vl

i=1

∏B−1

j=0

(

1−
l
n si

l−j·s̃i

)

vl
if vl > B

(12)

with s̃i =
l(1− si

n)
vl−1 . We do not want to calculate

the probability P anew for each tuple in R, so we
check the number of observed groups for the z

positions l1, l2, . . . , lz (we partition the relation R

into what we call group classes). For each interval
lj−1 to lj , vj is the number of groups seen when
reaching the tuple at position lj . So, for each
interval we are working with an upper bound for
the number of groups, resulting in a slight overes-
timation of the output cardinality. After having
introduced the intervals into Equation (11), we
get:

o ≈ m +

D
∑

i=1

c(ωi)

z
∑

j=1

(

lj − lj−1

n

)

(

1 −

(

B − 1

B

)d(ωi)·P (lj)
)

(13)

with l0 = 0 and v0 = 0.

5.2 Optimal Replacement Strategy

The optimal replacement strategy always swaps
out the group record whose next appearance in

the stream is the farthest off (this technique was
already proposed for block replacements in vir-
tual memory management [5]). Obviously, this
strategy cannot be implemented without look-
ahead capability. However, it is still interesting
to know the best possible case of a PPA opera-
tor, as this can serve as a lower bound for the
performance of all other algorithms.

In order to estimate the output size oopt, we
modify Equation (13) in the following way. All
values whose distance to their last appearance is
smaller than the buffer size are absorbed, since in
the optimal case, we can make certain that they
are kept in the buffer. So (with sign(0) = 0) we
get

oopt ≈ m +

D
∑

i=1

c(ωi)

z
∑

j=1

(

lj − lj−1

n

)

(

1 −

(

B − 1

B

)d(ωi)·P (lj)·sign(max(0,d(ωi)−B))
)

(14)

6 Experimental Evaluation

We implemented both algorithms (random re-
placement strategy and optimal replacement
strategy) in order to validate our cost model. It
was important to test our measure with many dif-
ferent data sets. For that reason, we generated
synthetic data sets in which we could control the
clusteredness (see Section 6.1). We tested the
effects of several parameters on our estimation,
namely number of distance and group classes,
buffer size, distribution of group sizes, and the
cardinality of the relations.

6.1 Generating the Data

As we wanted to investigate the effect of the clus-
teredness of the data, we generated the data in
the following way. We started by creating rela-
tions containing tuples that were perfectly clus-
tered in regard to the grouping attribute. This
was done for different (group value) distributions:
uniform, Zipf, and normal. In each case we de-
creased the clusteredness by randomly swapping
two tuples within the relation several times. In
the following graphs we state the number of swaps
done in each relation to specify the clustered-
ness. We also created totally randomly ordered
relations (denoted “shuffled” in the following).

We also tested the cardinality estimation on real-
world data taken from detectors in the HERA-B
experiments at DESY (in this case, we grouped
after the z-positions of particles traveling through
the detector).

6.2 Random Replacement

6.2.1 Number of Distance Classes

In Section 5.1.2, we introduced distance classes
with the goal to increase the precision of our es-
timation. In Figure 1, we plotted the size of the
output (y-axis) of the partial aggregation oper-
ator depending on the clusteredness of the in-
put (x-axis) for different numbers of distances

classes (1, 2, 4, and 14) with wi = dn
1

D ei for
1 < i < D. For these measurements, we had 500
groups (with 20 elements each for uniformly dis-
tributed data), a buffer size of 100 groups, and
assumed one group class (i.e., the buffer is filled
and we have seen all 500 groups right from the
start).

In Figure 1(a), the results for uniformly dis-
tributed data are depicted, while Figure 1(b)
shows those for Zipf distributed data. In both
cases, it can be clearly seen that by increasing
the number of different distance classes, the theo-
retically predicted output size rapidly approaches
the measured value. This is also a nice feature of
our cost model. The more resources are available
for estimating the output cardinality, the better
the result will be. With 10 to 15 distance classes
we were able to keep the deviation of our esti-
mation from the actually measured value within
5%.

The huge effect of the data clusteredness can
also be seen nicely in Figure 1. The size of the
output for shuffled data is 1500% larger than that
for perfectly clustered data.

6.2.2 Number of Group Classes

Now we drop the assumption that all groups have
been seen right from the start and apply Equation
(13) from Section 5.1.3. This time, we use one
distance class (Ω = {0,∞}) and several different
group classes (1, 10, and 20) to see which of the
refinements improves the accuracy more. Again,
we had 500 groups (with 20 elements each for
uniformly distributed data) and a buffer size of
100 groups.

Figure 2(a) shows the results for uniformly
distributed data, Figure 2(b) those for Zipf dis-

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

granularity of distances (uniform dist: 500 groups, 20 elements)

real
1 class

2 classes
4 classes

14 classes 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

granularity of distances (Zipf dist (z=1.0): 500 groups)

real
1 class

2 classes
4 classes

14 classes

(a) Uniform distribution (b) Zipf distribution

Figure 1: Number of distance classes

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

granularity of groups (uniform dist: 500 groups, 20 elements)

real
1 class

10 classes
20 classes 1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

granularity of distances (Zipf dist (z=1.0): 500 groups)

real
1 class

10 classes
20 classes

(a) Uniform distribution (b) Zipf distribution

Figure 2: Number of group classes

tributed data. Although we are able to improve
the precision, the effect of increasing the number
of group classes is not as significant as that of the
number of distance classes. We conclude that it
is more important to allocate a larger amount of
the available resources to the number of distance
classes than to the amount of group classes.

6.2.3 Influence of Buffer Size

We want to be able to give an accurate picture
of the behavior of the partial preaggregation op-
erator for different buffer sizes (which is a very
important parameter for the optimizer). On the
x-axis we have the size of the buffer (in number
of groups) and on the y-axis the size of the out-
put. For different levels of clusteredness, we plot-
ted pairs of curves: one for the measured value
(real) and one for the estimated value (cm, for
cost model). The curves of each pair are always
close together, both for uniformly distributed
data (Figure 3(a)) and for Zipf distributed data
(Figure 3(b)). (The number of distance classes

was set to 14 and the number of group classes to
10.)

6.2.4 Distribution of Group Sizes

Our technique makes no assumption about the
distribution of the group size. Nevertheless, it
should be able to handle many different distri-
butions correctly. In Figure 4(a), we plotted
pairs of curves for several different distributions
of the group size. We used uniformly distributed
group sizes, two Zipf distributed group sizes (with
z = 0.5 and z = 1), and normally distributed
group sizes (with µ = 300 and σ = 70). As we can
clearly see, the output size of the partial preag-
gregation operator can be estimated accurately,
independently of the chosen distribution.

For comparison, we have plotted the results for
the formulas taken from [24]. We have fed them
with the exact values for the group sizes and the
exact value for the point when the first buffer
overflow occurs. The results are depicted in Fig-
ure 4(b). Note that these formulas estimate the

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

size of buffer (in no of groups)

effect of buffer size (uniform: 500 groups, 20 elements)

0 swaps (real)
0 swaps (cm)

2000 swaps (real)
2000 swaps (cm)

5000 swaps (real)
5000 swaps (cm)

shuffled (real)
shuffled (cm)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

size of buffer (in no of groups)

effect of buffer size (Zipf (1.0): 500 groups)

0 swaps (real)
0 swaps (cm)

2000 swaps (real)
2000 swaps (cm)

5000 swaps (real)
5000 swaps (cm)

shuffled (real)
shuffled (cm)

(a) Uniform distribution (b) Zipf distribution

Figure 3: Effect of buffer size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

different group size distributions (500 groups)

uniform (real)
uniform (cm)
normal (real)
normal (cm)
zipf0.5 (real)
zipf0.5 (cm)
zipf1 (real)
zipf1 (cm)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 shuffled

si
ze

 o
f o

ut
pu

t (
in

 tu
pl

es
)

no of swaps

different group size distributions (500 groups)

uniform (real)
uniform (cm)
normal (real)
normal (cm)
zipf0.5 (real)
zipf0.5 (cm)
zipf1 (real)
zipf1 (cm)

(a) Our cost model (b) Larson’s cost model

Figure 4: Effect of distribution

output size of an LRU-strategy. So, the numbers
should be slightly smaller than the measure val-
ues. Quite contrary to these expectations, the
estimations are usually larger than the measured
values (as can be seen in Figure 4(b)). For nor-
mally distributed data, the estimation is off up
to a factor of 5.

6.2.5 Relation Cardinality

In Figure 5, we show our results for investigat-
ing the effect of the relation size on our estima-
tion (the left hand side depicts the results for
uniformly distributed data, the right hand side
for Zipf distributed data). We started out with
a relation containing 250 groups with 10 mem-
bers each (for uniformly distributed data). In
each step, we doubled the number of groups and
members up to 4000 groups with 160 members
each. The buffer size was set to 1

10 of the number
of groups in each case. We show the curves for
maximal clusteredness, 1

5 relation size, 1
2 relation

size, and shuffled. As we can see in the results,

the estimation is not distorted by larger numbers,
but scales very well with the relation cardinality.

6.2.6 Real-world Data

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

100 1000 10000

si
ze

 o
f o

ut
pu

t

size of buffer

physics data (HERA-B)

real
cm

Figure 6: Real-world data

For experiments with real-world data we used
500,000 particle tracks grouped into 8403 differ-
ent groups. In Figure 6, we plotted the results
for different buffer sizes. Although the results

0

100000

200000

300000

400000

500000

600000

0 100000 200000 300000 400000 500000 600000 700000

si
ze

 o
f o

ut
pu

t

size of relation

uniform distribution

0 swaps (real)
0 swaps (cm)

1/5|R| swaps (real)
1/5|R| swaps (cm)

1/2|R| swaps (real)
1/2|R| swaps (cm)

shuffled (real)
shuffled (cm)

0

100000

200000

300000

400000

500000

600000

0 100000 200000 300000 400000 500000 600000 700000

si
ze

 o
f o

ut
pu

t

size of relation

Zipf distribution

0 swaps (real)
0 swaps (cm)

1/5|R| swaps (real)
1/5|R| swaps (cm)

1/2|R| swaps (real)
1/2|R| swaps (cm)

shuffled (real)
shuffled (cm)

(a) Uniform distribution (b) Zipf distribution

Figure 5: Effect of relation cardinality

for the generated data are slightly more accurate,
the predicted output cardinalities follow the mea-
sured ones closely.

6.3 Optimal Replacement

Figure 7 shows the results for the optimal replace-
ment strategy (the left hand side for uniformly
distributed data, the right hand side for Zipf dis-
tributed data). We plotted the output size de-
pending on the buffer size for different levels of
clusteredness (we used 14 distance and 10 group
classes). The precision of the cardinality estima-
tion for the optimal replacement strategy cannot
really keep up with that for the random replace-
ment strategy, but it is still very good (we had a
maximal error of 38%). Also the curve is not as
smooth. This is due to the sharp cutoff in Equa-
tion (14). All distances d(ωi) below B are totally
ignored, while all above count regularly (as in
random replacement). In reality, the cut is not
as distinct and we are looking for a better way to
model this case. The curve run can be smoothed
by introducing more distance classes at the price
of higher computation costs for the estimation.

7 Conclusion and Outlook

Estimating the output cardinality of PPA accu-
rately is a necessary prerequisite for a query opti-
mizer to reach a decision on applying it. Previous
analyses of PPA did not consider the clustered-
ness of the data, but assumed randomized data.
This is unfortunate, because most real-world data
is clustered and this has a large influence on the
output cardinality. We developed a measure of
clusteredness and showed how it can be used to
estimate this cardinality accurately. The qual-
ity of our approximations was demonstrated by

thorough experiments.

At the moment, we are working on two top-
ics: extending our model to cover PPA with a
LRU strategy and developing techniques for cal-
culating the clusteredness of a relation very effi-
ciently (similar to the work done in [20]). As al-
ready mentioned, developing a formal model for
the LRU replacement strategy is quite complex.
However, with our measure and estimations for
the random and optimal replacement strategy, we
can give an upper and lower bound for the output
cardinality of the LRU strategy. In Figure 8, we
plotted our predictions with measured values for
an LRU strategy PPA algorithm. For uniformly
distributed data an LRU strategy is on par with
random replacement, for Zipf distributed data it
lies between the random and the optimal case.
This confirms the results of Smith in [28], who
claimed that an LRU-strategy performs about
10% better than random replacement for realistic
data.

At the moment, we recommend our technique
for mostly static databases. It is not suited very
well for dynamic environments in which frequent
recalculations of our measure are necessary, due
to a complexity of O(ndm

b
e) for calculating d

(where n is the number of tuples, m the num-
ber of groups, and b the buffer space available
for calculation). Estimating the output cardinal-
ity is much cheaper, since the complexity here is
O(Dz), where D is the number of distance and
z the number of group classes. This also means,
that we can trade speed for accuracy. After the
promising start with our measure, we are quite
confident that the calculation of d can be accel-
erated with the help of a similar trade-off by not
looking at the whole relation and all groups, but

1000

2000

3000

4000

5000

6000

7000

8000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t

size of buffer

optimal replacement/buffer size (uniform: 500 groups, 20 elements)

0 swaps (real)
0 swaps (cm)

2000 swaps (real)
2000 swaps (cm)

5000 swaps (real)
5000 swaps (cm)

shuffled (real)
shuffled (cm)

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t

size of buffer

optimal replacement/buffer size (Zipf(1.0): 500 groups)

0 swaps (real)
0 swaps (cm)

2000 swaps (real)
2000 swaps (cm)

5000 swaps (real)
5000 swaps (cm)

shuffled (real)
shuffled (cm)

(a) Uniform distribution (b) Zipf distribution

Figure 7: Effect of buffer size for optimal replacement

1000

2000

3000

4000

5000

6000

7000

8000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t

size of buffer

lru bounds/buffer size (uniform: 500 groups, 20 elements)

5000 swaps (real)
5000 swaps (cm rnd)
5000 swaps (cm opt)

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

50 100 150 200 250 300 350 400 450 500

si
ze

 o
f o

ut
pu

t

size of buffer

lru bounds/buffer size (uniform: 500 groups, 20 elements)

5000 swaps (real)
5000 swaps (cm rnd)
5000 swaps (cm opt)

(a) Uniform distribution (b) Zipf distribution

Figure 8: Bounding the LRU strategy

at some fraction.

Acknowledgments

We thank Vasco Amaral for providing the exper-
imental data from HERA-B at DESY. A word of
thanks also goes to the anonymous referees for
their helpful hints on improving the paper.

References

[1] Swarup Acharya, Phillip B. Gibbons, and
Viswanath Poosala. Congressional sam-
ples for approximate answering of group-by
queries. In SIGMOD Conference, pages 487–
498, 2000.

[2] Anant Agarwal, Mark Horowitz, and John L.
Hennessy. An analytical cache model.
TOCS, 7(2):184–215, 1989.

[3] Sameet Agarwal, Rakesh Agrawal,
Prasad M. Deshpande, Ashish Gupta,
Jeffrey F. Naughton, Raghu Ramakrishnan,

and Sunita Sarawagi. On the computation
of multidimensional aggregates. In Proc.
22nd Int. Conf. Very Large Databases,
VLDB, pages 506–521, 3–6 1996.

[4] Rafiul Ahad, K. V. Bapa Rao, and Dennis
McLeod. On estimating the cardinality of
the projection of a database relation. TODS,
14(1):28–40, 1989.

[5] L.A. Belady. A study of replacement algo-
rithms for a virtual storage computer. IBM
Systems Journal, 5(2):78–101, 1966.

[6] Michael Benedikt and Leonid Libkin. Exact
and approximate aggregation in constraint
query. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 31 -
June 2, 1999, Philadelphia, Pennsylvania,
pages 102–113. ACM Press, 1999.

[7] Chee Yong Chan, Wenfei Fan, Pascal Fel-
ber, Minos N. Garofalakis, and Rajeev Ras-

togi. Tree pattern aggregation for scalable
XML data dissemination. In VLDB’02, Pro-
ceedings of 28th International Conference on
Very Large Data Bases, Hong Kong, China,
pages 826–837, 2002.

[8] Moses Charikar, Surajit Chaudhuri, Rajeev
Motwani, and Vivek R. Narasayya. Towards
estimation error guarantees for distinct val-
ues. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, May 15-17,
2000, Dallas, Texas, USA, pages 268–279,
2000.

[9] Surajit Chaudhuri, Gautam Das, Mayur
Datara, Rajeev Motwani, and Vivek R.
Narasayya. Overcoming limitations of sam-
pling for aggregation queries. In 17th
Int. Conf. on Data Engineering, Heidelberg,
Germany, 2001.

[10] Surajit Chaudhuri and Kyuseok Shim. In-
cluding Group-By in Query Optimization. In
Proceedings of the 20th International Con-
ference on Very Large Databases, pages 354–
366, Santiago, Chile, 1994.

[11] Surajit Chaudhuri and Kyuseok Shim.
An overview of cost-based optimization of
queries with aggregates. Data Engineering
Bulletin, 18(3):3–9, 1995.

[12] Paolo Ciaccia and Dario Maio. Domains and
active domains: What this distinction im-
plies for the estimation of projection sizes in
relational databases. TKDE, 7(4):641–655,
1995.

[13] Sophie Cluet and Guido Moerkotte. Efficient
evaluation of aggregates on bulk types. In
Database Programming Languages (DBPL-
5), Proceedings of the Fifth International
Workshop on Database Programming Lan-
guages, Gubbio, Umbria, Italy, 6-8 Septem-
ber 1995, Electronic Workshops in Comput-
ing, page 8. Springer, 1995.

[14] Asit Dan and Donald F. Towsley. An ap-
proximate analysis of the LRU and FIFO
buffer replacement schemes. In SIGMET-
RICS, pages 143–152, 1990.

[15] Alin Dobra, Minos N. Garofalakis, Johannes
Gehrke, and Rajeev Rastogi. Process-
ing complex aggregate queries over data
streams. In SIGMOD Conference, Madison,
Wisconsin, 2002.

[16] Wolfgang Effelsberg and Theo Härder.
Principles of database buffer management.
TODS, 9(4):560–595, 1984.

[17] Vladimir Estivill-Castro and Derick Wood.
A survey of adaptive sorting algorithms.
ACM Computing Surveys, 24(4):441–476,
1992.

[18] Min Fang, Narayanan Shivakumar, Hector
Garcia-Molina, Rajeev Motwani, and Jef-
frey D. Ullman. Computing iceberg queries
efficiently. In VLDB’98, Proceedings of
24rd International Conference on Very Large
Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 299–310, 1998.

[19] Goetz Graefe. Query evaluation techniques
for large databases. ACM Computing Sur-
veys, 25(2):73–170, 1993.

[20] Sudipto Guha and Nick Koudas. Approxi-
mating a data stream for querying and esti-
mation: Algorithms and performance evalu-
ation. In 18th Int. Conf. on Data Engineer-
ing, San Jose, California, 2002.

[21] Alfons Kemper, Donald Kossmann, and
Christian Wiesner. Generalised hash teams
for join and group-by. In VLDB’99, Pro-
ceedings of 25th International Conference
on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 30–
41, 1999.

[22] Arnd Christian König and Gerhard Weikum.
Combining histograms and parametric curve
fitting for feedback-driven query result-size
estimation. In VLDB’99, Proceedings of
25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK, pages 423–434, 1999.

[23] Per-Åke Larson. Grouping and duplicate
elimination: Benefits of early aggregation.
Technical Report MSR-TR-97-36, Microsoft,
1997.

[24] Per-Åke Larson. Data reduction by partial
preaggregation. In 18th Int. Conf. on Data
Engineering, San Jose, California, 2002.

[25] Lothar F. Mackert and Guy M. Lohman. In-
dex scans using a finite LRU buffer: A val-
idated I/O model. TODS, 14(3):401–424,
1989.

[26] Michael V. Mannino, Paicheng Chu, and
Thomas Sager. Statistical profile estimation
in database systems. ACM Computing Sur-
veys, 20(3):191–221, 1988.

[27] Jeffrey F. Naughton and S. Seshadri. On
estimating the size of projections. In Serge
Abiteboul and Paris C. Kanellakis, editors,
ICDT’90, Third International Conference
on Database Theory, Paris, France, Decem-
ber 12-14, 1990, Proceedings, volume 470 of
Lecture Notes in Computer Science, pages
499–513. Springer, 1990.

[28] Alan Jay Smith. Cache memories. ACM
Computing Surveys, 14(3):473–530, 1982.

[29] S. Sudarshan, Divesh Srivastavaa, Raghu
Ramakrishnan, and Catriel Beeri. Extend-
ing the well-founded and valid semantics for
aggregation. In Proceedings of the 1993 In-
ternational Symposium, Vancouver, British
Columbia, Canada, pages 590–608, 1993.

[30] Aris Tsois, Nikos Karayannidisa, Timos K.
Sellis, and Dimitri Theodoratos. Cost-based
optimization of aggregation star queries
on hierarchically clustered data warehouses.
In Proceedings of the 4th Intl. Workshop
DMDW’2002, Toronto, Canada, pages 62–
71, 2002.

[31] Weipeng P. Yan and Per-Åke Larson. Eager
aggregation and lazy aggregation. In The
VLDB Journal, pages 345–357, 1995.

A Derivation of Probability P

Deriving P for uniformly distributed data is quite
simple. We select B groups randomly from m

possible groups without replacement to fill the
buffer. We want to know the probability that
one particular of those groups will not end up in
the buffer:

P ≈

(m−1
1

)

(m
1

)

(m−2
1

)

(m−1
1

) . . .

(m−B
1

)

(m−B+1
1

)

=

(m−B
1

)

(m
1

) =
m − B

m
= 1 −

B

m

Now we want to consider the different cardinal-
ities of the groups. When visualizing this situa-
tion, we have an urn filled with colored balls and
each color represents one group. The cardinal-
ity of each group is represented by the number of
balls for each color. This is also a selection with-
out replacement. However, when we have chosen
a group we have to remove all remaining balls
of this color from the urn, since this group can-
not be chosen again. As an intermediate step we
want to approximate the probability P (gi) that
group gi is not present in the buffer after filling
it. We assume that all other groups (G \ gi) have
the same size ŝi (to simplify the matter), with
ŝi = n−si

m−1 .

P (gi) ≈

(n−si

1

)

(n
1

)

(n−si−ŝi

1

)

(n−ŝi

1

)

(n−si−2ŝi

1

)

(n−2ŝi

1

)
. . .

(n−si−(B−1)ŝi

1

)

(n−(B−1)ŝi

1

)

=
B−1
∏

j=0

n − si − jŝi

n − jŝi

In order to estimate the average probability P

that a group is not in the buffer, we average over
all groups:

P =

∑m
i=1 P (gi)

m

